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Abstract

An important characteristic of sketches, compared with text, rests with their ability

to intrinsically capture object appearance and structure. Nonetheless, akin to traditional

text-based image retrieval, conventional sketch-based image retrieval (SBIR) principally

focuses on retrieving images of the same category, neglecting the fine-grained character-

istics of sketches. In this paper, we advocate the expressiveness of sketches and examine

their efficacy under a novel fine-grained SBIR framework. In particular, we study how

sketches enable fine-grained retrieval within object categories. Key to this problem is

introducing a mid-level sketch representation that not only captures object pose, but also

possesses the ability to traverse sketch and image domains. Specifically, we learn de-

formable part-based model (DPM) as a mid-level representation to discover and encode

the various poses in sketch and image domains independently, after which graph match-

ing is performed on DPMs to establish pose correspondences across the two domains.

We further propose an SBIR dataset that covers the unique aspects of fine-grained SBIR.

Through in-depth experiments, we demonstrate the superior performance of our SBIR

framework, and showcase its unique ability in fine-grained retrieval.

1 Introduction

Sketches are incredibly intuitive to humans and descriptive in nature. They provide a con-

venient and intuitive way to specify object appearance and structure. As a query modal-

ity, they offer a degree of precision and flexibility that is missing in traditional text-based

image retrieval – a sketch speaks for a ‘hundred’ words. Closely correlated with the ex-

plosion in the availability of touch-screen devices, sketch-based image retrieval (SBIR)

[2, 3, 11, 12, 13, 17, 18, 19, 24] has become an increasingly prominent research topic in

recent years. However, to date the main focus has been on retrieving images of the same

category, overlooking an important property of sketches — they can capture fine-grained

variations of objects such as pose (standing vs. sitting) and iconic pattern (textures on a

cow’s body). By further leveraging this descriptive power of sketches, in this paper, for
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Figure 1: Comparison of traditional text-based image retrieval, conventional SBIR, and the

proposed fine-grained SBIR framework.

the first time we introduce fine-grained SBIR. That is to study how sketches can be used to

differentiate fine-grained variations of objects for retrieval, specifically pose variations. We

examine how fine-grained knowledge extracted from sketches can be used to rank images

from the same object category according to pose similarity. Figure 1 contrasts text-based

image retrieval and conventional SBIR with our proposed fine-grained SBIR.

Key challenges for conventional SBIR include but are not limited to: (i) sketches and im-

ages are from inherently heterogeneous domains, e.g., sparse black and white line drawings

versus dense colour pixels; (ii) sketches are often highly abstract in representation compared

with images, e.g., image of a person can be drawn as a stick-man; (iii) cluttered backgrounds

commonly captured in natural images that are not exhibited in sketches; and more impor-

tantly, moving towards fine-grained SBIR, (iv) a representation is needed that captures se-

mantic fine-grained details such as object pose across the two domains.

Most SBIR solutions [2, 3, 11, 12, 13, 18, 19, 24] mainly focus on the first challenge.

They usually proceed by first converting images into edge maps that are then directly com-

pared against sketches, e.g., via a bag-of-words [21] representation. Few have addressed the

abstractness challenge by introducing higher-level representations. Moreover, most existing

work simplifies the problem by working with images having plain background with domi-

nant objects in the center, thus reducing its breadth of applicability to realistic images. This

paper aims to address all four challenges, placing particular focus on the last two. We argue

that (i) object detection is necessary to address the cluttered background, (ii) a mid-level

representation that encodes object parts and their geometric relationships is mandatory for

pose alignment.

We propose a fine-grained SBIR framework that addresses the identified challenges by

first learning a mid-level semi-semantic representation independently in each domain, and

then learning a flexible cross-domain correspondence at this level. In contrast to previous

approaches that project both domains into a common low-level representation, the mid-level

correspondence approach allows us to exploit geometric/topological and appearance simi-

larity but without requiring implausibly detailed pixel-level correspondence. This allows the

user to naturally specify a fine-grained variation of interest (e.g., viewpoint, body configura-

tion) in sketch domain for retrieval in image domain.
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To realize our framework, we use deformable part-based model (DPM) both as an object

detector and mid-level representation with which to bridge the two domains. Pose alignment

is performed via graph matching, taking account both geometry and appearance information

encoded in the DPMs. Specifically, we train sketch-image retrieval by first training per-

category DPMs independently for each domain, then aligning DPM-mixture components

across the domains to obtain a component correspondence via graph matching. At retrieval

time, we use the trained DPMs to detect both the probe sketch and all gallery images, and use

the learned component alignment mapping to rank the images for the first round. Then we

perform finer pose alignment on the DPM detections via graph matching to rank the image

for the second round. Intuitively, the component-level matching ensures retrieved objects

are in broadly the same pose/appearance as the sketch. The detection-level matching enables

matching fine-grained details such as body configuration (e.g., limb position) attributes (e.g.,

fat), and individual part-features help match detailed aspects of appearance (e.g., visible

claws).

We demonstrate our proposed system’s performance quantitatively and qualitatively against

previous bag-of-words [12, 19] and spatial-pyramid [15] based methods. To perform the

evaluation, we create the first SBIR dataset for fine-grained retrieval by sampling sketches

from the 20,000 sketch dataset [20] and images from corresponding categories in the PAS-

CAL VOC dataset [8]. Ground-truth for sketch-image pairwise similarities within each cat-

egory is carefully labeled according to four criteria for fine-grained similarity on a portion

of the proposed dataset used for testing. This ground-truth then provides overall criterion for

performance evaluation.

