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Abstract
We focus on the key task of semantic type discovery over a set of heterogeneous sources, an important data preparation task.
We consider the challenging setting of multiple Web data sources in a vertical domain, which present sparsity of data and a
high degree of heterogeneity, even internally within each individual source. We assume each source provides a collection of
entity specifications, i.e. entity descriptions, each expressed as a set of attribute name-value pairs. Semantic type discovery
aims at clustering individual attribute name-value pairs that represent the same semantic concept. We take advantage of the
opportunities arising from the redundancy of information across such sources and propose the iterative RaF- STD solution,
which consists of three key steps: (i) a Bayesian model analysis of overlapping information across sources to match the
most locally homogeneous attributes; (ii) a tagging approach, inspired by NLP techniques, to create (virtual) homogeneous
attributes from portions of heterogeneous attribute values; and (iii) a novel use of classical techniques based on matching
of attribute names and domains. Empirical evaluation on the DI2KG and WDC benchmarks demonstrates the superiority of
RaF- STD over alternative approaches adapted from the literature.

Keywords Data integration · Data preparation · Semantic typing · Semantic type Discovering · Schema matching · Big data ·
Web data

1 Introduction

Many applications need to exploit data from multiple Web
sources, each providing detailed descriptions about enti-
ties of vertical domains (e.g. products, people, companies)
[14,16–18,20,25,31,33]. Each source might be the result of
an extraction process from a website, or the result of a query
against an API. AsWeb sources are usually noisy and hetero-
geneous, several data preparation tasks [12], including data
cleaning [1,13] and entity identifier extraction [4,35], must
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be performed prior to passing the data to downstream appli-
cations.

Given a collection of sources, an important data prepara-
tion problem that has been recently addressed in the literature
is that of discovering the semantic types, i.e. clustering data
items that represent instances of a semantic concept. So far,
the problem has been tackled for strings [43], for tabular
(relational) data [23,45], and for collections of structured
datasets [34]. These proposals represent effective solutions
to discover semantic types in several application scenarios.
However, as we discuss in Sect. 2, their assumptions repre-
sent limitations when dealing with wild data from the Web
because of the high degree of heterogeneity that arises not
only across sources, but also within individual sources.

To illustrate the problem and its challenges, consider the
example data shown in Fig. 1, which are derived from the
di2kg camera dataset, a recent data integration benchmark
publicly available to the research community. 1. The dataset
provides about 30k camera specifications from 24 real Web
sources, consisting of a total of 528k attribute name-value

1 http://di2kg.inf.uniroma3.it/datasets.html
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Fig. 1 Running example: five sources with some entity specifications, and linkage information (each set represents a group of specifications that
refer to the same entity)

pairs. Each source is a collection of entity specifications,
where each entity specification consists of a set of attribute
name and value pairs, represented as a JSON object.
Challenges Let us comment on the major forms of hetero-
geneity that we observed across sources as well as within
individual sources in the di2kg dataset. They represent chal-
lenging issues to the semantic type discovery problem.

– Attribute-Name Heterogeneity Attributes with the same
semantic type can be represented by different names,
even across specifications of the same source. For exam-
ple, observe attribute names CPU and Processor in
source S1 in Fig. 1: they have the samemeaning, yet some
entity specifications use CPU and others Processor.
Conversely, there are overloaded attribute names, i.e.
there are attributes with the same name but different
semantic types, even within the same source. Observe
the Battery attribute in source S3: in some entity spec-
ifications the value refers to the battery chemistry (s31,
in the example), in others to the battery model (s32), or
even to both (s33).

– Attribute-Value Heterogeneity Even when a source does
not have attribute-name heterogeneity, it may have values
that use different representations across entities. Since
Web data are typically created for human consumption,
sources can introduce pieces of free text (usually to aid
human users) within the values. In our example, consider
theBatt attribute in source S5 whose values are adorned
with descriptive words, such as “battery” and “recharge-
able” (which are indeed superfluous, as every Li-Ion
or Ni-MH battery is rechargeable). Another form of
attribute value heterogeneity is due to different granulari-
ties of representation: some values could be compositions
of pieces of information that elsewhere—even in the same
source—are represented by means of multiple attributes.

In our example, consider the Battery attribute for the
specifications s33 and s35, whose values include both the
battery type and the battery chemistry,without any under-
lying pattern. Finally, it is important to observe that Web
data are noisy and that some sources can publish erro-
neous values; in our running example, s33 and s43 are
linked, i.e. they represent the same entity, but they have
different values for attribute Memory (32 and 16, respec-
tively).

– Attribute sparsityTheaveragenumber of distinct attribute
names per source is 273.However, on average, each entity
specification has 18 attributes: less than 7% of attribute
names are used for each entity. If it were a relational
database, we would say that 93% of attribute values are
null. Concretely, each source presents a huge variety of
attributes, many ofwhich are provided only for few entity
specifications, increasing the difficulty of discovering
semantic types.

In this paper, we address the problem of discovering the
semantic types of attributes in such a challenging scenario.
Our goal is to create clusters of attributes of individual spec-
ifications with the same semantics: each cluster represents a
semantic type. Figure 2 illustrates the output of our method
for a subset of data in Fig. 1. Each cluster consists of a set of
attributes of individual specifications, suitably represented as
triples.

Our approach, RaF- STD (RaF—Semantic Type Discov-
ery), has been developed in the context of RaF (Redundancy
as Friend) [4,36], an ongoing research project that addresses
the issue of end-to-end integration of entity specifications
from multiple heterogeneous sources. The overall approach
of the project leverages opportunities that arise from the
redundancy of information among and across sources.
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Fig. 2 Semantic type clusters for attributes of entity specifications
s∗3, s∗4 in Fig. 1. Notice that: (i) semantic type clusters may overlap:
for example, 〈s33,Battery,LP-E6N Li-Ion〉 appears in two clusters
(ST 1 and ST 2), as its value is composite and refers to two seman-
tic types (battery model and battery chemistry); (i i) a semantic type
cluster contains triples from entity specifications referring to different
entities: for example, the semantic type ST4 contains triples from s33,
s34, s43, s44, but only s33 and s43 are linked (i.e. refer to the same
entity); (i i i) semantic type clusters may contain triples from linked
entities across different sources: for example, in the semantic type
cluster ST 6, the triples 〈s13,Videoresolution, 1024x768〉 and
〈s23,Videoformat, 1024x768〉 refer to the same entity (see link-
age in Fig. 1) and belong to different sources (S1 and S3, respectively)

Opportunities In our setting, we can identify several of these
opportunities:

• Many entities appear in different sources with shared
values. This redundancy can be exploited for our pur-
poses, based on the intuition that attributes from different
sourceswith the same values for the same entity are likely
to represent the same semantic type.We can, indeed, take
advantage of the availability of entitymatching solutions,
such as those based on relational pre-trained transform-
ers [10,28,42], or those based onunsupervised techniques
[35,36,44] that effectively work even without needing to
deal with attribute reconciliation.

• Although heterogeneity occurs even within sources, it is
usually the case that at least a few attributes in a source
tend to be homogeneous. A useful opportunity is to iden-
tify and first cluster such attributes into semantic types
across sources.

• Some sources use different names for attributes that are
overloaded in other sources. This represents an opportu-
nity to resolve the semantic types of overloaded attribute

names (e.g. S1 uses different names for battery chemistry
and battery model, and this allows the resolution of the
overloading of Battery in S3).

• Common meaningful values (e.g. “Li-Ion”) appear in
multiple specifications, for different entities, within and
across sources, despitemany kinds of heterogeneity. This
redundancy can be exploited.2

• Given the number of sources, there is a lot of redun-
dancy of information within and across them, despite
the attribute sparsity. Redundancy across sources can be
exploited as evidence of equivalence of semantic types.

We propose an iterative approach consisting of three key
steps to solve the semantic typing problem by taking advan-
tage of the above opportunities. The first step is based on a
Bayesianmodel that analyses overlapping information across
sources to match specification attributes that most likely
have the same meaning, exploiting partial homogeneity that
occurs inside sources. The second step is based on a tagging
approach, inspired by NLP techniques [25], to create groups
of virtual specification attributes from tagged portions of val-
ues not matching in the previous step. Matching and tagging
are iterated, as they produce complementary evidence that
reinforces each other. A final step processes the results of
the iterations and aims at improving the created clusters by
adding specification attributes that the previous steps could
not merge (for example due to lack of linkage, or for differ-
ences in representation of values).

Paper Outline Section 2 discusses related work. Section 3
presents the problem setting and an overview of our solution.
Section 4 describes the Bayesian approach to cluster themost
similar entity specification attributes. Section 5 illustrates
our tagging solution and the iterative algorithm to produce
semantic typing. Section 6 reports on experiments with dif-
ferent datasets, under different conditions, and comparisons
with other approaches. Finally, Sect. 7 concludes the paper
with final remarks and future work.

