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METHODOLOGY

Fine-grained recognition of plants 
from images
Milan Šulc*  and Jiří Matas

Abstract 

Background: Fine-grained recognition of plants from images is a challenging computer vision task, due to the 
diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We 
review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs 
to general plant recognition “in the wild”.

Results: We propose texture analysis and deep learning methods for different plant recognition tasks. The methods 
are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambigu-
ous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are 
available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods 
outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition 
“in the wild”.

Conclusions: The results suggest that recognition of segmented leaves is practically a solved problem, when high 
volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suit-
able for plant recognition “in the wild” where the views on plant organs or plants vary significantly and the difficulty is 
increased by occlusions and background clutter.
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Background

Recognition of natural objects in the surrounding envi-
ronment has been of great importance for the human-
kind since time immemorial. �e desire to understand 
and describe the living nature lead scientists to create 
systems of biological classification, counting an enor-
mous number of categories and species. For illustration: 
while the 10th edition of Linnaeus’s Systema Naturae 
[1] describes about 6000 plant species [2], currently the 
number of published and accepted plant species in the 
world is over 310,000 [3].

We study and develop computer vision algorithms to 
assist or fully automate the plant identification process. 
From the machine learning point of view, plant rec-
ognition is a fine-grained classification task with high 

intra-class variability and often small inter-class differ-
ences, which are often related to the taxonomic hierar-
chical classification.

Computer vision methods for plant recognition have 
a number of applications, including mobile field guides 
using computer vision to automate or speed up the iden-
tification process, image data processing for biological 
databases, automatic detection, registration and mapping 
of plants from publicly available data, automation in agri-
culture, etc.

�e rest of this section contains a review of the state-of-
the art in plant recognition and in the related computer 
vision areas—texture recognition and deep learning. Our 
previously published methods and experiments [4–8], on 
which this article is based, are not mentioned in this sec-
tion but rather described in more detail, extended and 
discussed in the rest of the article.
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Plant recognition

Interest in methods for visual classification of plants has 
grown recently [9–12] as devices equipped with cameras 
became ubiquitous, making intelligent field guides, edu-
cation tools and automation in forestry and agriculture 
practical. Belhumeur et  al. [9] discuss the use of such a 
system in the field allowing a botanist to quickly search 
entire collections of plant species—a process that previ-
ously took hours can now be done in seconds. Plant rec-
ognition has been posed, almost without exceptions [13, 
14], as recognition of photos depicting solely a specific 
plant organ such as flower, bark, fruit, leaf or their com-
bination [9–12, 15–27].

Leaf recognition

Leaf recognition has been by far the most popular 
approach to plant recognition and a wide range of meth-
ods has been reported in the literature [9, 11, 12, 15–27]. 
Recognition of leaves usually refers only to recognition 
of broad leaves, needles are treated separately. Several 
techniques have been proposed for leaf description, often 
based on combining features of different character (shape 
features, colour features, etc.).

A bag of words model with Scale Invariant Feature 
Transform (SIFT [28]) descriptors was applied to leaf 
recognition by Fiel and Sablatnig [11]. Several shape 
methods have been compared on leaf recognition by 
Kadir et  al. [15]. Of the compared methods—geomet-
ric features, moment invariants, Zernike moments and 
polar Fourier Transform—the last performed best on an 
unpublished dataset.

Kumar et al. [12] describe Leafsnap,1 a computer vision 
system for automatic plant species identification, which 
has been developed from the earlier plant identification 
system by Agarwal et  al. [16] and Belhumeur et  al. [9]. 
Kumar et al. [12] introduced a pre-filter on input images, 
numerous speed-ups and additional post-processing 
within the segmentation algorithm, the use of a simpler 
and more efficient curvature-based recognition algo-
rithm. On the introduced Leafsnap database of 184 tree 
species, their recognition system finds correct matches 
among the top 5 results for 96.8% queries from the data-
set. �e resulting electronic Leafsnap field guide is avail-
able as a mobile app for iOS devices. �e leaf images are 
processed on a server, internet connection is thus 
required for recognition, which may cause problems in 
natural areas with slow or no data connection. Another 
limit is the need to take the photos of the leaves on a 
white background.

Wu et  al. [17] proposed a probabilistic neural net-
work for leaf recognition using 12 digital morphological 

1 http://leafsnap.com/.

features, derived from 5 basic features (diameter, physi-
ological length, physiological width, leaf area, leaf perim-
eter). �e authors collected a publicly available plant leaf 
database named Flavia.

Kadir et  al. [24] prepared the Foliage dataset, consist-
ing of 60 classes of leaves, each containing 120 images. 
�e best reported result on this dataset reported by Kadir 
et al. [18] was achieved by a combination of shape, vein, 
texture and colour features processed by principal com-
ponent analysis before classification by a probabilistic 
neural network.

Söderkvist [25] proposed a visual classification system 
of leaves and collected the so called Swedish dataset con-
taining scanned images of 15 classes of Swedish trees. Qi 
et al. [29] achieve 99.38% accuracy on the Swedish data-
set using a texture descriptor called Pairwise Rotation 
Invariant Co-occurrence Local Binary Patterns [27] with 
Support Vector Machine (SVM) classification.

Novotný and Suk [22] proposed a leaf recognition sys-
tem, using Fourier descriptors of the leaf contour nor-
malised to translation, rotation, scaling and starting point 
of the boundary. �e authors also collected a large leaf 
dataset called Middle European Woods (MEW) contain-
ing 153 classes of native or frequently cultivated trees and 
shrubs in Central Europe. �eir method achieves 84.92% 
accuracy when the dataset is split into equally sized train-
ing and test set. MEW and Leafsnap are the most chal-
lenging leaf recognition datasets.

One possible application of leaf description is the 
identification of a disease. Pydipati et  al. [30] proposed 
a system for citrus disease identification using color co-
occurrence method (CCM), achieving accuracies of over 
95% for 4 classes (normal leaf samples and samples with a 
greasy spot, melanose, and scab).

