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ABSTRACT

The crowdsourced digital footprints from Location Based So-
cial Networks (LBSNs) contain not only rich information
about locations, but also individual’s feeling about locations
and associated entities. This new data source provides us with
an unprecedented opportunity to massively and cheaply col-
lect location related information, and to subtly characterize
individual’s fine-grained preference about those places and
associated entities. In this paper, we propose SEALs - a fine-
grained preference-aware location search framework leverag-
ing the crowdsourced traces in LBSNs. We first collect user
check-ins and tips from Foursquare and use them as direct
user feedback on locations. Second, we extract users’ senti-
ment about locations and associated entities from tips to char-
acterize their fine-grained location preference. Third, we in-
corporate such fine-grained user preference into personalized
location ranking using tensor factorization techniques. Ex-
perimental results show that SEALs can achieve better loca-
tion ranking comparing to the state-of-the-art solutions.
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INTRODUCTION

With the ubiquity of GPS-equipped smartphones, location
based services have gained great popularity in recent years.
Typical location based services include location search [6],
location recommendation [27], mobile navigation [23], etc.
As a typical location based service, location search allows
users to search places using keywords, e.g., finding a “burger”
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restaurant or an “art museum” in a particular city. Build-
ing such a location search service usually needs to solve two
problems: 1) how to collect location related information to
ensure a good coverage of interesting places and characteri-
zation of those places; 2) how to rank locations according to
users’ search objectives.

Location related information is usually collected from various
data sources by commercial location search service providers.
For example, Google Maps builds its location database by
combining information sources! such as web search results,
data submitted directly by local business owners, user sub-
mitted photographic content, street view imagery and third
party sources (e.g. the Yellow Pages?). However, collecting
and compiling such a usable location database might incur
substantial cost. In contrast, the booming of Location Based
Social Networks brings us a new opportunity to collect rich
location related data at a low cost [15]. In LBSNs such as
Foursquare?®, users explore and tag places, post reviews, up-
load photos, and share locations and experiences with others.
Check-ins are performed at physical locations (i.e., venues®*),
such as museums, restaurants, or bars; user comments are
termed fips, containing rich information about individual’s
opinions about the check-in places or the associated entities.
For example, a tip left at a restaurant may recommend a spe-
cial dish or give positive/negative comments about the restau-
rant environment. The crowdsourced digital footprints [26]
from Foursquare users provide us unprecedented opportuni-
ties to massively collect information about locations as well
as users’ sentiment about the locations and entities, which are
the key ingredients for enabling personalized location search.

Location ranking in location search services is usually per-
formed based on the relevance between the query keywords
and venues under certain geographical constraints. With con-
tinuous expansion of location database, users may be returned
a long list of venues for each query, causing difficulty for
users to select their interested places. In addition, due to the
limited screen size of mobile devices and user’s unwilling-
ness to scroll beyond the first page, the search results at the
top of the list become crucial. Thus, a well-designed location
search service should consider users’ needs and put one’s de-
sired venues at the top of the returned venue list.

'http://support.google.com/maps/bin/answer.py ?hl=en&answer=7103
2http://www.yellowpages.com/
*https://foursquare.com/

*here “venue” refers to a logical “location” in Foursquare, we do not
differentiate these two terms throughout this paper



Personalized location search is usually fulfilled from two per-
spectives in current literature, i.e., via context-awareness and
preference-awareness. The context-aware location search
leverages user’s context, e.g., current time, location, weather
condition, user’s activity, to augment the search queries and
deliver the appropriate search results to users. For example,
a query of looking for a burger restaurant can be interpreted
as finding “where is the nearest burger restaurant” (i.e., lo-
cation context is taken into account). The preference-aware
location search provides results according to the individual’s
preference about venues. The same query above may be in-
terpreted as asking “where is the burger restaurant serving
my favorite taste of burgers”. Most of the research efforts
on location search personalization focus on search accord-
ing to context. Even though there are less efforts focused
on preference-aware location search, as a special type of in-
formation in the web, locations can be retrieved using per-
sonalized web search approaches. Web search personaliza-
tion is an extensively studied topic where user preference
has been widely used to enhance user’s search experience.
In Web search, preference-aware approaches usually provide
users with a personalized list of results using certain ranking
algorithm by incorporating user preference which is mainly
extracted from users’ historical search records.

In this paper, we present SEALs (Sentiment-EnhAnced Loca-
tion search), a fine-grained preference-aware location search
framework leveraging the crowdsourced data in LBSNs. In
particular, we exploit or introduce unique features in three
key phases of the preference-aware location search scheme,
i.e., in user feedback capture, user preference modeling and
search result ranking. The main contributions of this work
can be roughly summarized as follows:

1) Collecting users’ direct feedback on venues from LBSNs.
Users’ interaction in LBSNs can be regarded as user feedback
on locations. Different from the classical user feedback on
web based location search (e.g., click-through data, browsing
history, past queries), the user feedback from LBSNs is di-
rect and more precise. For example, a user intends to search
a French restaurant in New York, clicking on one restaurant’s
website does not indicate that she would go to that place.
Even if she goes to the restaurant later, this might not nec-
essarily mean that she would like the restaurant. However,
in LBSNs, users physically visit and leave comments directly
on the venues. Thus collecting the user feedback would better
characterize users’ actual feeling about the venues and what
entities users like/dislike at those venues.

