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ABSTRACT

Pose variation and subtle differences in appearance are key challenges to fine-
grained classification. While deep networks have markedly improved general
recognition, many approaches to fine-grained recognition rely on anchoring net-
works to parts for better accuracy. Identifying parts to find correspondence dis-
counts pose variation so that features can be tuned to appearance. To this end
previous methods have examined how to find parts and extract pose-normalized
features. These methods have generally separated fine-grained recognition into
stages which first localize parts using hand-engineered and coarsely-localized pro-
posal features, and then separately learn deep descriptors centered on inferred part
positions. We unify these steps in an end-to-end trainable network supervised by
keypoint locations and class labels that localizes parts by a fully convolutional
network to focus the learning of feature representations for the fine-grained clas-
sification task. Experiments on the popular CUB200 dataset show that our method
is state-of-the-art and suggest a continuing role for strong supervision.

1 INTRODUCTION

Fine-grained classification is a challenging task due to striking variations in pose, subtle differences
in appearance between classes, and strong intra-class variety. Fine-grained classification has made
progress in improving accuracy and weakening supervision and now covers several domains includ-
ing aircraft (Maji et al., 2013), cars (Stark et al., 2012), plants (Angelova & Zhu, 2013; Angelova
et al., 2013; Belhumeur et al., 2008; Nilsback & Zisserman, 2006; 2008; Sfar et al., 2013), and
animal breeds (Liu et al., 2012).

Unlike basic-level object classification, where learning holistic representations alone continues to
improve recognition, fine-grained classification often relies on correspondence to align part repre-
sentations so that the subtle distinguishing features of different classes can be learned. To identify
these correspondences, previous work (Zhang et al., 2014; Branson et al., 2014) has focused on using
strong supervisions for part localizations and feature transformations that can discount the nuisance
variables of pose and viewpoint.While recent work (Jaderberg et al., 2015; Lin et al., 2015b; Krause
et al., 2015) has made impressive progress without strong supervision, we show that the correspon-
dence gained from end-to-end keypoint and classification training improves fine-grained recognition
accuracy.

Deep learning has made dramatic progress on not only image classification, but detection (Sermanet
et al., 2013; Girshick et al., 2014), keypoint prediction (Tompson et al., 2014), and semantic seg-
mentation (Long et al., 2015). These tasks require not only recognition but localization. Whether or
not a deep network can effectively learn all necessary invariances to pose is an open question. We
believe it is still critical to model parts and pool features into a pose-independent representation to
best distinguish between similar subordinate classes. This makes good use of limited training data
by reserving model capacity for appearance given the discounting of pose.

†This work was done when first author Ning Zhang was in UC Berkeley.
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Figure 1: Overview of our model. The network consists of two main modules: 1) a localization
network for learning where to look and 2) a classification network which uses a coordinate transfer
layer to semantically pool part features; these are jointly used to learn the fine-grained classifier.

Real-world fine-grained recognition cannot rely on side-channel information like knowledge of
the true bounding boxes or parts. We are inspired by the object and part detection approach of
(Zhang et al., 2014), which makes use of the state-of-the-art R-CNN (Girshick et al., 2014) detec-
tion method, and learns a deep representation of part-level features. However, the part recall of this
model is limited by proposals based on hand-engineered features and the separate optimization of
part localization and deep feature learning stages.

In this paper, we propose an end-to-end trainable deep network to simultaneously localize parts
using a spatially fine-grained detection model, form descriptors over inferred part locations, and
classify a categorically fine-grained label space. The network goes directly from pixels to parts via
fully convolutional keypoint localization network. We design a semantic pooling layer—which we
call the coordinate transfer layer—to pool feature maps using predicted keypoints. The fine-grained
classification is then decided from the combined representations. Classification errors are back-
propagated to the selected parts to drive the learning of discriminative, pose-normalized features.
To our knowledge, ours is the first approach to incorporate pose prediction and normalization in
a unified deep fine-grained model. Our end-to-end model achieves state-of-the-art results on the
standard Caltech-UCSD bird benchmark (Welinder et al., 2010) for fine-grained recognition.

2 RELATED WORK

Our approach draws on the significant literature on fine-grained classification methods, and on recent
successes of deep nets for image classification (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014) and transfer learning (Donahue et al., 2014) especially their fully convolutional realizations;
both areas are reviewed below in turn.