Tree bark recognition

�e problem of automatic tree identification from 
photos of bark can be naturally formulated as texture 
recognition.

Several methods have been proposed and evaluated on 
datasets which are not publicly available. Chi et  al.  [31] 
proposed a method using Gabor filter banks. Wan et al.
[32] performed a comparative study of bark texture fea-
tures: the grey level run-length method, co-occurrence 
matrices method, histogram method and auto-corre-
lation method. �e authors also show that the perfor-
mance of all classifiers improved significantly when color 
information was added. Song et al.  [33] presented a fea-
ture-based method for bark recognition using a combi-
nation of Grey-Level Co-occurrence Matrix (GLCM) 
and a binary texture feature called long connection 
length emphasis. Huang et al. [34] used GLCM together 
with fractal dimension features for bark description. 

http://leafsnap.com/
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�e classification was performed by artificial neural 
networks.

Since the image data used in the experiments discussed 
above is not available, it is difficult to assess the quality of 
the results and to perform comparative evaluation.

Fiel and Sablatnig [11] proposed methods for auto-
mated identification of tree species from images of the 
bark, leaves and needles. For bark description they cre-
ated a Bag of Words with SIFT descriptors in combina-
tion with GLCM and wavelet features. SVM with radial 
basis function kernel was used for classification. �ey 
introduced the Österreichische Bundesforste AG (Aus-
trian Federal Forests) bark dataset consisting of 1182 
photos from 11 classes. We refer to this dataset as the 
AFF bark dataset. A recognition accuracy of 64.2 and 
69.7% was achieved on this dataset for training sets with 
15 and 30 images per class.

Fiel and Sablatnig also describe an experiment with 
two human experts, a biologist and a forest ranger, both 
employees of Österreichische Bundesforste AG. �eir 
classification rate on a subset of the dataset with 9 images 
per class, 99 images in total, was 56.6% (biologist) and 
77.8% (forest ranger).

Boudra et  al. [35] review and compare different vari-
ants of multi-scale Local Binary Patterns based texture 
descriptors and evaluate their performance in tree bark 
image retrieval.

Plant identification from diverse images

Recognition of plants given several images of differ-
ent content-types, such as different plant organs or the 
entire plant, should be in principle more reliable than 
recognition only given a one image of one specific plant 
organ such as leaf or bark. On the other hand, the task is 
more challenging if an image of an unspecified organ is 
given. Such problems are posed by the Plant Identifica-
tion task of the LifeCLEF workshop [14, 36, 37], known 
as the PlantCLEF challenge, since 2014. �e challenge 
tasks have slightly changed every year. Our contributions 
to the 2016 and 2017 challenges will be described later in 
this article.

�e 2016 [38] edition of PlantCLEF was evaluated as 
an open-set recognition problem, i.e. “a problem in which 
the recognition system has to be robust to unknown and 
never seen categories”. Each image in the task belongs to 
one of the 7 content-types: leaf, leaf scan, flower, fruit, 
stem, branch, or entire plant. Albeit the content-type is 
available in the meta-data, similarly to last years, the best 
scoring results use the same deep networks for all types 
of content [39–41]. Ge et  al. [42] showed that in this 
task generic Convolutional Neural Network (CNN) fea-
tures perform better than content-specific CNN features, 
and that their combination improves the accuracy. Choi 

et al. [41] showed that bagging of several generic CNNs 
improves the accuracy as well, winning the PlantCLEF 
2015 challenge.

PlantCLEF 2017 [43] addressed a practical problem 
of training a very fine grained classifier (10,000 spe-
cies) from data with noisy labels: Besides 256 thousand 
labelled images in the “trusted” training set, the organiz-
ers also provided URLs to more than 1.4 million weakly-
labelled web images in the “noisy” training set, obtained 
by Google and Bing image search. �e evaluation of the 
task is performed on a test set containing 25,170 images 
of 13,471 observations (specimen).

Pl@ntNet [13] is another content-type based plant rec-
ognition system. It is also an collaborative information 
system providing an image sharing and retrieval applica-
tion for plant identification. It has been developed by sci-
entists from four French research organizations (Cirad, 
INRA, INRIA and IRD) and the Tela Botanica network. 
�e Pl@ntNet-identify Tree Database provides identi-
fication by combining information from images of the 
habitat, flower, fruit, leaf and bark. �e exact algorithms 
used in the Pl@ntNet-identify web service [44] and their 
accuracies are not publicly documented. �ere is also a 
Pl@ntNet mobile app [45], an image sharing and retrieval 
application for the identification of plants.

Texture recognition

Texture information is an essential feature for recognition 
of many plant organs. Texture analysis is a well-estab-
lished problem with a large number of existing methods, 
many of them being described in surveys [46–49]. Tex-
ture itself is hard to define. �ere are various definitions 
of visual texture, but they often lack formality and com-
pleteness. For illustration, let us quote an informal defini-
tion by Hawkins [50]:

Definition 1 �e notion of texture appears to depend 
upon three ingredients: (1) some local “order” is repeated 
over a region which is large in comparison the the order’s 
size, (2) the order consists in the non-random arrange-
ment of elementary parts, and (3) the parts are roughly 
uniform entities having approximately the same dimen-
sions everywhere within the textured region.

Here we only review the recent development and the 
state-of-the-art.

Several recent approaches to texture recognition report 
excellent results on standard datasets, many of them 
working only with image intensity and ignoring the avail-
able color information. A number of approaches is based 
on the popular local binary patterns (LBP) [51, 52], such 
as the recent Pairwise Rotation Invariant Co-occurrence 
Local Binary Patterns of Qi et al. [27] or the Histogram 
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Fourier Features of Ahonen et  al. [53, 54]. A cascade of 
invariants computed by scattering transforms was pro-
posed by Sifre and Mallat [55] in order to construct an 
affine invariant texture representation. Mao et  al. [56] 
use a bag-of-words model with a dictionary of so called 
active patches: raw intensity patches that undergo further 
spatial transformations and adjust themselves to best 
match the image regions. While the Active Patch Model 
doesn’t use color information, the authors claim that add-
ing color will further improve the results. �e method of 
Cimpoi et  al. [57] using Improved Fisher Vectors (IFV) 
for texture description shows further improvement when 
combined with describable texture attributes learned on 
the Describable Textures Dataset (DTD) and with color 
attributes.