2 Related work

Semantic type detection has been recently addressed in the
literature. Related issues arise also in research on table to
knowledge base matching and on schema matching. In the
following, we discuss how our approach differs from these
bodies of research. In our experimental evaluation (Sect. 6),
we compare our solution to one representative for each of
these.

2 There are values that occur too often for multiple attributes (such as,
“yes” and “no”) and therefore cannot be considered to be meaningful
of this exploitation, as we will see in Sect. 4.
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Semantic Type Detection Sherlock [23] and Sato [45]
adopt a supervised approach to associate each column of
a relational table with a type from a fixed set of predefined
semantic types (a restricted number of types derived from
DBPedia properties [38]). Such a closed world approach rep-
resents a strong limitation as it prevents the identification of
the diversity of types that are usually present in many vertical
domains. Also, both these systems work at the column level,
i.e. they associate a semantic type with a column as a whole,
assuming that all the elements of the column refer to the same
type. As we discussed in the Introduction, this assumption is
not valid with Web data, which are characterized by sparsity
of data and semantic heterogeneity of attribute names and
values. Another drawback of Sherlock and Sato is the train-
ing effort, as they require a large set of tables with columns
labeled with a semantic type.

Differently from Sherlock and Sato, D4 [34] adopts an
unsupervised, data-driven approach: it does not rely on train-
ing data, and it does not have to refer to a predefined set of
types. Given a collection of relational tables, D4 aims to iden-
tify sets of terms that represent values of the same semantic
type. Also, D4 takes into account that columns might be
heterogeneous and contain multiple types of values, but it
assumes homogeneity of values.

In our experimental evaluation, we compare our solution
to D4.

Table to Knowledge Base Matching Semantic type detec-
tion is also related to solutions for populating an existing
knowledge base with facts extracted from tabular data, typi-
cally data extracted fromHTMLtables (see [46] for a survey).

A seminal work in this area is that developed by Limaye et
al., who proposed a supervised approach based on a proba-
bilistic graphical model [29]. The Tabel system [7] builds
on the Limaye et al.’s approach relying also on the co-
occurrence of the elements in the table and in Wikipedia
documents. The redundancy of information in tables andweb
documents has been exploited in other approaches, such as
[11,41], that, differently from the previous ones, are unsu-
pervised. However, these approaches assume a significant
overlap between the table and the target knowledge base, and
need a huge corpus of textual documents whose contents are
related to the elements of the tables.

Among the proposals for table to knowledge base match-
ing, T2K [39] represents an interesting solution: it assumes
overlap between the table and the knowledge base, but it is
unsupervised and it requires no external information. Inter-
estingly, T2K relies on an iterative approach that, similarly
to ours, alternates entity linking (i.e. matching HTML table
rows to KB entities) and attribute matching (table columns
to KB properties).

It is worth observing that, similarly to Sherlock and Sato,
also in the table to knowledge base matching approaches, it

is the case that semantic types are defined a priori (as they
correspond to the types in the knowledge base), while in
RaF- STD types arise from data. However, an unsupervised
system like T2K can be adapted to discover semantic types
by electing one source as the target knowledge base against
which the remaining tables are matched.

In our experimental evaluation, we compare our solution
to T2K, adapted to our context as described above.

Schema Matching The goal of schema matching, a widely
studied topic in the last decades, is to find matches between
semantically equivalent attributes [5,27,37]. Most schema
matching approaches are able to deal with schematic het-
erogeneity across sources [21,26], such as differences in
attribute names, domain formats and granularity. However,
they assume that each source adopts homogeneous seman-
tics and homogeneous representations of data. Coma++ [2]
and Harmony [32] propose tools enabling a variety of match-
ing approaches, configurable and adaptable to specific needs,
and the reuse of previously defined strategies. However, these
tools require some form of user interaction, such as selecting
the most suitable techniques to adopt, or filtering all the pos-
sible matches suggested by the system. With a large number
of sources, techniques that require humans in the loop are
ineffective.

An interesting extension of Coma++ has been developed
by Engmann and Massmann [19], who enhance the original
schema matching system with an instance based-approach,
i.e. leveraging also the extension of the datasets [37]. In
particular, they augment Coma++ with two instance-based
matchers, which compute a pairwise matching score among
the attributes of the input datasets considering the presence
of syntactical constraints and the similarity of values. The
outcome of the matchers are then combined by a propaga-
tion algorithm [19].According to the experimental evaluation
recently conducted by Koutras et al. [27], this enhanced
version of Coma++ outperforms other schema matching
approaches.

The family of instance-based solutions to schema match-
ing [37] includes other interesting proposals that aim at
automatically performing attribute alignment by leveraging
the attribute values. Autoplex [6] relies on a Bayesian classi-
fier, whose training data must be provided as input, to match
the attributes of a source to a target schema.A similar solution
has been developed in the Big-Gorilla project, with Flex-
Matcher [12], an evolution of the LSD system [15]. Another
instance based approach that is related to our work is Dumas
[8], which infers and exploits partial record linkage infor-
mation to discover alignment of schema attributes. These
approaches are based on the assumption that, within each
source, attributes have homogeneous values and semantics.
Another schemamatching approach that is worthmentioning
is that proposed by Kang et al. [24], which is robust to differ-
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ences in representation. However, it relies on homogeneity
of the sources to get sufficient evidence of dependencies
between attributes in the same source and requires fully linked
specifications, while RaF- STD is able to work even with
incomplete linkage.

Nguyen et al. [33], with their PSE system, address the
problem of matching attributes in an existing catalog with
attributes from external sources and do consider heterogene-
ity within sources. Having a complete catalog, they do not
aim at discovering new attributes, but just at detecting those
with an equivalent attribute in the catalog. Thanks to this
restricted setting, they are more flexible to local heterogene-
ity in the sources. Indeed, if an attribute does not match with
any catalog attribute (because it is not homogeneous, or it
has too many errors, or it has a different format than the cat-
alog), they simply neglect it. Indeed, their goal is not to be
complete but to enrich their catalog, with specifications from
Web sources. This approach is clearly a good compromise
in their setting and can be easily adapted in our context by
choosing a source as the initial catalog. Then, attributes that
do not match with any of those of the catalog are added to
the catalog itself, thus opening the possibility of amatch with
attributes of further sources.

In our experimental evaluation, we compare our solution
to a version of PSE suitably adapted to our problem. Also,
we have used the instance-based enhancement of Coma++ to
evaluate the effectiveness of an internal module of the RaF-
STD system.

3 Overview

We consider a set of sources S that provide information
about entities of a specific category of interest (e.g. cam-
eras or clothes). We assume each source S ∈ S to be a set
of records, each of which is indeed an “entity specification”
that describes the entity as a set of attribute name-value pairs.
We represent an entity specification as a set of triples. Let us
give some details, on notation and terminology. A triple has
the form 〈s, N , v〉, where s identifies the entity specification,
N is the name of an attribute, and v is the associated value.
Since an attribute name appears at most once in an entity
specification s, a triple is also briefly denoted as s.N (with
no mention of the associated value v). We denote as S.N the
set of triples in S whose name is N , and we call it a source
attribute in S. Finally, we define the domain of S.N as the
set of all attribute values in its triples.

So, with respect to Fig. 1, 〈s11,CPU,BionzX〉 is a triple,
which can be simply denoted as s11.CPU. Also, S1.CPU is a
source attribute and its domain is {BionzX, Xpeed2}.

Our goal is to discover the semantic type(s) of the triples
in S, that is, to create clusters of triples that refer to the same
semantic concept. Notice that we cannot associate semantic

types to source attributes because of the heterogeneity that
occurs even within the sources. Indeed, in two different spec-
ifications, even from the same source, information may be
represented differently, and triples sharing the same attribute
name may have different semantics. As a consequence, we
need to work at the level of individual triples.

The definition of what is a semantic type might be sub-
jective. We follow a data-driven approach, which considers
semantic types as they emerge from the data offered by
the sources. Referring to our running example, the pres-
ence of distinct triples that describe battery chemistry and
battery model in the same specification (specification s11
in source S1) suggests that these are distinct semantic
types. Conversely, triples that provide values that appear
as composite but with components that never emerge as
distinct triples, are not considered separately. For exam-
ple, the Video resolution triples also in S1 could
represent two distinct types (horizontal and vertical res-
olution), but as the two properties are never provided as
separate triples, they are not (and should not be) considered
separately.