2.1 FINE-GRAINED CLASSIFICATION

Several approaches are based on segmentation methods (Chai et al., 2012; Gavves et al., 2013; Xie
et al., 2013; Chai et al., 2013) and others are based on detecting and extracting features from certain
parts of objects, such as (Farrell et al., 2011; Liu et al., 2012; Berg & Belhumeur, 2013; Liu &
Belhumeur, 2013; Göring et al., 2014). (Zhang et al., 2014) adapt the R-CNN detector for not only
whole object but part localization and recognition. This brought fine-grained classification into the
more realistic setting of not having oracle knowledge of the bounding box at test time. However,

2



Workshop track - ICLR 2016

this approach still relies on a proposal pipeline. Parts pose a problem by their small size and poten-
tially subtle boundaries that leads to poor proposal recall and limited the pose normalization of the
part R-CNN to head and body. The proposed model is able to detect and pose normalize across all
keypoints through fully convolutional search. (Branson et al., 2014) analyze the space of staged de-
tection, alignment, and classification pipelines to reveal the role of feature learning in fine-grained
recognition. The choice of learned features makes the most difference but pose has its own con-
tribution. This reinforces the need for the end-to-end learning and pose integration that our work
advances. (Lin et al., 2015a) formulate a joint localization, alignment, and classification model for
fine-grained classification. Subnetworks regress part bounding boxes, match to clustered part tem-
plates, and classify. This approach improves on separate models but is restricted to head and body
keypoints and coarse localization by bounding box regression. Although localization and classifica-
tion are jointly tuned, the “valve link function” for pose normalization is fixed and nonparametric.
In contrast our proposed network is capable of fine-grained localization by fully convolutionally
predicting all keypoint types and the entire model is learned jointly.

(Krause et al., 2015) achieve fine-grained recognition without part annotations. Inferring latent
parts by co-segmentation drives pose alignment for learning R-CNN detectors of the whole object
and the discovered parts. Parts are mined from co-segmentation by a diversity clustering that is not
guaranteed to be discriminative, unlike the task-driven end-to-end training of our model. While the
latent parts are learned in disjoint stages, weakening supervision is an exciting direction for fine-
grained recognition. Such weak signals could be incorporated into our fully convolutional training
analogously to the bounding box mining of (Dai et al., 2015) for segmentation masks. The spatial
transformer network of (Jaderberg et al., 2015) strives for spatial invariance by end-to-end learning
transformations and is shown to be effective for fine-grained categorization.

Our method is also related to attention models. Olshausen et al. proposed a neural model of visual
attention which is based on dynamic gating of information flow at stage of representation within
a deep network (Olshausen et al., 1993). Recent attention models (Mnih et al.; Ba et al., 2014)
use sequential deep learning models, such as recurrent neural network or LSTM to learn glimpse
location based on last glimpse. In (Sermanet et al., 2014), the authors use attention models to learn
where to look for as glimpses for fine-grained classification. Compared with attention models, our
method is not restricted to sequential and can directly exploit available strong supervision. While
appealing in generality, these attention-based approaches do not exceed performance of recent direct
vision approaches.

2.2 FULLY CONVOLUTIONAL NETWORKS

The fully convolutional networks (FCNs) of (Long et al., 2015) are designed for pixel-wise predic-
tion. Every layer in an FCN computes a local operation on relative spatial coordinates. There are no
fully connected layers to restrict dimensions. In this way, an FCN can take an input of any size and
produce an output of corresponding dimensions.

Inference and learning are done on whole images at a time. The dense forward pass and backprop-
agation are highly efficient since intermediate features and gradients are effectively cached. This
makes it possible to take advantage of the complete ground truth in training pixel-to-pixel tasks such
as semantic segmentation or in our case keypoint prediction.

(Tompson et al., 2014) learn an end-to-end fully convolutional network for human pose. How-
ever, this model predicts keypoints alone and does not explore their role in recognition. In this
work, the keypoints guide the fine-grained classification model by pooling deep features into a pose-
normalized form that is learned end-to-end.