Recently, Cimpoi et al. [58, 59] pushed the state-of-the-
art in texture recognition using a new encoder denoted 
as FV-CNN-VD, obtained by Fisher Vector pooling of 
a very deep convolutional neural network (CNN) filter 
bank pre-trained on ImageNet by Simonyan and Zis-
serman [60]. �e CNN filter bank operates conven-
tionally on preprocessed RGB images. �is approach 
achieves state-of-the-art accuracy, yet due to the size of 
the very deep VGG networks it may not be suitable for 
real-time applications when evaluated without a high-
performance graphics processing unit (GPU) for massive 
parallelization.

Deep convolutional neural networks

Deep convolutional neural networks (CNNs) succeeded 
in a number of computer vision tasks, especially those 
related to complex recognition and detection of objects 
with large databases of training images, such as the com-
puter vision challenges ImageNet [61], Pascal VOC [62] 
and Common Objects in Context (COCO) [63]. Since 
the success of Krizhevsky’s network [64] in the Ima-
geNet 2012 Image Classification challenge, deep learning 
research leads to state-of-the-art results in such tasks. 
�is was also the case of the PlantCLEF challenges [37, 
38, 43], where the deep learning submissions [41, 42, 65, 
66] outperformed combinations of hand-crafted methods 
significantly.

Recently, the very deep residual networks of He 
et al. [67] gained a lot of attention after achieving the best 
results in both the ILSVRC (ImageNet Large Scale Visual 
Recognition Challenge) 2015 and the COCO 2015 Detec-
tion Challenge. �e residual learning framework allows 
to efficiently train networks that are substantially deeper 
than the previously used CNN architectures.

Szegedy et al. [68] study the ways to scale up networks 
efficiently by factorized convolutions and aggressive reg-
ularization. �eir study is performed on Inception-style 
networks (i.e. networks with architectures similar to 

GoogleNet [69]), and propose the so called Inception v3 
architecture. Furthermore, Szegedy et al. [70] show that 
training with residual connections accelerates the train-
ing of Inception networks significantly and that a residual 
Inception networks may outperform a similarly expen-
sive Inception networks without residual connections by 
a thin margin.

Methods

Texture recognition approach to plant identification

Inspired by the textural nature of bark and leaf surfaces, 
we approach plant recognition as texture classification. 
In order to describe texture independently of the pattern 
size and orientation in the image, a description invariant 
to rotation and scale is needed. For practical applications 
we also demand computational efficiency.

We introduce novel texture description called Fast Fea-
tures Invariant to Rotation and Scale of Texture (Ffirst), 
which combines several design choices to satisfy the 
given requirements. �is method builds on and improves 
our texture descriptor for bark recognition [4].

Completed local binary pattern and histogram fourier 

features

�e Ffirst description is based on the Local Binary Pat-
terns [51, 52, 71]. �e common LBP operator (later 
denoted as sign-LBP) locally computes the signs of dif-
ferences between the center pixel and its P neighbours on 
a circle of radius R. With an image function f(x,  y) and 
neighbourhood point coordinates (xp, yp):

To achieve rotation invariance,2 we adopt the so called 
LBP histogram Fourier features (LBP-HF) introduced by 
Ahonen et  al. [53]. LBP-HF describe the histogram of 
uniform patterns using coefficients of the discrete Fou-
rier transform (DFT). Uniform LBP are patterns with at 
most 2 spatial transitions (bitwise 0-1 changes). Unlike 
the simple rotation invariants using LBPri [71, 72], which 
joins all uniform patterns with the same number of 1s 
into one bin, the LBP-HF features preserve the informa-
tion about relative rotation of the patterns.

Denoting a uniform pattern Un,r
p , where n is the “orbit” 

number corresponding to the number of “1” bits and r 
denotes the rotation of the pattern, the DFT for given n 
is expressed as:

(1)

LBPP,R(x, y) =

P−1
∑

p=0

s(f (x, y) − f (xp, yp))2
p
, s(z)

=

{

1 : if z ≤ 0,

0 : otherwise.

2 LBP-HF (as well as LBPri) are rotation invariant only in the sense of a circu-
lar bit-wise shift, e.g. rotation by multiples 22.5◦ for LBP16,R.
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where the histogram value hI (Un,r
p ) denotes the num-

ber of occurrences of a given uniform pattern in the 
image.

�e LBP-HF features are equal to the absolute value of 
the DFT magnitudes, and thus are not influenced by the 
phase shift caused by rotation).

Since hI are real, H(n,u) = H(n,P − u) for 
u = (1, . . . ,P − 1), and therefore only 

⌊

P

2

⌋

+ 1 of the 
DFT magnitudes are used for each set of uniform pat-
terns with n “1” bits for 0 < n < P. �ree other bins are 
added to the resulting representation, namely two for the 
“1-uniform” patterns (with all bins of the same value) and 
one for all non-uniform patterns.

�e LBP histogram Fourier features can be generalized 
to any set of uniform patterns. In Ffirst, the LBP-HF-S-M 
description [54] is used, where the histogram Fourier fea-
tures of both sign- and magnitude-LBP are calculated to 
build the descriptor. �e magnitude-LBP [73] checks if 
the magnitude of the difference of the neighbouring pixel 
(xp, yp) against the central pixel (x, y) exceeds a threshold tp:

We adopted the common practice of choosing the 
threshold value (for neighbours at p-th bit) as the mean 
value of all m absolute differences in the whole image:

�e LBP-HF-S-M histogram is created by concatenat-
ing histograms of LBP-HF-S and LBP-HF-M (computed 
from uniform sign-LBP and magnitude-LBP).