2) Modeling fine-grained user preference extracted from het-
erogeneous user feedback in LBSNs. User generated traces
at venues in LBSNs are usually heterogeneous, including
check-ins, tags in terms of keywords, and tips in the form
of short text. These crowdsourced contents imply user pref-
erence at different granularity levels. For example, a user
named Jane who often visits a restaurant (check-in there) usu-
ally implies that she has positive preference about the restau-
rant. This type of preference describes a user’s general and
broad feeling, which can be treated as coarse-grained user
preference. In LBSNs such as Foursquare, users may give

very detailed comments about a venue or even entities at a
venue. For example, Jane left a tip saying “I like cheese
burgers at restaurant X, but not the beer there”. By apply-
ing sentiment analysis on this tip, we can extract her positive
preference for “cheese burgers” and negative preference for
“beer”. This type of preference indicates a user’s different
feeling about different items at a venue (in the form of user-
keyword-venue), which can be defined as fine-grained user
preference. Apparently, fine-grained user preference contains
more precise and detailed information about a location com-
paring to coarse-grained user preference (in the form of user-
venue). It provides us with new possibilities to rank locations
more accurately according to one’s preference.

3) Incorporating fine-grained user preference into personal-
ized location ranking using tensor factorization techniques.
Preference-aware search personalization approaches can be
roughly classified into three categories based on how user
preference is used. (i) User preference is used to augment
the submitted query. In this case, user preference and the
original query keywords are put together to feed into the tra-
ditional search engine, thus user preference does not directly
affect the ranking process in the way to bring user preferred
venues to the top of the list. (ii) User preference is used to re-
rank the search results. Approaches in this category first em-
ploy keyword-venue relation to find relevant venues and then
leverage user-venue relation to re-rank venues. They fail to
consider user-keyword-venue relation simultaneously in the
search process. (iii) The fine-grained user preference in the
form of user-keyword-venue is incorporated into the location
search and ranking process. The most popular approach is
based on tensor factorization. Concretely, a three-way tensor
is adopted to model the fine-grained user preference. In order
to handle both positive and negative preference, we propose a
novel Multi-Tuple based Ranking Tensor Factorization (MT-
RTF) algorithm for personalized location ranking.

RELATED WORK

Personalized location search mainly employs user specific in-
formation such as user context and user preference, to provide
customized search results. Most of the existing personalized
location search approaches exploit user context. For example,
with consideration of user’s current location, Choi [4] utilized
fuzzy query techniques to re-rank the search results. Lever-
aging user’s current location and time, Waga et al. [22] built a
location search system using context-aware recommendation
techniques. Iwata et al. [5] extracted user’s situation, e.g.,
being in the office at lunch time on weekdays, or going down-
town on holiday, to perform personalized search. Lane et al.
[6] proposed a framework that considered rich context such
as weather and activity. Even though few studies have been
conducted for preference-aware location search, as a special
type of information in the web, locations can be retrieved by
leveraging the common personalized web search approaches
using user preference.

Based on how user preference is obtained, preference-aware
search approaches can be roughly classified into two cate-
gories. The first approach leverages user explicit feedback,
i.e., let user explicitly state their preference. However, users



usually do not want to spend extra efforts on providing such
feedback [1]. The second approach uses implicit feedback.
Since it can be collected without extra user efforts, they are
widely used in search personalization to extract user prefer-
ence. The classical implicit feedback sources include brows-
ing history [19], click-through data [10] and user personal
information (e.g., email, desktop data) [3]. Recently, the
booming of social network brings an opportunity for collect-
ing user direct feedback. In social network sites, users add
tags to items (e.g., photos, video, blogs, locations) and/or
make comments. Users’ interaction in such crowdsourcing
platform usually implies their preference that can be used in
search personalization [2, 14, 24, 28]. In this work, we ex-
plore preference-aware search using crowdsourcing data as
user direct feedback.

Preference-aware search personalization approaches can be
divided into three categories according to how user prefer-
ence is used. First, query expansion techniques using user
preference usually aim at augmenting user submitted query
with keywords associated with user preference. Using crowd-
sourcing data from the social bookmarking web service De-
licious®, Zhou et al. [28] extended original query using user
profile extracted from one’s social annotation history. The
approaches in this category usually have limited personal-
ization effect due to the lack of user preference in ranking
process. Second, user preference can be used to re-rank the
search results generated from a non-personalized search en-
gine. For example, Xu et al. [24] extracted users’ inter-
ests from social annotation data and ranked documents ac-
cording to both query-document relevance and the similar-
ity between users’ interests and documents’ topics. By con-
structing user profiles and resource profiles, Cai et al. [2]
first modeled query-document relevance and then leveraged
user-document preference to adjust the result ranking. These
works all separated query-document relevance ranking and
user-document preference ranking, and then merged them to-
gether. Although the approaches in the first two categories
leverage coarse-grained user preference, i.e., user-keyword
preference and user-document preference, they do not han-
dle fine-grained user preference. The third scheme leverages
user preference in the document indexing and searching pro-
cess. The most popular approach supporting this scheme is
tensor factorization. In web search, Sun et al. [20] conducted
an early work by modeling click-through data as a three-way
tensor and then using High Order Singular Value Decompo-
sition (HOSVD) techniques to factorize the built tensor for
personalized ranking. Since HOSVD cannot practically han-
dle sparse tensors, Rendle et al. [11] proposed a ranking with
tensor factorization approach to specifically address element
ranking problem in tensor, which can alleviate the problem of
sparsity. Sang et al. [14] proposed a multi-correlation rank-
ing approach in tensor along with a user-specific topic model-
ing to personalize image search using social annotation data
on Flickr®. Since ranking tensor factorization process is usu-
ally time-consuming, Rendle et al. [13] designed a pairwise