(Tulsiani & Malik, 2015) combine convolutional score maps with inferred viewpoint priors to regress
to keypoint locations. Their viewpoint and keypoint prediction depend on detections from R-CNN.
Joint learning is prevented by the independent proposal and bounding box recognition stages. The
fully convolutional keypoints to fine-grained classification network proposed in this work does not
rely on separate detections or bounding box knowledge.
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Figure 2: The coordinate transfer layer takes two inputs: the keypoint heatmap and the feature
representation activations. For each part, the layer pools the feature based on the small surrounding
neighborhood around the argmax point of the heatmap, as shown in white rectangle. For P different
parts, the layer pools P semantic features and stacks them together as the output.

3 FULLY CONVOLUTIONAL PART MODEL FOR FINE-GRAINED

CATEGORIZATION

The overview architecture of our model is shown in Figure 1. The goal is to define a unified deep
network to simultaneously learn to localize parts and semantically pool the feature representations
accordingly. The network consists of two main modules: 1) localization net learning where to look
and 2) classification net which has semantic pooling to learn the fine-grained classifier.

We initialize our network from the VGG-16 network (Simonyan & Zisserman, 2014) as pretraining.
With its further parameters and layers of nonlinearity, the VGG net was a winner of the ILSVRC
2014 challenge. It has since proven useful through transfer learning to other vision tasks (Hariharan
et al., 2015; Long et al., 2015) like semantic segmentation that require both recognition and local-
ization. We use the publicly available pretained VGG-16 weights and implement our model with the
Caffe (Jia et al., 2014) framework.

3.1 KEYPOINT PREDICTION

First, we cast the VGG network into fully convolutional form following Long et al. (2015). This
equips the network for dense feature extraction on any input image size. Although the original input
size of VGG net is 224 × 224 pixels, the last layer receptive field size is actually 404 × 404. This
is the size of the spatial context for each keypoint prediction. For finer part resolution, we upsample
the input image (which we note can be composed with the filters of the first layer) to 500× 500 for
an ultimate feature map of dimensions 10× 10× 4096. We score keypoints by a 1× 1 convolution
layer.

The keypoint location scoring is learned through end-to-end training from a pixelwise sigmoid cross-
entropy loss function. The ground truth keypoint locations are coded as a binary map over output
locations. The output centered at closest point to the true keypoint is coded as a positive while all
other outputs are negatives. A keypoint may not be visible in all inputs; these missing keypoints are
coded as negatives at every location.

The pixelwise sigmoid cross entropy loss function is

l =
1

N

N∑

n=1

W∑

i=1

H∑

j=1

[pnij logp̂
n
ij + (1− pnij)log(1− p̂nij)]

where pnij is the ground truth keypoint map of nth example at location (i, j) and p̂nij is the sigmoid

output at location (i, j) of nth example.
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3.2 COORDINATE TRANSFER LAYER

It is not enough to have keypoint locations: rich, part-tuned features are needed to capture fine-
grained differences. In order to direct feature learning to this purpose, we pool features semantically
by keypoint identity. This is carried out by our novel coordinate transfer layer. It takes two inputs:
the keypoint location map and the feature activations. In the forward pass, the layer pools the features
maps in a focused, surrounding neighborhood of the part, as shown by the white rectangle in Figure
2 and then stack the pooled features together as the pose-normalized part representation. During
back-propagation, the layer propagates the classification error to the corresponding part region in
the lower feature representation. During training the ground truth part locations are pooled whereas
the predicted keypoint locations are pooled at test time.

3.3 JOINT REPRESENTATION

For fine-grained class recognition, we concatenate the pose-normalized part feature and the holistic
representation of the whole image together and add a fully connected layer on top of the fused rep-
resentation. The classification training is done by the softmax loss. At testing neither the bounding
box or part annotations are given; everything is inferred from the image. For the holistic represen-
tation, we also optionally employ an additional layer implementing the recent bilinear feature space
of (Lin et al., 2015b) and its compact extension (Gao et al., 2015).

3.4 TRAINING

The whole network can be trained end-to-end for joint learning of all model parameters. The ar-
chitecture is a directed acyclic graph and the coordinate transfer layer gradient back-propagates
fine-grained recognition error while respecting localization.

Given the size of the network, we adopt a staged approach to learning before end-to-end fine-tuning.
This ensures reasonable accuracy of the keypoint and classification tasks before complete feature
learning to avoid divergence from the pre-training.

Our training proceeds as follows:

1. Keypoint localization is fine-tuned from the VGG net for fixed features and random initial-
ization of the last score layer.

2. Once converged, we fine-tune the localization network at a smaller learning rate.

3. Once localization network has converged, the classifiers are trained for fixed semantic pool-
ing on ground truth part annotations.