Multi-scale description and scale invariance

A scale space is built by computing LBP-HF-S-M from 
circular neighbourhoods with exponentially growing 
radius R. Gaussian filtering is used3 to overcome noise.

Unlike the MS-LBP approach of Mäenpää and Pie-
tikäinen [74], where the radii of the LBP operators are 
chosen so that the effective areas of different scales touch 
each other, Ffirst uses a finer scaling with a step of 

√

2 

(2)
H(n,u) =

P−1
∑

r=0

hI

(

Un,r
p

)

e−i2πur/P
,

(3)LBP − HF(n,u) = |H(n,u)| ==

√

H(n,u)H(n,u).

(4)LBP-MP,R(x, y) =

P−1∑

p=0

s(|f (x, y) − f (xp, yp)| − tp)2
p
.

(5)tp =

m∑

i=1

|f (xi, yi) − f (xip, yip)|

m
.

3 �e Gaussian filtering is used for a scale i only if σi > 0.6, as filtering with 
lower σi leads to significant loss of information.

between scales radii Ri, i.e. Ri = Ri−1

√
2. �is radius 

change is equivalent to decreasing the image area to 
one half. �e first LBP radius used is R1 = 1, as the LBP 
with low radii capture important high frequency texture 
characteristics.

Similarly to [74], the filters are designed so that most 
of their mass lies within an effective area of radius ri. We 
select the effective area diameter, such that the effective 
areas at the same scale touch each other: ri = Ri sin

π

P
.

LBP-HF-S-M histograms from c adjacent scales are 
concatenated into a single descriptor. Invariance to 
scale changes is increased by creating nconc multi-scale 
descriptors for one image. See Fig. 1 for the overview of 
the texture description method.

Fig. 1 The full set of local binary patterns divided into 36 orbits for 
the Histogram Fourier features. Patterns in one orbit only differ by 
rotation

Algorithm 1 The Ffirst descriptor method in pseudocode.

1: function descriptor(img, nconc, c)
2: R1 := 1;
3: for all scales i := 1...(nconc + c − 1) do
4: σi := Ri sin π

P
/1.3

5: if σi > 0.6 then
6: imgB := gaussBlur(img, σi)

on the original image
7: end if
8: extract LBPP,Ri

-S and LBPP,Ri
-M

9: build LBPP,Ri
-HF-S-M

10: for j := 1...nconc do
11: if i ≥ j and i < j + c then
12: attach LBPP,Ri

-HF-S-M
to j-th multi-scale descriptor

13: end if
14: end for
15: Ri+1 := Ri

√
2

16: end forreturn descriptors
17: end function
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Support Vector Machine and feature maps

In most applications, a Support Vector Machine (SVM) 
classifier with a suitable non-linear kernel provides 
higher recognition accuracy at the price of significantly 
higher time complexity and higher storage demands 
(dependent on the number of support vectors). An 
approach for efficient use of additive kernels via explicit 
feature maps is described by Vedaldi and Zisserman 
[75] and can be combined with a linear SVM classifier. 
Using linear SVMs on feature-mapped data improves 
the recognition accuracy, while preserving linear SVM 
advantages like fast evaluation and low storage (inde-
pendent on the number of support vectors), which are 
both very practical in real time applications. In Ffirst we 
use the explicit feature map approximation of the histo-
gram intersection kernel, although the χ2 kernel leads 
to similar results.

�e "One versus All" classification scheme is used for 
multi-class classification, implementing the Platt’s proba-
bilistic output [76, 77] to ensure SVM results comparability 
among classes. �e maximal posterior probability estimate 
over all scales is used to determine the resulting class.

In our experiments we use a stochastic dual coordinate 
ascent [78] linear SVM solver implemented in the VLFeat 
library [79].

Adding rotational invariants

�e LBP-HF features used in the proposed Ffirst descrip-
tion are usually built from the DFT magnitudes of dif-
ferently rotated uniform patterns. We propose to use all 
LBP instead of just the subset of uniform patterns. Note 
that in this case, some orbits have a lower number of pat-
terns, since some non-uniform patterns show symme-
tries, as illustrated in Fig. 1.

Another rotational invariants are computed from the 
first DFT coefficients for each orbit:

(6)LBP-HF
+(n) =

√

H(n, 1)H(n + 1, 1)

Ffirst
∀+ denotes the method using the full set of pat-

terns for LBP-HF features and adding the additional LBP-
HF

+ features.

Recognition of segmented textural objects

We propose to extend Ffirst to segmented textural objects 
by treating the border and the interior of the object seg-
ment separately.

Let us consider a segmented object region A. One 
may describe only points that have all neighbours at 
given scale inside A. We show that describing a correctly 
segmented border, i.e. points in A with one or more 
neighbours outside A (see Fig.  2), adds additional dis-
criminative information.

We experiment with 5 variants of the recognition 
method, differing in the processing of the border region:

1. Ffirsta describes all pixels in A and maximizes the 
posterior probability estimate (i.e. SVM Platt’s proba-
bilistic output) over all nconc scales.

2. Ffirsti describes only the segment interior, i.e. pixels 
in A with all neighbours in A.

3. Ffirstb describes only the segment border, i.e. pixels 
in A with at least one neighbour outside A.

4. Ffirstib
∑ combines the Ffirsti and Ffirstb descriptors 

and maximizes the sum of their posterior probability 
estimates over nconc scales.

5. Ffirstib
∏ combines the Ffirsti and Ffirstb descriptors 

and maximizes the product of their posterior prob-
ability estimates over nconc scales.

�e leaf databases contain images of leaves on an 
almost white background. Segmentations were obtained 
by thresholding using the Otsu’s method [80].