We exploit the redundancy of information, which is natu-
rally present on the Web with multiple specifications for the
same entity. We assume, and take advantage of, the availabil-
ity of a good quality sample of record linkage information,
which identifies different specifications that refer to the same
entity. Such a good quality sample need not be complete:
in our experimental evaluation, in Sect. 6, we show that
even a small sample suffices. Our assumption is motivated
by the positive results recently achieved by several research
projects that address the record linkage issue. In particular,
systems based on pre-trained language models [10,28,42],
as well as unsupervised systems [35,36,44], demonstrate
that it is possible to obtain good quality record link-
age information without attribute matching. Our approach
has been designed to take advantage of such encouraging
results.

Given a set of specificationsP , a linkage sample is a set P
of disjoint subsets of P , such that each P ∈ P contains only
specifications that refer to the same entity (but not necessarily
vice-versa). When two specifications s and t belong to the
same element P of P, we say they are linked. Similarly, we
say that two triples are linked if the specifications to which
they, respectively, pertain are linked.

3.1 Problem definition

Let us state the main topic of the paper, the Fine Grained
Semantic Type Discovery Problem: given a set of sources S
and a linkage sample P over the specifications in the sources
in S, find groups of triples from different entity specifications
with the same semantic type. Groups may overlap, as indi-
vidual triples may provide composite values, in which case
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Fig. 3 The RaF- STD approach

they refer to several semantic types, associated with separate
attributes in other specifications.

3.2 Our approach

To address the Fine Grained Semantic Type Discovery Prob-
lem, we exploit the opportunities that arise from the richness
of information across sources. Our approach is illustrated in
Fig. 3.

First, the Source Attribute Matching step exploits the
existence of overlapping data across sources: we develop
a Bayesian analysis that leverages the linkage sample to
compute clusters of source attributes that share triples with
matching values. Based on the intuition that it is unlikely
that multiple linked triples have the same value by chance,
this step aims at grouping together source attributes with the
same semantics, while isolating, in singleton clusters, source
attributes with overloaded names or value heterogeneity.

The non-singleton clusters built in the Source Attribute
Matching step contain common values. The Dictionary Cre-
ation step exploits these values to build sets of values,
dictionaries, that are likely to refer to the same semantic type.

Dictionary terms are thenusedby theTagging step, to label
values that belong to source attributes that were not clustered
by the Source Attribute Matching, that is, source attributes
that suffer attribute-name and attribute-value heterogeneity.
Elements tagged with a given label may refer to the same
semantic type of the triples in the cluster associatedwith such
a label. We extract these values to create virtual attributes
(and hence triples) that are added to the original dataset, each
in the same specification as its original version.

Algorithm 1: Source Attribute Matching
Input : S: set of sources

C: initial set of clusters over atts(S)

P: linkage sample over S
Output: a set C of clusters over atts(S)

1 Construct a graph G(V , E) as follows: V = atts(S), E
contains a weighted edge eA,B , with
weight(e) = sim-score(A, B,P), between a pair of source
attributes A and B, A ∈ Si , B ∈ S j , Si �= S j , if A and B share a
value in at least one linked specification and
sim-score(·) ≥ 0.5;

2 for each edge eA,B ∈ E ordered by desc weight do
3 cA ← c ∈ C : A ∈ c;
4 cB ← c ∈ C : B ∈ c;
5 if �s : X ∈ s, Y ∈ s, X ∈ cA, Y ∈ cB then
6 C ← (C \ {cA, cB}) ∪ {cA ∪ cB} ; // merge
7 end
8 end
9 return C;

Then, the process iterates: virtual attributes generated by
the Tagging step can give rise to new matches that could not
have been identified previously.

As every Source AttributeMatching step can produce new
clusters (and then new dictionaries), and every Tagging step
can generate new virtual attributes that allow new matching,
the two steps are iterated until the clusters do not change
anymore.

After the end of iterations, theNameGrouping step aggre-
gates clusters having source attributes with common names
and comparable domains. This final step also exploits the
redundancy of data, as the domain of clusters is now more
reliable than domains of single source attributes and can
match source attributes that did not match previously, typ-
ically for lack of linkage, excessive noise in the values, or
too generic values.

At the final stage, Triple Clustering creates clusters by
aggregating triples that belong to the same cluster of (possi-
bly virtual) source attributes.

4 Source attributematching

In this section, we describe the first step of our approach,
which leverages the linkage sample and redundancy of data
among sources to identify groups of source attributes with
equivalent semantics. This is performed by Algorithm 1,
which takes as input an initial clustering of source attributes
and refines it by potentially merging some clusters. Notice
that the algorithm is applied iteratively (see Sect. 5.2) and that
in the first iteration all clusters are initialized as singletons.

Let atts(S) be the set of all the source attributes in S.
We build a weighted graph, G(atts(S),E), whose nodes are
source attributes in atts(S) and edges are candidate matches,
i.e. pairs of source attributes from different sources with at
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least one common value in a pair of linked specifications,
excluding values that are too frequent and thus not verymean-
ingful. 3 Each edge has aweight given by the scoring function
sim-score, based on a Bayesian analysis and described in
Sect. 4.1, which gives the probability of match between pairs
of source attributes. Edges with match probability smaller
than non-match probability (that is, sim-score < 0.5) are
dropped.

Then, edges are sorted and processed in descending order
of weight. For each edge, the two clusters it connects are
merged, unless this would put two triples from the same spec-
ification in the same cluster (we assume that two triples with
same semantic type but conflicting values cannot appear in
the same specification). As we detail in Sect. 4.2, we use
approximate matching to compare values.

4.1 Similarity score

The similarity score between two source attributes is com-
puted by means of a probabilistic Bayesian approach that
leverages the linkage sample. The intuition is that if two
source attributes share the same values for several triples,
then it is likely that they represent the same property. The
approach aims to be tolerant to the presence of noise in the
values as well as in the linkage.

Given two source attributes A = Si .N , B = S j .M , with
Si �= S j , we use L AB to denote the set of pairs 〈s.N , t .M〉
where s ∈ Si , t ∈ Tj , s and t are linked.

Our goal is to determine P(A ≡ B|L AB), that is, the
probability that source attributes A and B are equivalent (that
is, they have the same meaning), given the pairs of the values
of source attributes A and B in the linked specifications.

By applying Bayes’ theorem, we have:

P(A ≡ B|L AB)

= P(A ≡ B)P(L AB |A ≡ B)

P(L AB |A ≡ B)P(A ≡ B) + P(L AB |A �≡ B)(1 − P(A ≡ B))

(1)

Let us illustrate next the development of this formula.

4.1.1 Prior probability

Given a pair of source attributes A and B, we estimate the
prior probability P(A ≡ B) by heuristically considering the
similarity of their domains, denoted DA and DB , respec-
tively. In particular, we take into account (i) the similarity
of the whole domains, and (i i) the similarity of the domains
restricted to the values shared by the linked specifications.

3 We exclude values that appear in the domain of more than 10% of
source attributes in the dataset.

We compute the similarity of the domains according to the
Chekanovsky–Sørensen index [9,40], a variant of the Jac-
card index that considers the distribution of values in the
sets. Also, we weigh the contribution of each value by its
frequency in the set of source attributes; the rationale is that
sharing values that are very frequent in the dataset is less
informative than sharing rare values. Formally:

sim(A, B) =
∑

v∈DA∩DB

2
min( f (v,DA), f (v,DB))

|{Y ∈ atts(:)v ∈ DY }| (2)

where f (v, ·) is the frequency of v in ·, and the denominator
|{Y ∈ atts(:)v ∈ DY }| is the number of source attributes in
which the value v appears.4

We use the same approach to compute the similarity of the
domains restricted to the values from the linked specifications
(we call this linked domain):

simL(A, B) =
∑

〈v,v〉∈L AB

2
min( f (v, L A), f (v, LB))

|{Y ∈ atts(:)v ∈ DY }| (3)

where L A (and similarly LB) is the set of values of A in L AB ,
i.e. L A = {v : v is the value in s.A and 〈s.A, t .B〉 ∈ LAB}.

In order to compute the prior probability P(A ≡ B),
we mostly rely on values that are provided by linked
specifications. However, if there are too few elements in
linkage, values could be shared by coincidence, and thus,
we should give more weight to the similarity between the
entire domains. To weigh the two components, we consider
their sizes; however, since they can differ by many orders of
magnitude, we use their logarithm, as follows:

P(A ≡ B) = α sim(A, B) + β simL(A, B)

α + β
(4)

where α = log(max(|DA|,|DB |)
|L AB | ) and β = log(|L AB |). Note

that if |LAB | = 1 (there is just one pair of linked specifica-
tions) β equals 0, then we consider only the similarity of the
domain. Conversely, increasing |LAB | reduces the weight of
α and thus gives more importance to the values coming from
the linked specifications.