Shttp://www.delicious.com/
Shttps://www.flickr.com/
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Figure 1. Overview of SEALs Framework

interaction tensor factorization model which dramatically re-
duced the learning time while maintaining the performance.
Shi et al. [17] addressed the top-N context-aware recommen-
dation problem by leveraging tensor factorization to maxi-
mize mean average precision. However, existing tensor fac-
torization approaches can merely handle positive preference.
As fine-grained preference might include both positive and
negative preference, we propose Multi-Tuple based Ranking
Tensor Factorization to consider both positive and negative
preference simultaneously in the factorization process.

PROBLEM DESCRIPTION AND SEALS FRAMEWORK

In general, for a given query, personalized search tries to pro-
vide customized search results for different users based on
their preference. User preference is usually extracted from
their historical behaviors. The problem of targeted location
search based on users’ interaction in LBSNs can be described
as: Given users’ interaction history with locations, i.e., the
places users visited and the comments users left, for each
query, the objective of personalized location search is to gen-
erate a customized ranking list of venues for different users,
i.e., top ranked results include user liked venues while ex-
clude disliked ones. In this paper, we extract user preference
from digital footprints in LBSNs. Along with venue informa-
tion (venue tags), we intend to generate personalized ranking
of venues for each user. Figure 1 illustrates the overview of
SEALs framework. The left panel shows users’ activities in
physical world while the right part presents the SEALs com-
ponents. The location related data collector is in charge of
gathering raw data from LBSNs. The tensor modeling com-
ponent then constructs a user-keyword-venue tensor by ex-
tracting fine-grained user preference from raw data. After-
wards, the Multi-Tuple based Ranking Tensor Factorization
component decomposes the tensor in order to reveal the la-
tent correlation among the three factors, i.e., user, keyword,
and venue, resulting in a fulfilled tensor with the predicted
ranking score for all user-keyword-venue triplets. When a



user looks for places using a keyword, the query processor
returns the personalized ranking results.

DATA COLLECTION

We first collect raw check-ins and filter the noise ones from
Foursquare (check-ins from 24 October 2011 to 20 February
2012). Then we crawl tips and tags from the refined venues
and users. Because of privacy policy in Foursquare, personal
check-in information cannot be accessed by public. How-
ever, in Foursquare, some users choose to post their check-ins
via Twitter. Therefore we can capture check-ins by crawling
foursquare-tagged tweets from Twitter Public Stream’. For
the purpose of filtering out noisy check-ins, we first select
users who have performed at least one check-in per week
and then eliminate users who have ever performed “sudden-
move” check-ins (consecutive check-ins which correspond to
a speed faster than 1200 km/h: the common airplane speed).
Details about the dataset collection process and statistics can
be found in our previous work [25].

In this study, due to implementation limitation of sentiment
analysis, we only process tips in English but the proposed
framework is not bound to one language. We select one
large city in an English-speaking country, i.e., New York, and
then extract tips and tags of the venues in this city. Venues
in Foursquare are classified into nine categories (i.e., Arts
& Entertainment, College & University, Food, Great Out-
doors, Nightlife Spot, Professional & Other Places, Resi-
dence, Shop & Service, Travel & Transport) and 400 sub-
categoriess. Similar to [15], we focus on restaurant search to
verify the key idea of SEALs. Thus, we select food related
venues (“Food” category, containing 87 sub-categories such
as French restaurant, Italian restaurant, etc.) for evaluation.
In this work, the following three types of Foursquare data is
collected for user preference extraction:

e Check-in Data: they are in the form of user-venue pairs.
A user-venue pair indicates that the user visits the venue
once.

e Tag Data: they are represented by venue-tags pairs where
tags are a set of keywords used to label and index the
venue.

e Tip Data: they are defined as user-venue-tip triplets indi-
cating that the user leaves the tip at the venue.

MODELING USER PREFERENCE BY TENSOR

Figure 2 demonstrates the tensor modeling process. First,
we extract user preference for entities (in the form of key-
words) on a venue (denoted as u-k-v preference) from two
data sources, i.e., check-ins and tips, separately. Then, we
propose a fusion method to merge the two sets of preference.
In Foursquare, tags® can be used to index venues and added
by users without any constraint. Thus, they might be diverse
and sometimes odd, or not even a correctly spelled word. To
avoid uncommon tags, we only choose the tags that have been
used at least twice in all venues as keywords. The tag cloud is

"https://dev.twitter.com/docs/streaming-apis/streams/public
8https://developer.foursquare.com/docs/venues/categories

°Since tags are used in Foursquare to index venues, we do not dif-
ferentiate it with the term “keywords” throughout this paper.
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shown in Figure 3. Most of the popular tags that are usually
used to describe restaurants (e.g., coffee, brunch, bar, burgers,
pizza, etc.) are shown as expected.