Deep learning approach to plant identification

For significantly more complex tasks—where the pho-
tos are nearly unconstrained (depicting different plant 

Fig. 2 Segmentation of the leaf interior (blue) and border region (red) at different scales given by LBP radius R. The border region is defined as all 
points which have at least one neighbour (in LBPP,R) outside of the segmented region. a Original image, b Segmentation, R = 2.8, c Segmentation, 
R = 11.3
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organs or the whole plant in its natural environment), 
with complex background, and much higher numbers 
of classes (10,000 in the case of LifeCLEF 2017 [81]), we 
choose a deep learning approach and utilize state-of-the-
art deep convolutional neural networks, which succeeded 
in a number of computer vision tasks, especially those 
related to complex recognition and detection of objects. 
Given the enormous popularity of convolutional neural 
networks in the last years and the volume of available 
deep learning literature (e.g. [82–84]), we skip most of 
the deep learning theory and we only briefly describe our 
choices of architectures, models and techniques for our 
contributions to the PlantCLEF challenges.

In the experiments, we used the state-of-the-art CNN 
architectures as a baseline and added modifications 
described below: ensemble training with bagging, max-
out, and bootstrapping for training on noisy labels. We 
initialized all convolutional layer parameters from net-
works pre-trained on the 1 million ImageNet images, 
and then fine-tuned the networks on the training data for 
the plant recognition task. Such initialization is a com-
mon practice that speeds up training and helps to avoid 
early overfitting on tasks with a small number of training 
images.

Bagging

In deep learning challenges it is a common practice to 
train several networks on different (but not necessar-
ily mutually exclusive) subsets of the training data. An 
ensemble of such networks, commonly combined by a 
simple voting mechanism (e.g. sum or maximum of class 
prediction scores), tends to outperform individual net-
works. In the PlantCLEF 2015 plant classification chal-
lenge, Choi [41] gained a significant margin in precision 
using bagging of 5 networks.

Maxout

Maxout  [85] is based on an activation function, which 
takes a maximum over k parts (e.g. slices) of a network 
layer:

where zij = x
T
W..ij + bij can be a standard fully con-

nected (FC) layer with parameters W ∈ R
d×m×k, b ∈

m×k .
One can understand maxout as a piecewise linear 

approximation to a convex function, specified by the 
weights of the previous layer. Maxout was designed [85] 
to be combined with dropout [86].

�e maxout is not used on top of the FC classification 
layer (which would mean increasing its size k-times), we 
add an additional FC layer with maxout activation before 
the classification FC layer.

(7)hi(x) = max
j∈[1,k]

zij ,

Bootstrapping

In order to improve learning from noisy labels in the 
scenario of the PlantCLEF 2017 plant identification 
challenge, we experimented with the so called “boot-
strapping” of Reed et. al. [87]. An objective is pro-
posed that takes into account the current predictions 
of the network, with the intention to lower the effect of 
incorrect labels. Reed et al. propose two variants of the 
objective:

  • Soft bootstrapping uses the probabilities qk given by 
the network (softmax): 

 where tk are the provided labels and β is a parameter 
of the method. �e authors [87] point out that the 
objective is equivalent to softmax regression with 
minimum entropy regularization, which was previ-
ously studied in [88]; encouraging high confidence in 
predicting labels.

  • Hard bootstrapping uses the strongest prediction  
 
zk =

{

1 if k = argmaxqi
0 otherwise

We decided to follow the best performing setting of 
[87] and use hard booststrapping with β = 0.8 in our 
experiments. �e search for the optimal value of β was 
omitted for computational reasons and limited time for 
the competition, yet the dependence between the amount 
of label noise and the optimal setting of hyperparameter 
β is a topic for future work.

ResNet with maxout for LifeCLEF 2016

In LifeCLEF 2016, we utilized the state-of-the-art very 
deep 152-layer residual network of He et  al. [67]. �e 
residual learning framework allows to efficiently train 
networks that are substantially deeper than the previ-
ously used CNN architectures. We used the model pre-
trained on ImageNet which is publicly available [89] and 
inserted an additional fully connected layer sliced into 
4 parts with 512 neurons each, and applied the max-
out activation function on the slices. �e parameters of 
both the new FC layer and the following 1000-way FC 
classification layer were initialized using the method of 
Glorot [90].

�ereafter, we fine-tuned the network for 150,000 iter-
ations with the following parameters:

(8)Lsoft(q, t) =

N∑

k=1

[βtk + (1 − β)qk ] log qk ,

(9)Lhard(q, t) =

N∑

k=1

[βtk + (1 − β)zk ] log qk
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  • �e learning rate was set to 10−3 and lowered by a 
factor of 10 after every 100,000 iterations.

  • �e momentum was set to 0.9, weight decay to 
2 · 10

−4. r
  • �e effective batch size was set to 28 (either com-

puted at once on NVIDIA Titan X, or split into more 
batches using Caffe’s iter_size parameter when used 
on GPUs with lower VRAM).

  • A horizontal mirroring of input images was per-
formed during training.

Due to computational limits at training time, we only 
performed bagging of 3 networks, despite we expect that 
using a higher number of bagged networks would fur-
ther improve the accuracy. For training the ensemble of 
networks, a different 1

3
 of the training data was removed 

in each bag. �e voting was done by taking species-wise 
maximum of output probabilities.

Inception-ResNet-v2 with maxout for LifeCLEF 2017

Our model for PlantCLEF 2017 was based on the state-
of-the-art convolutional neural network architecture, 
the Inception-ResNet-v2 model [70], which introduced 
residual Inception blocks - a new type of the Inception 
block making use of the residual connections from [67]. 
Both the paper [70] and our preliminary experiments 
show that this network architecture leads to results 
superior to other state-of-the-art CNN architectures. 
�e publicly available [91] Tensorflow model pretrained 
on ImageNet was used to initiate the parameters of con-
volutional layers. �e main hyperparameters were set as 
follows:

  • Optimizer: RMSProp with momentum 0.9 and 
decay 0.9.

  • Weight decay: 0.00004.
  • Learning rate: Starting LR 0.01 with decay factor 

0.94, exponential decay, ending LR 0.0001.
  • Batch size: 32.