Example 1 Consider the source attributes S3.Memory and
S4.Memory from our running example in Figure 1. For the
sake of conciseness, we use A and B to denote S3.Memory
and S4.Memory, respectively. Table 1 reports the frequencies
of the values in the domains associated with the two source
attributes ( f A and fB); their frequencies in the domains
restricted to the linked specifications ( fL A and fLB ); the
number of source attributes in which v occurs (occ(v) =
|{S.Y , S ∈ S : v ∈ DS.Y }|).
4 The numerator includes 2 because by construction we are considering
values that appear in the intersection of two sources.
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Table 1 Domain of source attributes S3.Memory (denoted A) and
S4.Memory (denoted B)

v f A fB fL A fLB occ(v)

16 0.5 0.66 0.33 0.66 3

8 0.25 0.33 0.33 0.33 3

32 0.25 0 0.33 0 1

By applying Equations 2 and 3 , sim(A, B) = 0.5 and
simL(A, B) = 0.44. The weights assume the values: α =
0.42, β = 1.58. Then, from Equation 4, we obtain P(A ≡
B) ≈ 0.45. In a similar way, we can compute the prior
for source attributes S4.Memory and S5.Megapixels,
denoted B and C , respectively: P(B ≡ C) = 0.64. These
two source attributes have very similar domains, thus a high
prior, despite providing different data. Example 2 will show
how we exploit linkage to adjust the score.

4.1.2 Posterior probability

We now need to compute the probability of observing the
values provided for each specific pair of triples in linkage:

– under the null hypothesis, P(LAB |A �≡ B),
– under the equivalence hypothesis, P(LAB |A ≡ B).

We can model the set of the observed value pairs L AB

as a set of independent events, one for each linked pair of
specifications:5

P(L AB |·) =
∏

〈s.A,t .B〉i∈L AB

P(s.A, t .B|·) (5)

Null hypothesis Under the null hypothesis, the two source
attributes are not aligned and we can assume that they are
independent:

P(s.A, t .B|A �≡ B) = P(s.A|A �≡ B)P(t .B|A �≡ B).

We model the value provided by each attribute in a triple
as the outcome of a random variable, where the probability
of each value is estimated with its frequency in the domain
of the corresponding attribute. Therefore,

P(s.A, t .B|A �≡ B) = f (s.A,DA) f (t .B,DB). (6)

5 The independence assumption is indeed a simplification, and the
individual probability estimation of each observation may not be very
precise. However, as with Naive Bayes, given the number of evidence,
decisions based on the final probability score are reliable [30], as our
experiments show.

Equivalence hypothesis Under the equivalence hypothesis,
the two source attributes represent the same real-world prop-
erty, which we model by means of a random variable X .

In order to compute P(s.A, t .B|A ≡ B), we need to dis-
tinguish two cases: the values provided by the two source
attributes are either (i) different or (i i) equal. Intuitively,
we expect that they are equal (we are under the equivalence
hypothesis), unless one of the two values (or both) is wrong.

Let us consider first the case in which s.A and t .B are
different. Either only one of them provides the actual value
of X , or they are both wrong and so none provides the actual
value of X :

P(s.A = v1, t .B = v2, v1 �= v2|A ≡ B) =
P(X = s.A = v1, t .B = v2, v1 �= v2|A ≡ B) +
P(s.A = v1, X = t .B = v2, v1 �= v2|A ≡ B) +
P(s.A = v1, t .B = v2, X /∈ {v1, v2}|A ≡ B)

By applying the conditional probability definition:

P(s.A = v1, t .B = v2, v1 �= v2|A ≡ B) =
P(X = v1|A ≡ B)P(s.A = v1|X = v1, A ≡ B)

P(t .B = v2|X = v1, A ≡ B) +
P(X = v2|A ≡ B)P(s.B = v1|X = v2, A ≡ B)

P(t .A = v2|X = v2, A ≡ B) +
P(s.A = v1|X /∈ {v1, v2}, A ≡ B)

P(t .B = v2|X /∈ {v1, v2}, A ≡ B)

P(X /∈ {v1, v2}|A ≡ B)

(7)

Sincewe are under the hypothesis that the source attributes
A and B are equivalent, the union of their domains represents
an approximation of the domain of X . Then, we can estimate
P(X = v|A ≡ B) considering its frequency in DA ∪ DB :

P(X = v|A ≡ B) = f (v,DA ∪ DB) (8)

To compute P(s.A = v′|X = v, A ≡ B), we need to
distinguish whether t .A is correct (it equals the value of the
random variable X ) or wrong.

An attribute can provide a wrong value because of an error
in the source or because of a linkage error. In our model,
we can consider linkage errors as a special case of source
errors. Therefore, we assume that each attribute has the same
error probability ε for every observation and that, in case of
error, the attribute provides a random value from those of the
domain of the property, which is estimated by DA ∪ DB :

P(s.A = v′|A ≡ B, X = v) ={
1 − ε + ε f (v,DA ∪ DB) [v′ = v]
ε f (v,DA ∪ DB) [v′ �= v] (9)
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Notice the+ε f (v,DA∪DB) term in thefirst row: the random
value provided in case of error may be the correct value by
chance. This assumption models the fact that frequent values
are less likely to be mistaken.

By replacing Equations 8 and 9 in Equation 7:

P(s.A = v1, t .B = v2, v1 �= v2|A ≡ B) =
ε(2 − ε) f (v1,DA ∪ DB) f (v2,DA ∪ DB)

(10)

Notice that, if ε = 0 (perfect sources on these source
attributes), the above probability equals 0, i.e. triples with
the same semantics from two linked specifications cannot
provide different values.

Let us now consider the case in which s.A equals t .B.
Either they are correctly providing the actual value of X (the
sources are not making errors), or both of them are wrong
and they are assuming the same value by chance.

P(s.A = t .B = v|A ≡ B) =
P(s.A = t .B = X = v|A ≡ B) +
P(s.A = t .B = v, X �= v|A ≡ B)

(11)

By the conditional probability definition, the probability
of the first term is given by the probability that the correct
value for the semantic type described by the source attributes
is v multiplied by the probabilities that A and B are correctly
providing v, that is: P(X = v|A ≡ B)P(s.A = v|X =
v, A ≡ B)P(t .B = v|X = v, A ≡ B). Similarly, the second
term results: P(X �= v|A ≡ B)P(s.A = v|X �= v, A ≡
B)P(t .B = v|X �= v, A ≡ B).

By applying Eq. 8 and 9 , we obtain:

P(s.A = t .B = v|A ≡ B) =
f (v,DA ∪ DB)(1 − ε(2 − ε)(1 − f (v,DA ∪ DB))

(12)

If the sources are perfect (ε = 0), the above probability
equals f (v,DA∪DB), i.e. it corresponds to the frequency of
the value (which is estimated by the union of the domains).

Summary The probability P(A ≡ B|LAB) that two source
attributes A and B are equivalent, given the pairs of the
values of source attributes A and B in the linked speci-
fications, is obtained by replacing in Equation 1 the prior
probability, P(A ≡ B), and the posterior probabilities under
the null, P(LAB |A �≡ B), and the equivalence hypothesis,
P(L AB |A ≡ B). The prior probability is computed by Equa-
tion 4. The posterior probabilities are computed by using
Equation 6 (null hypothesis) and Equation 12 (equivalence
hypothesis) as factors in the multiplication of Equation 5.

Example 2 Continuing Example 1, after computing proba-
bility of equivalence under null and equivalence hypothesis
for source attributes S3.Memory, S4.Memory (denoted A

and B, respectively) and S4.Memory, S5.Megapixels
(denoted B andC),weobtainwithEquation1 thefinal scores:
P(A ≡ B|L AB) ≈ 0.86, and P(B ≡ C |LBC ) ≈ 0.48.
Even though the prior probability P(B ≡ C) = 0.64 was
larger than the prior probability P(A ≡ B) = 0.45, the
posterior probabilities are flipped, reflecting the evidence.
This example shows how the Bayesian model exploits link-
age information to distinguish attributes that may have very
similar domains.

4.2 Approximatematch

It turns out that, in comparing values, an approximation is
often needed. Therefore, it is important to be tolerant in com-
parisons, and so we pre-process values as follows:6 (i) tokens
are split at each number–letter, letter–number, lowercase–
uppercase transition; (ii) sequences of non-alphanumeric
characters are replaced with a single whitespace, except for
commas and dots in numeric sequences; (iii) accents and
diacritics are removed; (iv) uppercase letters are converted
to lowercase; (v) values are converted to a set of tokens
(e.g. “12MP frontCamera-11.5MP rearCamera”→ {12, mp,
front, camera, 11.5, rear}).

While computing the similarity score (Sect. 4.1), we
consider two values as equivalent if the Jaccard similarity
between their tokens is greater than a given threshold.7

5 Dictionary creation and tagging

The second step of our approach leverages the Source
Attribute Matching results to resolve issues related to
attribute-name and attribute-value heterogeneity.