User Preference from Check-ins

A user may not necessarily like a venue if she has visited there
only once, while repeated visits usually indicate she likes the
place, i.e., expressing positive feedback to this venue. Based
on this common sense, for each user, we select the venues
being checked-in at least twice as her liked places. Since
check-ins cannot provide further information on what items
the users like or dislike on a venue, we assume that users have
only positive feedback to all keywords at this venue. Hence,
we get a set of u-k-v triplets with positive preference.

User Preference from Tips

Tips left by users on venues usually describe what users like
or what users complain. By applying aspect-based sentiment
analysis techniques, we can extract users’ different opinions
on different items/aspects. In this work, dictionary based un-
supervised sentiment analysis method is used to process tips
for the sake of its simplicity in implementation. More sophis-
ticated sentiment analysis techniques can also be applied to
improve the performance, but they are not the focus of this
paper. Figure 4 demonstrates the sentiment analysis process
of tips. The left part shows the processing workflow. The
right part illustrates the sentiment analysis results of an ex-
ample tip about an Italian restaurant.

In our study, we merely deal with tips in English. The lan-
guage detection component firstly filters out non-English tips.
We use a language detection library developed by Cybozu
Labs!®. Then tips are split into sentences and identified the
part-of-speech for each word, e.g., “good” is an adjective,

"%http://developer.cybozu.co.jp/archives/oss/2010/10/language-
detect.html
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“place” is a noun. Afterwards, we can obtain a sentiment
score for each word referring to SentiWordNet [18] with the
corresponding part-of-speech type. The positive, zero and
negative values of the sentiment score indicate the positive,
neutral and negative sentiment, respectively. Noun-Phrase
Chunking is then performed to get the phrases e.g., “good
place”, “delicious pizza”, which describe what users like or
dislike at a venue. By summing up the sentiment score of
each word in a phrase, we obtain the sentiment of the phrase.
We adopt NLTK toolkit [9] for implementation. The output
of sentiment analysis on tips is a set of user-phrase-venue
triplets with the corresponding sentiment score. In order to
map a phrase to keywords, we simply find out the keywords
(i.e., tags) contained in a phrase. For example, the phrase “de-
licious pizza” is mapped to keywords “delicious” and “pizza”
if they exist in the keyword set. Then, we can get a set of
u-k-v triplets with positive or negative preference.

To test the accuracy of our sentiment analysis method, we ran-
domly choose 1000 tips and manually label their fine-grain
preference. The experiments give a precision of 63.91% and
a recall of 88.13%. More sophisticated methods can be used
to achieve better performance. For example, using a domain-
dependent sentiment lexicon may generate more appropriate
sentiment scores [8] and using sequence classifier such as
Conditional Random Field can better handle adversative con-
junctions [16].

Fusion Method

From the check-in data, only positive preference of keywords
can be extracted, while from tip data both positive and neg-
ative preference can be extracted. The user preference ex-
tracted from tips is fine-grained and contains more precise
information. Hence, the fusion policy is: when the same u-
k-v triplet is observed from both data sources, the preference
from tips analysis is used. For example, a user checked in
twice at a restaurant (tagged by burgers, pizza and beer) and
left a tip complaining about the burgers there. The prefer-
ence extracted from her check-in for burgers, pizza, beer in
that restaurant is positive while the tip reports negative pref-
erence for burgers there. The preference extracted from tips

is considered to be more accurate. Hence, the user prefer-
ence for burgers in that place is negative, and user preference
for pizza and beer remains positive. Finally, to assign ten-
sor with a score, we assign 1 and -1 to positive and negative
preference, respectively. The unknown ones are assigned 0.

MT-RTF ALGORITHM

The purpose of MT-RTF algorithm is to rank venues in the
order of user preferred, with unknown preference, and with
negative preference. To achieve this goal, MT-RTF algorithm
predicts the ranking of user preference for venues in tensor.
First, we select an appropriate tensor factorization model.
Then, based on this model we define an objective function
which measures the multi-tuple ranking quality. Finally, we
extend the learning framework in [12] to maximize the objec-
tive function in the learning process.

Tensor Factorization Model

Tensor factorization techniques intend to decompose a tensor
into multiple factors. For the u-k-v tensor, let U s K and V
denote the user, keyword and venue feature matrices, with
dimension of |U|*l, | K|+l and |V'|*[, respectively. Note that
[ is called latent space dimension (or factorization dimension)
which is the most important parameter in tensor factorization.
It controls the number of features used in the factorization
process. The U, K,V are finite sets of users, keywords and
venues, respectively. The decomposition can be formulated
as:

=CxpUxpgKxyV 1)
where X, is the mode-n tensor product with matrix. The core

tensor C' with dimension [ #1x[ handles the correlation among
different factors. The value of each element in Y is calculated

as:
:l]u,k,v = E E § éﬁ’]}ﬂj . ﬁu,ﬂ ' kk,fe . ﬁu,f} (2)
[ k 0

where 1, l~c7f; € {1,...,1} are indices of latent space. This
model is called Tucker decomposition model [21]. If we set
the core tensor as a diagonal tensor:

3)

We obtain a Canonical decomposition model with each ele-
ment calculated as:

kv Zuuf kF O g “)

where f € {1,...,1}is the 1ndlces of latent space. As a special
case of Canonical decomposition model, the pairwise inter-
action model [13] explicitly captures the pairwise interaction
among the three factors:

Gk ZAK RO M A )

where 45 represent the interaction between user and keyword
from user’s perspective, and so on. When predicting venue
ranking, the interaction between user and keyword vanishes.
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Using vector representation we get:

yukv—uu (’u) +k1€ ( )T (6)

where Uy and kk aIe the feature vectors in U and K. Addi-
tionally, © U and v are the feature vectors in VU and VE.

Note that i 1n this model, a tensor is decomposed into four fac-
tors, i.e., U, R VU and VE . This model is used in our work
to factorize the u-k-v tensor.

Optimization criterion

Optimization criterion is represented by an objective function
when performing tensor factorization. Existing approaches
can only handle positive preference [11, 13]. Given a user u
and a keyword k, those works aim at ranking user preferred
venues in front of others, which can be formulated as:

Objpo = Z Z (gu,k,v‘*' - Qu,k,vo) (7)

v+€V+ UOGVO

where V " and Vok represent venues with positive prefer-
ence and with unknown preference, respectively. Maximiz-
ing the above function is able to rank the venues with positive
preference in front of the others, as shown in Figure 5(a),
where rank of venue a is higher than that of venue b, ¢ and
d. However, since our u-k-v tensor further includes negative
preference, this objective function can not handle such case.
As shown in Figure 5(b), for a user v and a keyword k, the
rank of venue a (with positive preference) is higher than that
of venue b and ¢ (unknown preference), and the rank of venue
b and c are higher than that of venue d (with negative prefer-
ence). Then, each triple ranking relation can be seen as three
pairwise ranking relations, as shown in Figure 5(b). Let Vujk
denote venues with negative preference. In addition to Equa-
tion 7, the two other pairwise ranking relations are between
VO and Vo, VoF and Vo

Objon = Z Z (gu,k‘,'uo - gu,k,v*) (®)

W0eV0  vmev,

Objpn = Z Z (gu,k,wﬁ

vt GV“JTk vTEV, 4

- gu,k,v*) (9)

The optimization is then performed successively for the three
pairwise ranking relations. Let ¥/, , denote the venue vector
given the user v and keyword k. The vector ¢, ,, belongs to
pairwise ranking if v, only contains two different values,

while ¥, 1, belongs to triple ranking if ¥, ;. contains three dif-
ferent values, i.e., 1, -1 and 0. Considering both pairwise and
triple ranking relations, the optimization criterion of MT-RTF
is defined as:

Obi — Objyg, if Uk € pairwise ranking
~ | Objpo + Objon + Objpn, if Tuy € triple ranking

(10)

where Obj ., represents Objpo, Objor, or Objpy, for ¥, 1 con-
taining 1/0, 0/-1 or 1/-1, respectively. By maximizing Obj for
all observed (u, k) pairs, we get finally the objective function

as:
. max E Obj
U K
UKV Y (0,) 130,90 0720}

(1)

Learning Process

We adopt Bayesian personalized ranking learning algorithm
[12] as the learning framework. A bootstrap sampling method
is used to reduce learning time. Since our objective function
considers all the data in tensor, to target the data obtained
from sampling approach, we extract an atomic objective func-
tion for each ranking venue pair, denoted as g, j ya o for
a given ranking pair @y ke and g, j b, where (a,b) €

{(+7 0)’ <07 _)7 (+7 _)}

gu,k,v“,vb = (gu,k,va - gu,k,vb) (12)

Gradient descent approach is used to update parameters

U,K,VY and VX in each iteration. Combining with Equa-
tion 6, the gradients of §,, j, ya o are:
Y a o) a

Yu,kve v _ ({)U AU) Yu,k,ve wb _ (AK _f}§> (13)

va ’Ub e

iy, ke,
8Qu kv, vb a:gu k,ve b
K,V = iy, R, vy T 14
ol " aeg, w09
8@1}, k,va 0P 2 ayu k,ve vt >
ATA) _ , L R 15
90K RS k (15)

Given a tensor T and a set of parameters O i.e., U , K , VU and
VE, MT-RTF learning algorithm is illustrated in Algorithm
1. Note that g(z) = 1-&-% is the logistic function. The «
controls the learning step and A is the regularization parame-
ter. In each iteration, we first select one (u, k) pair randomly
(Line 3), and then randomly select pairwise ranking relation
(Line 4-5) or triple ranking relation (Line 9-10) according
to ¥, . For pairwise ranking, the optimization is conducted



Algorithm 1 MT-RTF Learning Algorithm
Require: 7,0

1: initialize ©

2: repeat
3 draw a (u, k) pair uniformly from 7'
4 if Uy, 1, € pairwise ranking then
5: draw (v®, v®) uniformly from 7, .
6
7
8
9

pP= (1 - g/(gu,k,v“jvb))
@:@_Fa.[p.%ié%b_)\.@]

end if
if Uy, 1, € triple ranking then
10: draw (v*, 0% v™) uniformly from @,
11: for (v, v%) € {(vT, %), (v°,v7), (vF,v7)} do
12: pP= (1 - gl(yu,k,vajvb))
13: O=0+a[p- Lurzat _ 5. g
14: end for
15: end if