We added a FC layer with 4096 units. �e maxout acti-
vation operates over k = 4 linear pieces the FC layer, i.e. 
m = 1024. Dropout with a keep probability of 80% is 
applied before the FC layers. �e final layer is a 10,000-
way softmax classifier corresponding to the number of 
plant species needed in the 2017 task.

�e PlantCLEF 2017 training data consists of 2 sets, 
both covering the same 10,000 plant species:

1 A “trusted” training set based on the online collabo-
rative Encyclopedia Of Life (EoL), where the ground 
truth labels should be assigned correctly.

2 �e “noisy” training set built using web crawlers 
(more precisely, the Google and Bing image search 
results) and may thus contain images which are not 
related to the declared plant species.

We fine-tuned our networks in three different ways:

1 Using only “trusted” (EoL) training data.
2 Using both “trusted” and “noisy” training data 

(EoL + web).
3 Filtering the “noisy” data using a model pretrained 

on the “trusted” data, and then fine-tuning on the 
combination of “trusted” and “filtered noisy” data 
(EoL + filtered web).

Datasets and evaluation methodology

Bark recognition is evaluated on a dataset collected by 
Österreichische Bundesforste—Austrian Federal Forests, 
which was introduced in 2010 by Fiel and Sablatnig [92] 
and contains 1182 bark images from 11 classes. We 
denote it as the Austrian Federal Forests (AFF) bark data-
set.4 �e resolution of the images varies (between 0.4 and 
8.0 Mpx). �is dataset is not publicly available, but it was 
kindly provided by the Computer Vision Lab, TU Vienna, 
for academic purposes, with courtesy by Österreichische 
Bundesforste/Archiv.

Unlike in bark recognition, there is a number of exist-
ing datasets for leaf classification, most of them being 
publicly available. �e datasets and their experimental 
settings are briefly described bellow:

�e Austrian Federal Forest (AFF) leaf dataset was 
used by Fiel and Sablatnig [11] for recognition of trees, 
and was kindly provided together with the bark dataset 
described previously. It contains 134 photos of leaves of 
the 5 most common Austrian broad leaf trees. �e leaves 
are placed on a white background. �e results are com-
pared using the protocol of Fiel and Sablatnig, i.e. using 8 
training images per leaf class.

�e Flavia leaf dataset contains 1907 images 
(1600 × 1200 px) of leaves from 32 plant species on white 
background, 50–77 images per class. �e dataset was 
introduced by Wu et  al. [17], who used 10 images per 
class for testing and the rest of the images for training. 
More recent publications use 10 randomly selected test 
images and 40 randomly selected training images per 
class, achieving better recognition accuracy even with 

4 �e Computer Vision Lab, TU Vienna, kindly made the dataset available 
to us for academic purposes, with courtesy by Österreichische Bundesfor-
ste/Archiv.
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the lower number of training samples. In the case of the 
two best result reported by Lee et al. [20, 21], the number 
of training samples is not clearly stated.5 Some authors 
divide the set of images for each class into two halves, 
one for training and the other for testing.

�e Foliage leaf dataset by Kadir et  al. [19, 24] con-
tains 60 classes of leaves from 58 species. �e dataset is 
divided into a training set with 100 images per class and a 
test set with 20 images per class.

�e Swedish leaf dataset was introduced in Söderkvist’s 
diploma thesis [25] and contains images of leaves scanned 
using a 300 dpi colour scanner. �ere are 75 images for 
each of 15 tree classes. �e standard evaluation scheme 
uses 25 images for training and the remaining 50 for test-
ing. Note: �e best reported result of Qi et  al. [27] was 
found on the project homepage [29].

�e Leafsnap dataset version 1.0 by Kumar et  al. [12] 
was publicly released in 2014. It covers 185 tree species 
from the Northeastern United States. It contains 23147 
high quality Lab images and 7719 Field images. �e 
authors note that the released dataset does not exactly 
match that used to compute results for the paper, nor the 
currently running version on their servers, yet it seems 
to be similar to the dataset used in [12] and should allow 
at least a rough comparison. In the experiments of [12], 
leave-one-image-out species identification has been per-
formed, using only the Field images as queries, match-
ing against all other images in the recognition database. 
Probability of the correct match appearing among the top 
5 results is taken as the resulting score. Note: �e clas-
sification accuracy of [12] for the 1st result in Table 2 is 
estimated from a plot in [12]. Because leave-one-image-
out testing scheme would demand to re-train our clas-
sifiers for each tested image, we rather perform 10-fold 
cross validation, i.e. divide the set of Fields images into 10 
parts, testing each part on classifiers learned using the set 
of other parts together with the Lab images.

�e Middle European Woods (MEW) dataset was intro-
duced by Novotný and Suk [22]. It contains 300 dpi scans 
of leaves belonging to 153 classes (from 151 botanical 
species) of Central European trees and shrubs. �ere are 
9745 samples in total, at least 50 per class. �e experi-
ments are performed using half of the images in each 
class for training and the other half for testing.

5 In [20], the result presented as “95.44% (1820 / 1907)” seems to be tested 
on all images.

�e PlantCLEF challenge datasets depict plants in a 
significantly wider range of views, such as leaves, flowers, 
fruits, stems, entire plants and branches.

In the plant identification challenge PlantCLEF 2016, 
the training set contained 113,205 images of 1000 species 
of herbs, trees and ferns, and included also other meta-
data, such as the type of view (fruit, flower, entire plant, 
etc.), observation ID and GPS coordinates (if available). 
�e test set contained 8000 pictures, including “distrac-
tor” images which did not depict one of the 1000 species.

In the PlantCLEF 2017 challenge, there were two train-
ing sets available: a “trusted” set of 256,287 thousand 
labelled images of 10,000 plant species with meta-data, 
and a “noisy” set with URLs to more than 1.4 million 
weakly-labelled web images obtained by Google and Bing 
image search. �e evaluation of the task was performed 
on a test set containing 25,170 images of 13,471 observa-
tions (specimen). �ere are no “distractor” images in the 
2017 test set.