For each non-singleton cluster computed by the Source
Attribute Matching step, we derive a dictionary of values
given by the union of the domains of its source attributes.
Such a dictionary is an approximation of the domain of
the semantic type represented by the cluster. Then, in every
attribute value we tag the strings that match a term of a dic-
tionary. Each tagged string gives rise to a virtual attribute.

Observe that the creation of virtual attributes is a step
toward the solution of a value heterogeneity that pre-
vented the match with other source attributes. In our exam-
ple, S5.Batt cannot match to S1.Batterychemistry
because of the strings that decorate the values of S5.Batt
(“included”, “battery”, “rechargeable”). Analogously, S3.
Battery canmatch neither S1.Batterychemistry nor
S1.Battery model because its values are composite (they
contain both the battery chemistry and the battery model).

6 Notice that this normalization is not applied in the tagging step,
described in Section 5.1.
7 We have set the threshold at 0.9.
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Fig. 4 Tagged values and virtual attributes in the sources of the run-
ning example (original sources are in Fig. 1). Background colors denote
clustering of triples. Virtual attributes are in italics and are marked by a

hash symbol (“#”): they were not in the original specifications and have
been added by the first iteration of the algorithm. Strikethrough virtual
attributes (those in S4) will be deleted in subsequent iterations

The virtual attributes created by the tagging step allow to
isolate the values and possibly to trigger new matches.

The above observations motivate our iterative approach:
virtual source attributes can produce larger clusters, which
can in turn enrich dictionaries and create new virtual source
attributes.

Let us now illustrate the details of these steps.

5.1 Tagging and virtual attributes generation

The first phase for the extraction of virtual attributes consists
of creating dictionaries of values for the clusters of source
attributes obtained by the Source Attribute Matching step.
We associate each non-singleton cluster c ∈ {c ∈ C, |c| >

1} with a dictionary, denoted Dc, containing the union of
the domains of its source attributes: Dc = ⋃

A∈c DA. For
the sake of efficiency, we exclude very long values, as they
usually correspond to noisy or mixed attributes. Also, we
filter out values that are present in many clusters, as they
do not characterize the domain. Typically these values have
genericmeanings (such as, “Yes”, “No”, “Not available”) that
can apply to many source attributes, even with completely
different semantics.8

We associate a label lc with each cluster c, and we tag
with lc every string (sequence of tokens) contained in any
attribute value A /∈ c that matches a term in Dc. If a source
attribute S.A contains at least two attribute values that have
been taggedwith the same label lc, thenwe extract the tagged

8 Specifically, we drop values with more than 25 characters and values
that are present in more than 10% of the clusters.

strings and use them as values for a new virtual attribute,
whose name is denoted #A#c.

It is worth observing that a given value could be tagged
with many labels (because terms from different dictionar-
ies match with different portions of the value). Whenever a
tagged string is contained in another tagged string, we con-
sider as more reliable the match with the larger term, and
hence, we drop the label of the smaller tagged string.

Example 3 In our running example of Figure 1 after the first
matching step, we have the following non-singleton clusters:
c1 = {S1.Batterychemistry, S2.Btype}
c2 = {S1.Batterymodel, S4.Battery}
c3 = {S1.CPU, S2.IPU, S1.Processor}
c4 = {S3.Memory, S4.Memory}
c5 = {S1.VideoResolution, S2.VideoFormat}
whose dictionaries result as follows:

Dc1 = {Li-Ion,Ni-MH,LiPo}
Dc2 = {NP-BN1,FNB83}
Dc3 = {BionzX,Xpeed3,Xpeed2,Xpeed,Digic 8}
Dc4 = {8, 16, 32}
Dc5 = {1024x768, 1920x2014, 800x600}

Figure 4 shows the sources enriched by the values tagged
with the dictionaries’ terms and the virtual attributes cre-
ated accordingly. Several values of the source attribute
S3.Battery are tagged with terms in Dc1 and Dc2 , leading
to the creation of virtual source attributes #Battery#c1
and #Battery#c2, and hence identifying the homonym
of the source attribute S3.Battery. Tagging values of
S5.Batt, which suffers from representation heterogeneity,
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with terms in Dc1 allow the creation of the virtual source
attribute #Batt#c1, whose values are cleansed from unin-
formative pieces of text. No virtual source attribute is created
with elements of cluster c4 tagged in S5.Megapixels since
it would be identical to the original source attribute and
thus useless. A virtual source attribute is extracted from
S2.Megapixels using terms in Dc4 . This virtual source
attribute will not match any other attribute in the subsequent
source attribute matching step and thus will remain isolated.
Notice that the source attribute S4.BatteryType was not
part of cluster c1 as it does not have enough linkage formatch-
ing. However, its values in s44 and s45 were tagged with
terms from Dc1 , giving rise to the virtual source attribute
#BatteryType#c1.

5.2 Iteratingmatching and tagging

Matching and tagging are launched iteratively, as one pro-
vides new evidence that can be exploited by the other.

Algorithm2presents the pseudo-code of the overall proce-
dure. Let us comment on the various steps. Source attribute
clustering C is initialized with a singleton cluster for each
source attribute. The first execution of the matching step
(line 2) produces a new version of the clustering.

Then, the iteration starts (line 3). The current clustering
along with the full dataset is provided as input to the dictio-
nary creation step (line 4), which returns a dictionary for each
cluster. The dictionaries are exploited by the tagging step that
produces a new version of the dataset, S′, introducing virtual
source attributes, as described in Sect. 5.1.

Each iteration takes as input the clusters created in the
previous iteration, excluding virtual source attributes (line 5),
which are re-generated at each new iteration. These steps
are repeated until the set of clusters C does not change any
longer (line 8). 9 The algorithm converges, as the matching
step never splits clusters, but it can only potentially merge
them.

It is important to observe that the tagging step (line 6)
is always done on the original version of dataset, S, which
does not include any virtual source attribute, but using the
latest version of the dictionaries, which are created after each
matching step. In this way, at every iteration the dictionaries
accumulate knowledge about the domain of each cluster; the
tagging step takes advantage of the enhanced dictionaries to
tag more values, giving rise to more accurate virtual source
attributes, which trigger new source attribute matches.

9 Notice that we compare clustering only of non-virtual source
attributes. Indeed, if an iteration adds only virtual source attributes, then
the subsequent iteration would have no effect: virtual source attributes
do not contribute to dictionaries, so dictionary and clustering would not
change.

Algorithm 2: Matching and tagging iteration
Input : S: set of sources
Output: S′: S augmented with virtual source attributes

C: set of source attribute clusters
over atts(S′))

1 C ← {{A}, A ∈ atts(S)}; // singleton clusters
2 C ← sourceAttributeMatching(S,C);
3 do
4 D ← {Dc, c ∈ C, |c| > 1};
5 Cprev ← excludeV irtual(C);
6 S′ ← tag(D,S) ; // add virtual attr.s to S
7 C ← sourceAttributeMatching(S′,Cprev);
8 while excludeV irtual(C) �= Cprev ;
9 return C;

Example 4 To illustrate the interaction between tagging and
matching, let us continue Example 3, where we showed
the results of the first tagging step, which created the
virtual source attributes shown in Figure 1. In the subse-
quent matching step source attributes S3.#Battery#c1,
S4.BatteryType, S4.#BatteryType#c1 and S5.
#Batt#c1 are added to cluster c1, while S3.#Battery#c2
is added to cluster c2.Notice the source attribute S4.Battery
Type, which remained isolated in the previous matching
step because of lack of linkage (s35 and s45 are in linkage,
but the values of s35.Battery and s45.BatteryType do
not match, because of the mixed values in s35.Battery).
S4.BatteryType has now enough linkage and match-
ing with the virtual source attribute S3.#Battery#c1,
and therefore, it is included in the same cluster. Observe
that the presence of S4.BatteryType contributes improv-
ing the dictionary associated with c1 with an additional
value, “Ni-Cd”. This has a positive impact in the succes-
sive tagging step (which occurs in the next iteration) as
the dictionary enhanced with such a value allows the cre-
ation of two new virtual attributes (in grey with white lines),
〈s54, #Batt#c1,Ni-Cd〉 and 〈s56, #Batt#c1,Ni-Cd〉,
which enrich the virtual source attribute s56.#Batt#c1.
With the new dictionary, source attribute S4.#Battery#c1
(strikethrough) is not created anymore, as it would be iden-
tical to S4.Battery.

5.3 Name Grouping

Before building the final clusters of triples, we perform the
Name Grouping Step, which aims at merging the clusters
obtained by the iterations based on features related to global
homogeneity that occur among the sources.