16: until convergence of Obj
17: return ©

only for v®, v (Line 6-7). For triple ranking, the optimization
is conducted successively for {(v*,2°), (v°,v7), (vF,v7)}
(Line 11-14). The algorithm converges until no further im-
provement for the objective function Obj. The output of MT-
RTF is the optimized ©. Using Equation 6, the predicted
ranking score can be obtained. Based on such ranking score,
for a given user and a keyword, venues can be ranked.

EXPERIMENTAL EVALUATION

For personalized search, evaluation is not an easy task be-
cause the returned results can be judged only by the searchers
themselves. Obviously, such an approach is costly in our case
because it is difficult to interview Foursquare users by ques-
tionnaire. We choose to evaluate SEALSs framework from two
aspects. First, by random splitting dataset into training set
and test set, a series of experiments are conducted to eval-
uate the performance of MT-RTF algorithm in personalized
ranking, i.e., whether the top ranked results contain more user
liked venues and less disliked venues. Second, a case study of
SEALs is presented to show how fine-grained user preference
can improve the performance of personalized location search.

Performance Evaluation of MT-RTF

The performance evaluation of MT-RTF algorithm intends to

answer the following questions:

e How does the latent space dimension influence venue rank-
ing performance of MT-RTF?

e Can MT-RTF achieve better performance compared with
the state-of-the-art approaches? What advantages can be
brought out by considering fine-grained and negative pref-
erence?

e Does MT-RTF algorithm perform consistently for different
types of users?

To answer these questions, we first test MT-RTF performance

using different latent space dimensions. By fixing to one la-

tent space dimension, we then compare its performance with

User number 994

Keyword number 728
Venue number 1008
Number of the observed u-k-v triplets | 51091
Data density 0.007%
Positive feedback number 43924
Negative feedback number 7167

Table 1. Characteristics of the Experimental Tensor

other state-of-the-art approaches. Finally, we show the per-
formance of MT-RTF algorithm for different types of users.
To get a relatively dense tensor in experiments, we select 20-
core data!!, resulting in a u-k-v tensor with dimensionality
of (994*728%1008). The characteristics of the experimental
tensor are shown in Table 1.

A test set S is constructed by randomly selecting u-k pairs
and all related venues, i.e., U, . The remaining is used as
the training set. (¥, 4 is set to O in training set for those u-k
pairs selected by the test set). Using MT-RTF on the train-
ing set to perform the venue ranking, the predicted ranking
for u-k pairs in the test set S is then evaluated. The classical
evaluation metrics in IR (Information Retrieval) often evalu-
ate whether a result is relevant or not. However, in our case,
for a given u-k pair, the venues may fall into three categories,
i.e., venues with positive, negative, or unknown preference.
While the ones with positive or unknown preference can be
treated as “relevant” or “non-relevant”, the negative ones can-
not be simply considered as “non-relevant”. Because putting
a user disliked venue on the top will decrease user experience
more than a non-relevant venue. Hence, by adjusting Mean
Average Precision (MAP) which is a widely used metric in
IR community, we introduce a metric named Mean Average
Satisfaction (MAS). To introduce MAS, we first explain the
definition of MAP. For a test set S, MAP is defined as fol-
lows:

N~ rG) g
v B (g
MAP = g Zl_l ZJ]:]:_ 1 ( ) (16)
(u,k)eS

where Nt and n are the number of relevant venues (i.e.,
venues with positive preference) and number of retrieved
venues, respectively. The relevance function (i) is set to
1 if the i** venue in the results is relevant and 0 otherwise.
Since this definition does not consider the venues with nega-
tive preference, the extension of MAS comparing with MAP
is to introduce a punishment against ranking user disliked
venues on the top. Its definition is as follows:

n ) sat(j) .
MAS — Z Dict ijl 7 (i) a7

+
(u,k)€S N

where the satisfaction function sat(i) is set to 1, 0 or -1 if
the i*" venue is the one with positive, unknown or negative
preference, respectively. A higher value implies the top re-
sults contain more venues with positive preference and fewer
venues with negative preference. Hence, MAS can be re-
garded as an indicator of user experience for the retrieved
venue ranking.

"'The p-core of a tensor is the largest subset of the tensor with the
property that every user, every keyword and every venue has to occur
in at least p records.
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Performance test with different latent space dimensions

In this test, we choose 80% and 90% of the dataset as training
set, and then vary the latent space dimension in the order of 8,
16, 32, 64 and 128. The learning step « is set as 0.1 and reg-
ularization parameter A is set as 0.00001, respectively. Due
to the space limitation, we do not detail the parameter tuning
process for  and A. In all the performance tests, each re-
sult is the mean value of ten repeated trials. Figure 6 reports
the results. With the increase of the latent space dimension,
the ranking performance of MT-RTF increases. A slight im-
provement is observed for using 90% of the data as training
set comparing the case of using 80%. We also find that no
significant improvement of MAS for dimension higher than
64, which indicates the convergence of the algorithm in terms
of latent space dimension. Hence, in the following experi-
ments, the latent space dimension is fixed as 64 and training
data percentage is set to 90%.