While PlantCLEF 2016 challenge was evaluated based 
on the mean Average Precision (mAP), PlantCLEF 2017 
used a less common measure—the mean reciprocal rank 
(MRR):

where |Q| is the total number of queries in the test set and 
ranki is the rank of the correct result for the i-th query.

Results

Tree bark classification

Results of our texture recognition approach to tree bark 
classification on the Austrian Federal Forest bark dataset 
are compared with the best published results in Table 1. 
Note that the MS-LBP method assumes the orienta-
tion is fixed, which seems to be a useful assumption in 
the case of this dataset. However, unlike Ffirst, it doesn’t 
provide rotation invariance. Because the bark dataset is 
very small, we skip experiments with CNNs, which need 
a considerably higher amount of data for the standard 
training/fine-tuning procedures.

Leaf classification

Application of the proposed fast features invariant to rota-
tion and scale of texture to identification of leaves [5] lead 
to excellent results on standard leaf recognition datasets, 
proposing a novel approach to visual leaf identification: 
a leaf is represented by a pair of local feature histograms, 
one computed from the leaf interior, the other from the 
border, see Fig. 2. �is description utilizing Ffirst outper-
forms the state-of-the-art on all tested leaf datasets—the 

(10)MRR =
1

|Q|

|Q|∑

i=1

1

ranki
,
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Austrian Federal Forests dataset, the Flavia dataset, the 
Foliage dataset, the Swedish dataset and the Middle Euro-
pean Woods dataset—achieving excellent recognition 
rates above 99%. Updated results of our leaf recognition 
method originally published in [5] are in Table 2.

Leaf classification with deep convolutional neural 
networks is hard to apply to experiment with small leaf 
datasets. To get a comparison with our textural method, 
we performed our experiment on the Middle Euro-
pean Woods dataset, fine-tuning from an ImageNet-
pretrained model. Note that due to high computational 
complexity and limited GPU resources, we only evalu-
ated this method on one random data split (in both direc-
tions), while Ffirst was evaluated on 10 random splits. 
After 200,000 steps, the Inception-ResNet-v2 network 
with maxout outperforms previous results significantly, 
achieving 99.9 and 100.0% accuracy respectively. More-
over, the correct class always appears among the top 5 
predictions.

PlantCLEF plant identification challenges

In the PlantCLEF 2016 plant identification challenge, our 
main submission [8] using bagging of our three residual 
networks with maxout achieved 71.0% mAP (mean aver-
age precision), placing us among the top 3 teams in the 
challenge, where the winning submission achieved 74.2% 
mAP. Our deep network was actually more precise for 
single image labelling than the winning submission [39], 
which pushed the mAP from 61.1 to 74.2% by utilizing 
the ObservationID meta-information and summing the 
scores over all images in an observation. Our post-chal-
lenge experiments show that summing the scores over 
observations would boost our system to 78.8% mAP on 
the PlantCLEF 2016 test data.

For PlantCLEF 2017, we fine-tuned our deep networks 
on the “trusted” (EoL) data only, as well as on the com-
bination of both “trusted” and “noisy” data (EoL + web). 
We also experimented with the bootstrapping technique 
for training with “noisy” data. In experiments on our 
validation set (based on 2016 test data) the networks 
trained only on the “trusted” data performed slightly 
better. �e two best performing networks trained on the 
“trusted” (EoL) dataset, each achieving 65% accuracy 
on the validation set, were then used in the following 
experiments.

  • Net #1: Fine-tuned on “trusted” (EoL) set without 
maxout for 200k it.

  • Net #2: Fine-tuned on “trusted” (EoL) set with max-
out for 200k it.

Table 1 Bark classification results of Ffirst and the state-

of-the-art methods

Evaluation schemes using 10 fold cross validation, or 15 and 30 training images 
per class

AFF 10 fold AFF 15 train AFF 30 train

Ffirst
∀+ 96.5 ± 1.2 84.9 ± 2.5 90.4 ± 1.6

MS-LBP-HF [4] 92.2 ± 2.7 74.4 ± 3.4 –

MS-LBP [4] 96.5 ± 2.7 85.5 ± 2.7 –

Fiel, Sablatnig [11, 92] – 64.2 69.7

Table 2 Evaluation of Ffirst on available leaf datasets: Austrian Federal Forests, Flavia, Foliage, Swedish, Middle Euro-

pean Woods and Leafsnap

AFF Flavia 10 × 40 Flavia 1
2

×
1

2
Foliage Swedish MEW Leafsnap Leafsnap top 5

Num. of classes 5 32 32 60 15 153 185 185

Ffirst
∀+
a  (1) 97.1 ± 1.5 99.4 ± 0.3 99.2 ± 0.2 99.2 99.7 ± 0.3 98.8 ± 0.2 81.2 ± 1.8 95.9 ± 1.5

Ffirst
∀+

i
 (2) 97.3 ± 1.6 99.3 ± 0.3 98.9 ± 0.3 98.1 99.7 ± 0.3 98.4 ± 0.2 73.1 ± 2.3 92.4 ± 1.7

Ffirst
∀+

b  (3)
99.5 ± 0.6 99.3 ± 0.4 99.0 ± 0.2 98.3 99.4 ± 0.5 97.9 ± 0.2 77.2 ± 1.9 94.8 ± 1.5

Ffirst
∀+

ib
∑

 (4)
100.0 ± 0.0 99.7 ± 0.3 99.6 ± 0.1 99.3 99.8 ± 0.2 99.3 ± 0.1 81.8 ± 1.2 96.5 ± 1.1

Ffirst
∀+

ib
∏

 (5)
100.0 ± 0.0 99.8 ± 0.3 99.7 ± 0.1 99.3 99.8 ± 0.3 99.5 ± 0.1 83.7 ± 1.1 97.3 ± 1.1

Inception-ResNet-v2 +maxout − − − − − 99.9+ − −

Kumar et al. [12] − − − − − − ≈ 73 96.8

Fiel, Sablatnig [11] 93.6 − − − − − − −

Novotný, Suk [22] − − 91.5 − − 84.9 − −

Karuna et al. [23] − − 96.5 − − − − −

Kadir et al. [18] − 95.0 − 95.8 − − − −

Lee et al. [21] − 97.2 − − − − − −

Qi et al. [27] − − − − 99.4 − − −
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A “filtered noisy” training set of 425k images was 
acquire from the noisy set by keeping only images where 
the prediction of Net #1 was equal to the label.