Observe that the lack of linkage, or strong forms of repre-
sentational heterogeneity could prevent the creation of some
clusters. However, at this stage, since the iterative approach
solved several heterogeneity issues, we can exploit classical
schema matching strategies, based on attribute names and
domain similarity, to further group the generated clusters.
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Cluster pairs that have at least a pair of source attributes
with the same name are selected as candidates for merg-
ing. We prevent to select candidates from isolated source
attributes from which at least a virtual attribute has been
generated and clustered in the subsequent source attribute
matching step. Indeed, this is a signal of a possible presence
of attribute name or attribute value heterogeneity, and thus,
its semantics may be ambiguous.

A candidate pair of clusters {ca, cb} are merged if their
values overlap. In order to evaluate the overlap of values, we
consider the maximum Jaccard Containment [22] between
the sets of tokens in the values of the source attributes in
the two clusters. The use of tokens, instead of values, allows
merging of attributes with noisy values. Let T denote the
set of the tokens in the values of the source attributes of a
cluster c. A pair of candidate clusters {ca, cb} is merged if

|Ta∩Tb|
min(|Ta |,|Tb|) is greater than a threshold.10

Example 5 The source attributes S2.Megapixels and S5.
Megapixels, which are isolated, are selected for merging.
Their token sets are {8, 16, MPX} and {8, 16}, respectively.
Tokens from the second set are all contained in the first one,
so their similarity is 1, and the two attributes are merged to
form a single cluster. Note that S2.Megapixels produced
only a virtual attribute that remained isolated in the subse-
quent source attribute matching step. The source attributes
S3.Battery and S4.Battery are not selected for merging
because S3.Battery generated two virtual attributes that
were clustered in subsequent source attribute matching step.

5.4 Triple clustering

The final step of our approach consists in creating clusters of
triples, which represent the semantic types identified by our
approach.

For each non-singleton cluster c ∈ C, we create a new
triple cluster, which we denote ST (semantic type). As the
goal of RaF- STD is to detect matching between attribute
instances and not to extract the specific value, each cluster
of triples contains all the triples of the non-virtual source
attributes in c and all the original triples of its virtual source
attributes.

Example 6 The algorithm iterates over each non-singleton
cluster in C to build a corresponding triple cluster. Con-
sider cluster c1: source attributes S1.BatteryChemistry,
S2.Btype and S4.BatteryType are not virtual, so we
simply add their triples to the result. Source attributes
S3.#Battery#c1 and S5.#Batt#c1 are virtual, so for
each of their triples we add to the cluster their correspond-
ing original triple. Indeed, we will not add s32.Battery,

10 We have empirically set the value of such a threshold 0.8.

containing only the model of the battery. The final cluster
of triples would be: ST1 = {s11.BatteryChemistry,
s12.BatteryChemistry, s13.BatteryChemistry,
s21.BType, s22.BType, s26.BType, s31.Battery, s33.
Battery, s34.Battery, s35.Battery, s44.Battery
Type, s45.BatteryType, s46.BatteryType, s51.Batt,
s52.Batt, s53.Batt, s54.Batt, s55.Batt, s56.Batt}. Fig-
ure 2 shows a portion of the above results.

5.5 Complexity analysis

Let N be the total number of source attributes, and K the
average number of triples per source attribute (N · K = total
number of triples). In the worst case, Algorithm 2 performs
N iterations (all the source attributes are added to a cluster,
one source attribute per iteration). 11 Each iteration is com-
posed of: (i) the dictionary creation step, whose cost is linear
in the number of triples that belong to a non-isolated clus-
ter: in the worst case O(N · K ); (i i) the tagging step, which
inspects sub-strings12 of each attribute value, tomatch dictio-
nary entries. Let T be the average number of tokens of each
attribute value: the cost of the tagging step is O(N · K · T );
(i i i) the Source Attribute Matching step.

This last step (Algorithm 1) performs in turn three opera-
tions:

– First, it detects pairs of source attributes with a common
value for entities in linkage. This is done efficiently by
means of an inverted index built on each group of specifi-
cations in linkage. It associates each value with all source
attributes that provide such a value in this group. Then,
its cost is O(N · K ).

– Then, for each selected pair, it computes the matching
score (sim- score). This operation requires to compute
prior and posterior probabilities, which need to compare,
respectively, source attribute domains andvalues for pairs
of linked triples. In both cases, the cost is linear in the
minimum size of domains of the two source attributes.
In the worst case, all source attributes share at least one
common value for all the specifications in linkage (i.e. all
possible pairs of source attributes are selected), and all
source attributes have the same size (K). Thus, the cost
of this step is O(N 2K ).

– Finally, source attribute pairs with scores higher than
0.5 are sorted by decreasing weight, with a cost of
O(N 2log(N 2)).13 In practice, the number of selected

11 In our experiments, we observe at most 5 iterations.
12 Up to 4 tokens.
13 The complexity remains the same in all iterating steps, as we limit
the number of virtual source attributes per original source attribute to a
constant, 50 (in our experiment we observe that at most the number of
source attributes is doubled).
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Table 2 Details on the
evaluation datasets

di2kg WDC

Camera Monitor Clothing Jewelry Auto

Sources 24 26 185 379 534

Specifications 29,787 16,662 14,618 27,039 47,112

Triples 528,186 443,564 136,609 235,192 426,563

Source Attributes 6,560 3,711 1,970 5,616 8,343

Entities in linkage 100 196 759 3,362 6,892

Specifications in linkage 2,826 2,070 6,798 11,937 22,117

Linked specification pairs 56,503 9,087 74,580 27,442 23,947

Ground-truth clusters 56 83 93 168 41

Source attributes in the ground truth 687 1,026 851 1,536 1,597

pairs is much lower, and the number of edges with a
score higher than 0.5 is even less.14

The final cost of the algorithm in the worst case is then
N ∗ [O(N · K ) + O(N · K · T ) + O(N · K ) + O(N 2K ) +
O(N 2log(N ))] = O(N 2·K ·T+N 3·K+N 3·log(N )).Name
grouping (O(N 2 · K · T )) and triple clustering (O(N · K ))
do not change final cost.

6 Experiments

In this section, we report the experimental evaluation of
RaF- STD for semantic type discovery.15

In Sect. 6.1, we analyse the impact of each step of
our approach, its robustness and the role of linkage. Then,
in Sect. 6.2, we compare RaF- STD to several alternative
approaches. For these experiments, we use datasets from the
di2kg benchmark. In Sect. 6.3, we extend our comparison to
alternative approaches running experiments on three datasets
from the WDC Product Data Corpus (WDC) [35]. Finally,
in Sect. 6.4 we presents results about the scalability of the
approach.

Table 2 summarizes the characteristics of the di2kg and
WDC datasets that are used in our evaluation. For both
the datasets, the ground truth consists of a set of clusters,
each containing triples related to a given semantic type (e.g,
battery chemistry). Because of the presence of composite
attributes, clusters may overlap. The ground-truth datasets
are not guaranteed to be complete: each cluster contains
only correct triples, but not necessarily all of them.16 More

14 For example, in the di2kg camera dataset there are 985 pairs in the
first iteration (415 with score > 0.5) and 44,560 in the second iteration
(2,950 with score > 0.5).
15 Source code and datasets are available at: https://github.com/
merialdo/research.raf.
16 The datasets are too large, and manually producing the ground truth
is unfeasible.

details about the datasets and their associated ground truth
are described in the following sections.

Metrics In order to evaluate our approach, we consider pre-
cision, recall and F-measure (their harmonic mean) of our
clusters of triples with respect to the ground-truth clusters.
It is important to remind that clusters may overlap, as some
triples may contain composite values that refer to different
semantic types. For example, in Fig. 2, clusters ST1 and ST2
share one triple (〈s33,Battery, LP-E6N Li-Ion〉) as its value
refers to both the battery chemistry (ST1) and the battery type
(ST2). Therefore, we evaluate results over pairs of triples that
match, i.e. pairs of triples that share at least one cluster [3].
Precision is computed as usual as the fraction of correct pairs
over all the pairs in match the algorithm provided; recall as
the fraction of actual pairs in match that the algorithm found.
Because of the incompleteness of the ground truth, evalua-
tion is limited to all the pairs that occur in the ground-truth
clusters: if the algorithm provides two triples in the same
cluster, and one or both are not in the ground truth, this pair
is ignored and not considered as a true or false positive. How-
ever, if both triples are in the ground truth, but they do not
belong to the same cluster (they do not form a pair), the case
is considered as a false positive.

6.1 Evaluation ofRaF- STD

Our primary benchmark to evaluate RaF- STD is di2kg,
which provides two datasets, Camera (24 sources) and Mon-
itor (26 sources).