4. Once converged, we fine-tune all layers at a smaller learning rate.

3.5 COMPACT BILINEAR REPRESENTATION

(Lin et al., 2015b) have shown impressive results on fine-grained classification by using bilinear
pooling to encode the deep representation. However, those features are high dimensional (2̃62k) and
impractical for spatial tasks like keypoints or segmentation. (Gao et al., 2015) propose compact rep-
resentations with same discriminative power which allow back-propagation and end-to-end training.
We use the ”Random Maclaurin Projection” of (Gao et al., 2015) to yield a deep representation that
of only 5k dimensions.

3.6 FINETUNED PART NETS

The coordinate transfer layer provides a way to use the feature representation around each keypoint
and unify the whole pose-normalized representation into one network. However, one disadvantage
is that it lacks context due to the smaller corresponding receptive windows. An alternative way of
utilizing keypoints for pose-normalized representation is to crop part images as (Zhang et al., 2014).
Following (Zhang et al., 2014), we crop two parts: head and body using the predicted keypoints and
finetuned part networks using the crop part images.
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Method Train phase Test phase Accuracy

BBox Parts BBox Parts

DPD+DeCAF feature (Donahue et al., 2014) X X X 64.96%
POOF (Berg & Belhumeur, 2013) X X X 56.78%
Symbiotic Segmentation (Chai et al., 2013) X X 59.40%
Alignment (Gavves et al., 2013) X X 62.70%
Part-based RCNN with BBox(Zhang et al., 2014) X X X 76.37%
Part-based RCNN(Zhang et al., 2014) X X 73.89%
Pose normalized CNNs (Branson et al., 2014) X X 75.70%
Co-segmentation (Krause et al., 2015) X 82.0%
Two-level attention (Xiao et al., 2015) 69.7%
Bilinear model (Lin et al., 2015b) 84.0%
Spatial transformer networks (Jaderberg et al., 2015) 84.1%

fc7 feature of VGG on whole image 58.34%
fc7 feature of VGG-ft on whole image 71.73%

Keypoint features baseline X 65.10%
Our model with fc7 feature X 75.04%
Our model with compact bilinear feature X 83.00%
Our model with compact bilinear feature on ft-part nets X 85.92%

Table 1: Comparison with other methods on fine-grained Classification results.

Parts α = 0.02 α = 0.05 α = 0.08 α = 0.10
Back 9.4% 46.8% 74.8% 85.6%
Beak 12.7% 62.5% 89.1% 94.9%
Belly 8.2% 40.7% 70.3% 81.9%
Breast 9.8% 45.1% 74.2% 84.5%
Crown 12.2% 59.8% 87.7% 94.8%
Forehead 13.2% 63.7% 91.0% 96.0%
Left eye 11.3% 66.3% 91.0% 95.7%
Left leg 7.8% 33.7% 56.6% 64.6%
Left wing 6.7% 31.7% 56.7% 67.8%
Nape 11.5% 54.3% 82.9% 90.7%
Right eye 12.5% 63.8% 88.4% 93.8%
Right leg 7.3% 36.2% 56.4% 64.9%
Right wing 6.2% 33.3% 58.6% 69.3%
Tail 8.2% 39.6% 65.0% 74.7%
Throat 11.8% 56.9% 87.2% 94.5%

Table 2: Keypoint Localization results. We use PCK as our evaluation metric. The prediction
is correct if lies within α × max(h,w) of the annotated keypoint with the corresponding object’s
dimension being (h, w). We show results on different α. No bounding box information is used.

4 EXPERIMENTAL RESULTS

In this section, we present a comparative performance evaluation of our proposed method. Specif-
ically, we conduct experiments on the widely-used fine-grained benchmark Caltech-UCSD bird
dataset (Welinder et al., 2010) (CUB200-2011). The classification task is to discriminate among
200 species of birds, and is challenging for computer vision systems due to the high degree of sim-
ilarity between categories. It contains 11,788 images of 200 bird species. Each image is annotated
with its bounding box and the image coordinates of fifteen keypoints: the beak, back, breast, belly,
forehead, crown, left eye, left leg, left wing, right eye, right leg, right wing, tail, nape and throat. We
train and test on the splits included with the dataset, which contain around 30 training samples for
each species.