Comparison with other approaches

In order to further validate the effectiveness of MT-RTF, we

compare it with the existing personalized search approaches

shown below:

e PopularK: for a given keyword, venues are ranked by its
popularity in a descending order, regardless of users. This
is deemed as a non-personalized search approach because
it returns the identical search results to all users.

e Relevance+PrefU: for a given keyword and a user, venues
are firstly filtered by venue-keyword relevance and then re-
ranked by the user preference on venues and keywords.
This can be regarded as a typical personalized search ap-
proach using coarse-grained user preference.

e HOSVD: high order singular value decomposition [7]
which performs the low-rank approximation. It corre-
sponds to a Tucker decomposition optimized for square-
loss.

e PITF: pairwise interaction tensor factorization [13] which
only incorporates positive preference into factorization.
Using this approach, we consider negative preference (i.e.,
-1) as unknown preference (i.e., 0) in the training set in
order to ignore negative preference.

We set latent space dimension as 64 for all the tensor based

approaches, i.e., MT-RTF, HOSVD and PITF, and keep other

parameters the same as in the previous section. Firstly, we
report the overall performance on the whole test set (denoted
as T_ALL). In order to deeply investigate the improvement of

0o -PopdlarK
: BRelevanca+Prefl
B —HOSVD 64
0.7- FIPITF 64
08 EENTRIF 64
]
< 05
=
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03
02
0t 1
0
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Figure 7. Performance Comparison with Other Approaches

considering negative preference, we choose the partial test set
that only contains u-k pairs with negative preference (T_NEG)
to show what performance can be achieved.

The left part of Figure 7 illustrates the overall performance.
Obviously, all personalized approaches outperform the non-
personalized search PopularK, which indicates that person-
alization is able to enhance user experience, i.e., leading
higher MAS. Among the personalized approaches, HOSVD
performs the worst. This might be caused by two reasons,
viz. the tensor sparsity problem and weakness of HOSVD for
ranking problem. Relevance+PrefU approach that considers
coarse-grained user preference of venues performs better than
HOSVD but still gets unsatisfactory results. The high per-
formance of MT-RTF and PITF proves that the ranking ten-
sor factorization approach is efficient in solving such ranking
problem. Furthermore, MT-RTF that considers both positive
and negative preference achieves higher performance com-
paring with PITF.

The right part of Figure 7 illustrates the performance
for T.NEG. The proposed MT-RTF outperforms other ap-
proaches. Considering negative preference can significantly
improve the user experience for those users with negative
preference. In our dataset, the total number of observed
negative preference (7167) is only 1/6 of the positive ones
(43924). Such statistic explains that the improvement of MT-
RTF for all users is not as much as that for users with negative
preference. However, we believe that with more data col-
lected in the future, the number of users with negative pref-
erence will increase. Thus, the advantages of MT-RTF will
become more significant. An interesting observation is that
the performance of Relevance+PrefU dramatically decreases
when tackling negative preference. Because coarse-grained
user preference on venue fails in the case that user has both
positive and negative preference in one venue. On the con-
trary, fine-grained user preference can fully capture such de-
tailed preference.

Performance test for different types of users

In LBSNs, users often behave differently in terms of active
level. For example, some active users may check in or leave
tips very frequently while other users may be inactive and re-
port less digital traces. In our dataset, the average number
of observed fine-grained preference per user is 51.40. There-
fore, we split each test set into two subsets: low active users
(observed preference number < 50) and high active users (ob-
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Figure 8. Performance for Different Types of Users

served preference number >= 50). Moreover, for a given u-k
pair, the number of venues with positive preference in the test
set (i.e., the ground truth length |Vufk |) might be different. In
order to prove that MT-RTF algorithm achieves consistently
good performance, we report separately the results for dif-
ferent |Vufk , and the average performance as well. Figure 8
illustrates the results for both low active users and high active
users.

First, MT-RTF algorithm gets consistent results (MAS around
0.7) for venue ranking with different length [V, |. The result
confirms that MT-RTF preforms well regardless the ground
truth length. Moreover, with regard to user active level, a
slight improvement could be observed for the high active
users (average MAS is 0.7308) comparing with the low ac-
tive users (average MAS is 0.6840). This observation implies
that the more activities users have in LBSNs, the better loca-
tion search experience they can get from SEALSs.

Case study of SEALs

In this section, we present an example to illustrate how fine-
grained user preference helps improve personalized search.
When a user has different feelings about the items in one
place, the coarse-grained user preference based location
search sometimes fails to return the results matching such
preference, but SEALs can manage to return satisfactory re-
sults. To illustrate this example, we select a keyword and a
user to perform queries using two different search schemes,
viz. SEALs and a coarse-grain preference based personalized
search, i.e., Relevance+PrefU. We select “burgers” as key-
word because it is popular for most New Yorkers and has a
high frequency of occurrence. We then choose a user from
the dataset (ID 394) and send the query. Figure 9 presents
the search results displayed on our prototype. The informa-
tion of each venue is described in the format “Venue Name
- venue category (its top 5 frequent keywords)”. For those
venues with less than 5 keywords, we list all of them.