In order to train ensembles with bagging, we divided 
the data into 3 disjoint folds. �en the following networks 
were further fine-tuned on different 2 of the 3 folds for 
50,000 iterations.

  • Net #3, #4, #5 Fine-tuned from Net #1 for 50k it. on 
the “trusted” dataset.

  • Net #6, #7, #8 Fine-tuned from Net #2 for 50k it. on 
the “trusted” dataset, with maxout.

  • Net #9, #10, #11 Fine-tuned from Net #1 for 50k it. 
on the “trusted” and “filtered noisy” data.

  • Net #12, #13, #14 Fine-tuned from Net #1 for 50k it. 
on the “trusted” and “filtered noisy” data, with hard 
bootstrapping.

  • Net #15,#16,#17 Fine-tuned from Net #2 for 50k it. 
on the “trusted” and “filtered noisy” data, with max-
out.

�e individual fine-tuned networks did not achieve 
much improvement compared to networks #1 and #2: 
the accuracies ranged from 57 to 67% on the validation 
set. However combinations of the differently fine-tuned 
networks are beneficial: an ensemble of all 17 networks 
achieved final validation accuracy 73%, and as our sub-
mission to PlantCLEF 2017 ranked 3rd with Mean Recip-
rocal Rank 84.3%.

Discussion

�e accuracy of Ffirst is suitable for practical applications 
in leaf and bark recognition, exceeding 99% for most leaf 
datasets. �e method is computationally efficient and fast: 
processing 200 × 200 pixel images takes about 0.05 s on 
a laptop without using a GPU. �at makes real-time pro-
cessing on common handheld devices (such as low-end 
smartphones) feasible. �e drawback of such global tex-
ture descriptor is its dependence on perfect segmenta-
tion of the area of interest, which makes it unsuitable for 
more complex pictures of plants. In the case where the 
whole image area contains bark texture, no segmentation 
is needed. For leaf scans or photographs of leaves on a 
white background, segmentation is trivial and all informa-
tion is visible in the image. For more complex cases, such 
as unconstrained plant recognition “in the wild” includ-
ing occlusions, complex background and highly variable 
image content, a more generalizing model is needed.

�e generality and higher capacity of CNNs is suit-
able for such more complex tasks. With large amounts of 
training data, state-of-the-art convolutional neural net-
work architectures achieve the best results on such tasks, 

as validated by results of the recent PlantCLEF challenges 
[38, 43].

CNN models usually need a very high amount of train-
ing data for training. �is need can be partially reduced 
by initializing the model variables from a pre-trained 
model (usually on ImageNet). An experiment with the 
modified state-of-the-art Inception-ResNet-v2 network 
shows that with sufficient training data, fine-tuning a 
deep convolutional neural network leads to almost per-
fect leaf classification, achieving at least 99.9% accuracy 
on the MEW leaf dataset. Although this leaf dataset rep-
resents a considerable number of classes (153), it is still 
much lower than in the case of PlantCLEF challenges 
(10,000 species in 2017). �ere is a lack of larger bark 
datasets for similar experiments. It is common for the 
more constrained tasks, that many of the publicly avail-
able datasets are rather small in the number of classes 
and images - the AFF datasets are a great example. �is 
dataset size variance has to be taken into account when 
interpreting the achieved accuracy: for example, Ffirst 
achieves 100 % accuracy on the AFF leaf dataset, which 
only contains 5 plant species, while the 99.5% accuracy 
on the MEW daraset with 153 classes is definitely more 
informative. Besides dataset size, we also noticed a sig-
nificant effect of segmentation errors on the performance 
in the case of the Leafsnap dataset.

�e disadvantage of common CNNs are high hardware 
demands for training the models and for real-time pro-
cessing—in practice, this is achieved by massive paral-
lelization on GPUs or other deep-learning-specialized 
hardware units, such as the recently introduced Tensor 
Processor Units. From the network design point of view, 
the processing speed might be increased by quantiza-
tion and pruning, but also using smaller models, such as 
MobileNets [93]. All of these methods, however, tend to 
decrease the model accuracy.

We observe that building an ensemble of such networks 
improves accuracy significantly by combining the exper-
tise learned by several models converging into different 
local minima. We believe that this raises an interesting 
question for future research: How to combine ensembles 
of such models in a more efficient way?

Conclusions

Identification of plant species from pictures of bark 
and leaves using textural recognition with the pro-
posed Ffirst method leads to state-of-the-art results, 
while keeping computational demands small, which 
makes it suitable for real-time processing. Our experi-
ment shows that with enough training data, an even 
better accuracy can be achieved using a convolutional 
neural network, performing leaf classification almost 
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perfectly with 99.9–100.0% accuracy on the MEW 
dataset with 153 plant species.

�e results suggest that with sufficient amount of train-
ing data, recognition of segmented leaves is practically a 
solved problem. Learning from a small number of sam-
ples may be still a valid problem and may be practical for 
uncommon plant species or rare phenotypes.

�e generality and higher capacity of state-of-the-
art CNNs makes them suitable for plant recognition 
“in the wild”, where the views on plant organs or plants 
vary significantly and suffer from occlusions and back-
ground clutter. �at was demonstrated by the results of 
the recent PlantCLEF challenges [38, 43], where the pro-
posed deep learning methods performed competitively, 
finishing among the top 3 teams in both 2016 and 2017.
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