For both the localization net and classification net, we fine-tuned from the 16-layer VGG network
used in (Simonyan & Zisserman, 2014) pretrained on ImageNet data. Like (Long et al., 2015), we
change the last two fully connected layer to convolutional layer and make the net fully convolutional.
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Head Body

RCNN (Zhang et al., 2014) 61.42% 70.68%

Ours 63.82 % 89.06%

Table 3: Part localization accuracy in terms of PCP on the CUB200-2011 bird dataset.

All of our experiments are implemented in the open source Caffe framework (Jia et al., 2014) and
we will make our architecture and weights publicly available.

4.1 FINE-GRAINED CLASSIFICATION

We first present classification results on the standard CUB200-2011 dataset. The classification accu-
racies of our method and other methods are reported in Table 1, along with the different annotations
required during the training and test phases. Our method with compact bilinear pooling achieves
83.00% classification accuracy, and fine-tuning part networks improves accuracy to 85.92%. This is
state-of-the-art and improves over other methods supervised by part annotations.

VGG net pretrained on Imagenet alone can achieve 58.34% classification accuracy and finetuning
on our dataset can improve the performance to 71.73%. By adding pose-normalized representation,
our method can achieve 75.04% accuracy. We also tested the keypoint feature baseline results, i.e.
finetune the keypoint localization net using classification loss and the accuracy dropped to 65.10%. It
means it is necessary to split out the keypoint localization network and the fine-grained classification
network.

4.2 PART LOCALIZATION

We now present results of part localization using the localization net in our method. We use PCK
(Percentage of Correctly Localized Keypoints) as our evaluation metric and the results are shown in
Table 2. For each annotated instance, the keypoint is said to have been predicted correctly if the cor-
responding prediction lies within α×max(h,w) of the annotated keypoint with the corresponding
object’s dimension being (h, w). For each keypoint, the PCK is measured as the fraction of objects
where it was found correctly.

As shown in the Table 2, although no bounding box information is used, our method can still have
strong localization performances even when the requirement α is small. To our knowledge, these
are the first reported PCK numbers on this dataset. We also show part localization visualizations in
Figure 3. We show the ground truth annotation and our prediction side-by-side. As you can see,
almost all of the part predictions lie on the bird body. Some errors are caused by the confusion of
left and right, for example, localizing left leg on the position of right leg. The small localization
errors could be corrected by fusing multiple feature layers (Long et al., 2015; Hariharan et al., 2015)
or multi-scale modeling (Tompson et al., 2014).

We also show the localization results on part box prediction in Table 3 in terms of PCP (Percentage
of correctly localized parts). The prediction is correct if the overlap between it and grountruth part
box is over 0.5. We compared with (Zhang et al., 2014) and we outperform the RCNN detection.

5 CONCLUSION

Fine-grained classification can be accomplished using part-aligned representations that reveal subtle
distinguishing features of different classes. Learned part localization and feature transformation
networks can discount the nuisance variables of pose and viewpoint.

We have presented an approach to classification that embodies fine-grained approaches to
part/keypoint localization, pose-normalized descriptor learning, and category learning. Our model is
fine-grained in its spatial localization ability, and in its ability to distinguish closely related classes in
a fine-grained recognition task. A fully convolutional network can localize instance keypoints using
a pixel-level map, and deep pose-normalized descriptors can make distinctions across fine-grained
category labels learned in a coordinate space that is defined using the estimated keypoints.

7



Workshop track - ICLR 2016

Groundtruth Prediction Groudtruth Prediction

Figure 3: Visualizations of keypoint predictions. Ground truth annotations are shown in the left
and our prediction results are shown in the right. Each color map to one keypoint. No bounding
box information is used during training or test time. The images shown are warped to align the
visualizations.

We unify these steps in an end-to-end trainable network that estimates part locations, pose-
normalized descriptor representations, and fine-grained classifier weights using a joint loss on key-
point predictions and the classification task.

A careful comparison of strong keypoint supervision and weak class label supervision is valuable
future work to guide further improvements to fine-grained recognition. While strong supervision
aids with correspondence, weak supervision may learn from more data. This comparison could
take the form of a strongly supervised spatial transformer network or an unsupervised variant of our
network incorporating part discovery as in (Simon & Rodner, 2015). With end-to-end multi-task
learning it should be possible to unify these approaches in semi-supervised models for fine-grained
recognition.
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