The two di2kg datasets are associated with a manually
curated ground truth for semantic type discovery, and with
a golden linkage sample. 17 The semantic type discovery
ground truth consists of 56 (Camera) and 83 (Monitor) clus-
ters, originated from 687 (Camera) and 1,026 (Monitor)
source attributes. The golden linkage sample corresponds

17 In the di2kg website, they are called instance-level attribute match-
ing and entity resolution, respectively.

123

https://github.com/merialdo/research.raf
https://github.com/merialdo/research.raf


318 F. Piai et al.

Table 3 Results on algorithm steps

Match Match + Tag Full algorithm

P R F1 P R F1 P R F1

Camera 0.99 0.5 0.66 0.98 0.65 0.78 0.97 0.76 0.85

Monitor 0.99 0.32 0.48 0.94 0.56 0.70 0.93 0.65 0.76

to 14% of the total linkage information of the dataset. It
has been created by running several entity matching systems
on the whole dataset and merging their results. A sample of
the obtained groups of entities has been manually curated, in
order to create a complete and clean golden set. The sample
for the Camera dataset is composed of 100 groups of enti-
ties, containing a total of 2,826 specifications, with 56,503
linked specification pairs. For Monitor, there are 196 entity
groups, involving 2,070 specifications and 9,087 specifica-
tion pairs. The sampling has been conducted paying attention
to select clusters that were representative of the distribution
of the groups size in the dataset (considering the distribution
of the groups produced by the first phase). In this way, the
sample includes groups that represent both head (popular)
and tail (rare) entities, in the same proportion as expected in
the whole dataset.

Evaluation of the Steps Table 3 reports results on the contri-
bution of each step of the RaF- STD approach. The Source
Attribute Matching step clusters together source attributes
that share the same values for a sample of linked specifica-
tions. If we launch this step once (Match, in Table 3), without
doing any further processing, we get few false positives but
a low recall. The approach is strongly conservative and pro-
duces very homogeneous clusters, achieving high precision
but low recall.

In combination with the tagging step (Match+Tag, in
Table 3), the overall approach improves the recall, thanks
to the creation of virtual attributes that increment the match
opportunities, with a small loss in precision, which is due
to the possibility that some wrong virtual attributes produce
accidental matches.

With the final step (Full algorithm, in Table 3), which
merges clusters based on attribute names and domain simi-
larity, the system significantly improves the recall, at the cost
of a small loss in precision.

It is worth observing that the task addressed by the
SourceAttributeMatching step resembles that of a traditional
schema matching solution, if we view the source attributes
like the columns of relational tables. Compared to traditional
schema matching approaches, our Source Attribute Match-
ing algorithm has been designed to deal with a high degree
of heterogeneity exploiting the availability of linkage infor-
mation.

Table 4 Results of RaF- STD
replacing the Source Attribute
Matching algorithm with
Coma++

P R F1

Camera 0.58 0.70 0.63

Monitor 0.70 0.66 0.68

Fig. 5 Varying the match threshold

In order to evaluate the effectiveness of our approach,
we have replaced in the RaF- STD system the module that
implements our Source Attribute Matching algorithm with
a traditional schema matching system. Namely, we used the
instance-based version of Coma++, which according to the
Valentine analysis [27] is the most performing approach.18

Table 4 reports the results of the experiment. The benefits
of using the Source Attribute Matching instead of tradi-
tional schema matching algorithm are apparent, especially
for the precision: by exploiting the linkage information,
our algorithm can effectively contain false positive without
penalizing the recall.

Robustness The source attribute matching algorithm con-
siders that two source attributes match if the probability
of match is above a threshold of 0.5, whose theoretical
interpretation is that the conditional probability of equiva-
lence P(A ≡ B|L AB) is larger than that of non-equivalence
P(A �≡ B|LAB). It also assumes that the probability that a
source provides a wrong value for a given triple (ε) is 0.1.
We investigated the robustness of the approach varying these
parameters.

Figure 5 shows the results of RaF- STD with different
values of the matching threshold, i.e. the minimum score
abovewhich source attribute pairs are considered tomatch by
the Bayesian analysis. The higher the threshold is, the more
conservative the algorithm becomes: precision increases and
recall decreases. The differences are, however, not so sig-
nificant: in most cases the Bayesian analysis provides strong
evidence of match or mismatch, making the algorithm robust
with respect to this threshold. Also, precision never drops

18 Namely, we used the COMA 3.0 Community Edition available on
the Valentine repository (https://github.com/delftdata/valentine/tree/
master/valentine/algorithms/coma).
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Fig. 6 Varying the error rate ε

even with a very low threshold: some low-weighted edges,
even if above threshold, may be ignored if they break the
assumption that no triples in the same specification can be in
the same cluster.

Figure 6 shows the results of RaF- STD varying the error
rate parameter ε between 0 and 0.3. In general, a high
error rate favours pairs of source attributes with some mis-
match (different values for specifications in linkage), while
it penalizes pairs with no mismatch. However, the results
of the overall approach generally remain quite stable, prov-
ing that in most cases the choice of a specific value for ε

does not affect the results of the algorithm. Note that recall
drops with ε = 0: source attribute pairs having even just
a single different value for a given product are considered
as non-match, and precision does not necessarily improve:
the algorithm incorrectly matches source attribute pairs with
few distinct (and frequent) common values but on many
instances.

TheRole of LinkageTheBayesian analysis also exploits the
linkage sample to match attributes, by comparing the values
of attributes in linked instances. To evaluate the robustness of
the algorithm with respect to the size of the linkage sample,
we artificially removed a random part of the linkage and
evaluated the performance of the approach.

Figure 7 reports the results of the experiment. We observe
that without linkage, the recall worsen, thus confirming the
ability of our approach to leverage the linkage information.
It is interesting to observe that the recall drop is more pro-
nounced on the Monitor dataset. Indeed, this vertical has
many attributes, such as the number of dvi port or the num-
ber of USB port, with small and overlapping domains that
can be easily confused without relying on linkage informa-
tion. With a small amount (10%) of the available linkage
(which is a sample whose size is estimated around 14% of
the real linkage present in the datasets) the Bayesian match-
ing step can rely on sufficient evidence to produce good
recall, which continues to increase as the amount of linkage
grows.

Fig. 7 Precision, recall and F-measure varying the amount of the
linkage used as a percentage of total available linkage. Here, 100%
represents the whole original sample, which is in turn about 14% of the
estimated total linkage

Fig. 8 Comparison with baselines and alternative approaches

6.2 Comparison with alternative approaches

We compared the RaF- STD approach to a Vanilla baseline
and to three alternative approaches from the literature. The
Vanilla baseline considers the names of the attributes and
the similarity of their domains. Namely, it creates clusters of
triples based on the similarity of the domain of the source
attributes, using the Jaccard containment index as similarity
measure; then, it merges the clusters that overlap with at least
one attribute. The alternative approaches from the literature,
as we described in Sect. 2, represent different solutions that
can be applied to address the semantic type discovery prob-
lem: D4, T2K, and PSE.

Figure 8 shows the results of this comparison. All the
approaches achieve high precision, demonstrating robustness
over false positives. However, RaF- STD significantly out-
performs all the competitors in recall, thus obtaining a better
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Fig. 9 Running times (seconds, in log scale)

F-measure on both the camera and the monitor datasets. 19

Figure 9 reports the running times of the different approaches.
In Sect. 6.4, we illustrate in more details how RaF- STD

scales with the number of sources.
Let us now comment in more detail the results obtained

by the three competitive approaches.

Comparison to D4 D4 [34] is an unsupervised approach,
making it a good candidate for comparison with RaF- STD.
The algorithm discovers semantic types of columns or col-
umn subsets in a dataset.20 However, its main goal is to
discover semantic type domains (i.e. all possible values), and
it is optimized for this goal. For example, it tends to exclude
columns or column subsets if they do not provide newdistinct
values for the semantic type.

D4 provides an evaluation (precision, recall, F-Measure)
specific to each semantic type. In particular, given a seman-
tic type in the ground truth, for each cluster in their output
that overlaps with at least one value, they compute precision,
recall and F-Measure, and then keep the cluster with the best
F-Measure. We compared with D4 using this metric too, but
considering triples instead of semantic types values.

Figure 10 shows how many semantic types (vertical
axis) have a given difference in F-measure between RaF-

STD and D4 (horizontal axis). In many cases RaF- STD

dominates, especially for numerical attributes (such as,
focal length max) and descriptive types (such as,
auto focus modeorfile system).D4works slightly
better only for a few categorical and clean attributes, such as
color and external memory type.

Comparison to PSE PSE [33] is a closed-world approach:
target attributes (which can relate to semantic types) are lim-
ited to attributes present in a reference catalog of products

19 We also tested in isolation the two techniques that compose the
Vanilla method: overlap of attribute names and Jaccard index across
the domains. The F-measure obtained by the former on camera and
monitor was 0.69 and 0.64, respectively. The Jaccard index produced
0.54 and 0.48, respectively. For the sake of readability, we do not report
detailed results in the plots as they are not very significant.
20 We configured it to take into account numerical values, which it does
not by default.