In the test set, this user has positive preference for burgers in
the venue “Dumont Burgers”. In addition, she has negative
preference for burgers in the venue “123 Burger Shot Beer”
and positive preference for pizza and beer in “123 Burger
Shot Beer”. From the user’s all preference records, we find
that her top 3 preferred keywords are “beer”, “coffee” and
“burgers”.

(=
User|D: 304 Malho

Please enter your keywords here
burgars Go

UserD' 384 Math, elevancePrafll 2

Please enter vour keywords here
burgers | @ |

i ;-i.nm.m;

Penelope - Breakiast Spot

{beer, Brunch, burgers, cupcakes, muffins] =

Dubdont Burger - Burger Joint
(burgers, coffee, beer, brookiyn. =

123 Burger Shot Beer - Burgar Joind

Heartiand Brawery - Brewsry

{beer bison burgers, brewpub, chesse)
Shake Shack - Buiger Joinl

(choice beer_bravo, burpers. colege)

@ { burgers, beer, bar. manhatian}

Shatke Shack - Burger Joind
{beer, bravo mikshake burgers hot doas)

DuMornit Burger - Burger Jomt
{burgers. coffss. beer, brookhyn,

Laitzett - Burger Jomt
{burgers, kobe. besf]

P Clarks's - Burger Jin]
(burgers, lincoln. lunch, steaks wine)

Bark Hot Dogs - Hot Dog Jomt
{eer, brookhn, brmch, burgers, fexond

oy < P
B

Figure 9. Search results of “burgers” using different search schemes

In the left panel of Figure 9, we can observe that using
SEALs, “Dumont Burgers” is the first venue appeared in the
returned search results and “123 Burger Shot Beer” is ranked
far behind other venues (20th, we only display five venues
at the same time on the screen), which matches the user’s
preference for burgers in these venues. In the right panel of
Figure 9, using coarse-grained preference, we observe that
“123 Burger Shot Beer” is ranked at 2nd and “Dumont Burg-
ers” becomes the 4th in the list, which is against her prefer-
ence. Such observation can be explained by two reasons: 1)
even if the user has negative preference for burgers in “123
Burger Shot Beer”, her overall preference of this restaurant
is positive because she expressed positive sentiment about
two entities and negative sentiment about one entity; 2) this
venue has both burgers and beer that match the user’s coarse-
grained preference. This observation shows that SEALs can
delicately handle fine-grained user preference and efficiently
provide a desired list of places according to each user’s pref-
erence, given a search keyword.

DISCUSSION

Integrating location-awareness with SEALs. The focus
of SEALs framework is to build a preference-aware location
search service. As most of location-aware search approaches
target at retrieving locations within a certain geo-span, this
location-aware feature can be easily incorporated into SEALSs
to filter out the locations by the geo-span.

Scalability of tensor factorization. Practically, tensor fac-
torization has scalability issue. If the tensor scale is large,
the factorization process is quite time-consuming. Although
the bootstrap sampling can alleviate such a problem to cer-
tain extent, the problem persists for extra large scale tensor
processing. Fortunately, the computation of factorization can
be done off-line, thus we might conduct tensor factorization
beforehand to generate the ranked venues corresponding to
each combination of users and keywords. When a user is-
sues a query with a keyword, the corresponding list of ranked
venues are retrieved. With more data accumulated from LB-



SNs, computation of tensor factorization needs to be per-
formed regularly.

Incentives in crowdsourcing. LBSNs provide users with a
socializing platform which can be regarded as a crowdsourc-
ing platform. While most crowdsourcing platforms purposely
design incentive mechanisms to attract users, the SEALs
framework has an inherent incentive mechanism. The more
check-ins and comments the user contributes to Foursquare,
the better location search experience the SEALs framework
can provide using the proposed method. Moreover, better
user experience in LBSNs will in turn incentivize users to
perform more activities, and thus contribute more data to LB-
SNs.

CONCLUSION AND FUTURE WORK

In this paper, we proposed SEALs, a fine-grained preference-
aware location search framework leveraging the crowd-
sourced LBSNSs traces. With the rich information contained in
the massively and cheaply contributed contents from LBSNs,
we collect and extract user’s sentiment about locations and
associated entities to characterize user’s fine-grained location
preference. We further model such fine-grained user prefer-
ence using tensor and develop a Multi-Tuple based Ranking
Tensor Factorization algorithm to ensure that only the liked
places with the liked items of individual are shown at the top
of the returned location search list, when a user conducts a
location search with a simple keyword. Extensive evalua-
tions were conducted using our collected Foursquare tips and
check-ins. The results show that SEALSs can efficiently han-
dle fine-grained user preference and provide users with great
location search experience.

In the future, we plan to broaden this work in several direc-
tions. First, we plan to build a more comprehensive person-
alization location search framework by considering both user
context and preference. Second, we intend to exploit the so-
cial relationship among users hidden in LBSNs to further im-
prove the personalized location ranking algorithm. Third, we
plan to explore new ways of accommodating the accumulated
crowdsourced digital footprints from LBSNs and enabling ef-
fective, scalable and personalized location search.
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