Fig. 10 Number of semantic types with a given F-measure differ-
ence between RaF- STD and D4, using an adaptation of D4 evaluation
approach

provided as input. However, it does not need training data,
and it can be easily adapted to discover semantic types.

To this end, we elected as catalog the source with most
specifications in linkage and then aligned the other sources
according to the PSE approach. In order to make it an
open-world, data-driven approach, we do not delete source
attributes that do not match with any attribute of the catalog
(as in the original approach), but we add them to the cata-
log, so they are available for matching with further source
attributes.

The main takeaway of this comparison is that the adap-
tation of this work to the semantic type discovery problem
is not effective. Notice that PSE is unsupervised: its classi-
fier is trained selecting attribute pairs with the same name as
positive examples, relying on the assumption that attributes
with the same name are semantically equivalent. In a hetero-
geneous setting, this choice compromises the accuracy of the
predictions.

Comparison to T2K Also T2K [39] follows a closed-world
approach, as it matches web table columns to target types
present in a knowledge base (DBPedia). It does not need
training data, so we adapted it similarly to what we did for
PSE: we chose the source with most linkage as knowledge
base,we processed the first source, thenwe created a newver-
sion of knowledge basemerging these two sources, according
to the T2K results for schema matching and record linkage.
Then, in a similar way, we processed all other sources. Simi-
larly to PSE, we have a good precision but recall is lower than
with RaF- STD approach. Indeed, a closed-world approach
that assumes clean and homogeneous knowledge base is not
perfectly suited for our dataset.

6.3 Experiments on theWDC dataset

The WDC Product Data Corpus (WDC) is a publicly avail-
able dataset produced by extracting product offers from
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CommonCrawl.org for 25 product categories. Each prod-
uct offer provides the page title, a textual description and,
in about 17% of cases, product specifications extracted from
the page using HTML standard annotations like MicroData
[35].

We have chosen three product categories, all with a rich
set of specifications and significant linkage, and all dealing
with completely different products from those in the di2kg
benchmark: Clothing, Jewelry and Automotive. It is worth
noting that these are broad categories. For example, Jewelry
includes products such aswatches, necklaces, rings andmany
other types of personal ornaments; Clothing includes differ-
ent types of dresses as well as coats, trousers and accessories.
In WDC, many sources are very small, and many speci-
fications contain only a few triples and are noisy because
of extraction errors. To clean the dataset, we filtered out
attributes that were not present in at least three specifications,
specificationswith less than three attributes, and sourceswith
less than three specifications.

WDC does not provide ground truth for semantic type dis-
covery, so we built it by ourselves. The linkage information
furnished by the benchmark is partial and potentially noisy:
it has been obtained grouping offers by product code (such
as MPN or UPC) when it was present in the original pages.
Unlike the di2kg datasets, we do not have any information
about the amount of available linkage as a proportion to the
ground-truth linkage. In our experiments, we have used all
the available linkage.

Figure 11 reports the results produced by RaF- STD and
four alternative solutions on the WDC datasets. Let us com-
ment each category.

Clothing The sources of this category often have attributes
in different languages. RaF- STD correctly manages these
attributes, comparing values for specifications in linkage.
T2K also exploits linkage, but it is affected by attribute spar-
sity and does not exploit global redundancy of sources. The
other approaches obtain a significantly lower recall. Indeed,
they cannot rely on attribute names (because of differences
in languages), nor on domains, because of the heterogeneity
of the products and the sparsity of attributes.

Jewelry In Jewelry sources, many attributes have similar
domains but different semantics; sometimes they are even
related to different kinds of products (e.g. jewel material,
bracelet material and, for watches, case material).RaF- STD
correctly separates these attributes exploiting the linkage
information, while the Vanilla baseline and D4, whose
approaches are based on the similarity of the domains, tend to
cluster these attributes together, thus obtaining lower preci-
sion. T2Kexploits linkage information, keeping the precision
very high, but the recall that it achieves is quite low. Because
of the diversity of attribute names across sources (also due to
the presence of different languages), the PSE approach does

Fig. 11 Results on the WDC datasets

not have enough evidence for training the classifier. RaF-
STD also correctly extracts brand name from attributes like
product and packaging.

Automotive On the Automotive dataset, RaF- STD per-
forms worse than the Vanilla baseline. Inspecting the results,
we observed that the input linkage sample is limited and,
most important, it does not really reflect the correspondences
between the entities: it refers to the carmodel,while the offers
describe individual (used) cars. Therefore many attributes
(such as mileage and stock number) have completely differ-
ent values, even between linked specifications. In Sect. 7, we
discuss future work to overcome the issues that arise with
ambiguous linkage. These linkage issues also affect T2K
results, while the presence of a lot of numerical data with
heterogeneous formats causes generally bad results for D4,
which was not designed for numerical data.

Also for the WDC datasets we have investigated how the
amount of linkage information impacts on the performances
of the system. To this end, we have conducted an experiment
running RaF- STD with 5%, 10% and 20% of the available
linkage. The results are plotted in Fig. 12: similarly to the
di2kg datasets, the amount of link information provided as
input to the system primarily affects recall, while precision
is fairly stable. Overall, even with small amounts of linkage
information the performances of the system are good.
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Fig. 12 Precision, recall and F-measure varying the amount of the linkage used as a percentage of total available linkage in the WDC dataset

Fig. 13 Running time varying the number of sources on the WDC dataset

6.4 Scalability

In order to evaluate the scalability of the approach, we have
run RaF- STD on a varying number of randomly picked
sources. To avoid biases due to the random choice, fixed the
number of sources, we have repeated the experiment 5 times,
each one with a different set of randomly picked sources,
and we have computed average F-measure and running time,
removing best and worst cases.

Figure 13 presents the running times of RaF- STD as
a function of the number of sources, for all the datasets
of the di2kg and WDC used in our evaluation. The plots
show that the time is generally quadratic to the number of
sources. Indeed, we proved this conjecture by computing the
coefficient of determination (R2) of the quadratic regression
computed on each category, and we got very high results:
more than 0.999 for each category, except for monitor which
is 0.988. We can also infer that the system is quadratic to the
number of source attributes, as the 5-times repetition avoids
biases when we could choose very big or very small sources
(in terms of number of source attribute). In Sect. 5.5, the
complexity analysis concludes that our approach is cubic to
the number of source attributes, assuming, in the worst case,
the number of iterations being proportional to the number of

source attributes. In practice, we observed that the number of
iterations can be considered computationally constant: aug-
menting the number of sources, and consequently the number
of source attributes, it quickly converges to a small number,21

making the approach quadratic.
Figure 14 reports the quality of the results. We observe

that RaF- STD exploits evidence that is brought by the
data redundancy. In particular, observe that the F-measure
improves with an increasing number of sources because of a
better recall, while the impact on precision, due to noise and
heterogeneity, is very low.

7 Conclusions and future work

We addressed the issue of discovering semantic types in
multiple heterogeneous sources. We proposed a fine-grained
approach, RaF- STD, in order to overcome the limitations
of traditional approaches with heterogeneous and sparse
sources.

21 Profiling the execution of the system,weobserved atmost 3 iterations
for all the datasets.
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Fig. 14 Precision, recall, F-measure varying the number of sources on the WDC datasets

We performed extensive experiments using publicly avail-
able datasets, showing robustness and flexibility using differ-
ent parameters and under different conditions. We analysed
the contribution of each step of our approach to the final
results and compared our results to other approaches, obtain-
ing superior performance.

RaF- STD relies on record linkage information and
expects that attributes for the sameentity are consistent across
sources, apart from some errors which are tolerated by the
approach. However, the semantics of the linkage may hap-
pen to be in contrast with such an assumption. In the WDC
Automotive category, we observed that the semantics of the
input linkage information was related to the model of a car,
while attributes such as mileage and stock number refer to
the physical entity. Similar issues might occur considering
the temporal evolution of an entity (e.g. consider the values
of attributes for a company in 2015, and the values of the same
attributes for the same company in 2020). A more detailed
study on how to manage semantic type discovery with dif-
ferent record linkage semantics is an intriguing direction for
future work.

The clusters of triples produced by RaF- STD are anony-
mous. Providing a name to each cluster may be a necessary
step for downstream data processing tasks. Associating a
meaningful name with each cluster can be done manually,
but with a large number of clusters it might be quite expen-
sive. To reduce the human effort of this step, an automatic
procedure could suggest candidate names by considering the
distribution of the attribute names of each cluster of triples.
Investigating this opportunity is left to future work.
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