2 Related work

Sketch-based Image Retrieval The power of sketch to differentiate fine-grained varia-

tions more precisely than text could potentially lead to beneficial applications, yet is not

stressed in previous studies. Most prior works [2, 3, 11, 12, 18, 19, 24] assume images with

dominant objects in the center with plain background, and expect or require that the sketch

object and image object have rigid location correspondence. However, this is normally not

the case for realistic images and sketches. The bag-of-words (BOW) representation com-

bined with some form of edge detection (e.g. Canny edge detector), are often employed to

bridge the feature gap. Although the BOW model is effective and scalable, it is weak at dis-

tinguishing fine-grained pose variations as it does not represent any semantic information.

[13] started to work with more practical images by proposing a bag-of-regions scheme that is

essentially a hierarchal structure of detected objects. Yet inside each region the same BOW

model is employed again. [17] proposed to use synthesized multi-view (view is a coarse

pose) sketches to boost SBIR performance. Nevertheless, they do not emphasize on explicit

sketch-image pose correspondence in the retrieval step therefore neglecting sketches’ pose

discrimination power. Besides, they still utilize BOW model for retrieval and hold the same

assumption for images. Very recently, one study [14] exploited sketch’s power to describe

pose, yet is engineered for a very specific domain of humans and “stick man” sketches,

which has a predefined drawing style. Therefore, their method is not easily applicable to

more complicated sketches. In this work, we evaluate our framework on more challenging

PASCAL VOC dataset and the 20,000 sketch dataset. The images often have cluttered back-

grounds and the main object is often not central and dominant, while the sketches have more

complex structure and more variations. Previous SBIR methods do not perform well on this
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extremely challenging dataset, but our proposed method achieves encouraging performance.

Deformable Part-based Model To bridge the sketch-image semantic gap, we employ

DPM as the representation to encode pose and basic appearance in each domain. The de-

formable part-based model (DPM) [9] is designed for object detection and obtains state-of-

the-art performance on the challenging PASCAL VOC dataset. [23, 26] have used strongly

supervised DPM for human pose estimation. However, their methods need a pre-defined

pose model for each specific category and extensive part annotations are mandatory, which

make them non-scalable in the general case for numerous diverse categories. Therefore, we

adopt the original DPM [9] to encode the poses in two domains. To bridge the DPMs from

different domains, we further propose an effective graph matching method to measure the

cross-domain similarity of DPMs.

Graph Matching Graph matching is widely used in computer vision applications such as

object categorization [7], face recognition [25] and tracking [22]. Graph matching has the

advantage of flexibly encoding topological object structure, and coping with relatively large

structural deformations. There has been a great body of research to date on graph match-

ing. Cho et al. [4] establish matches by performing random graph walk on an association

graph whose nodes represent candidate matches, which is later extended to cope with node

progression by iteratively examining homography projection errors [16]. Very recently, su-

pervised learning techniques have also shown prominence towards graph matching [5, 10].

Despite offering state-of-the-art results on standard datasets, they require explicit training a

priori.

3 Methodology

We start this section with introducing basic notations for deformable part-based model, fol-

lowed by the formulation of our graph matching method. Given those, we finally illustrate

our overall framework in detail.

3.1 Deformable Part-based Model and Notations

To use deformable part-based model (DPM), a mixture of DPM is trained from a set of

images, which comprises several components and is used for detection. During detection,

only one component will be triggered for one object in the image, and a corresponding DPM

detection is obtained for that object. Both DPM components and detections are in the form

of a two-layer structure composed of a root filter and a set of N part filters connected as a

star graph (part filter represents a small portion of the root filter and has twice the resolution

of the root filter; all part filters have the same size). We denote this two-layer structure as

M = (r,G) and refer it as DPM, where r= (w,h, f ) specifies the width w, height h and global

appearance feature (HOG [6] is employed) of the root filter; and G = (V,E,A) represents the

star graph composed of the part filters. For the star graph G, V represents a set of nodes,

E, edges, and A, attributes. More specifically, V = {vi}
N
i=1 ∪ c represents all N parts vi

and the center c that is the center of r. Each node vi has an associated attribute ai ∈ A

describing appearance feature (also HOG) of vi, and an associated edge eic ∈ E describing

the geometrical relationship between the center of vi and c in terms of relative coordinate

offset.
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3.2 Graph Matching for Deformable Part-based Model

The key challenge for matching sketch with images in our approach is the computation of the

distance metric between the DPMs across domains, including both DPM model components

and DPM image detections. In this section, we introduce our similarity measure S(MR|MT )
between two DPMs, MR and MT .

Our matching objective accounts for both appearance and geometric information en-

coded in the DPMs, as well as both layers of representation, i.e., root filter r and part filter

star graph G. The similarity function is defined as:

S(MR|MT ) = γ ∗Sroot(M
R|MT )+(1− γ)∗Spart(M

R|MT ) (1)

where Sroot is the root similarity and Spart is the part similarity; γ is a weighting factor

balancing root and part similarities.

Root Similarity (Sroot ) Given that all part filters of a DPM share a common size, differ-

ences in root size and aspect ratio implicitly reflects pose variations. Therefore, we introduce

a term to represent root filter similarity based on appearance features, sizes and aspect ratios

of the root filters of MR and MT . We denote the root filters as rR and rT , the widths as wR

and wT , the heights as hR and hT , and the appearance features as f R and f T respectively.

Then, the root similarity metric can be written as:

Sroot(M
R|MT ) = δ ∗ ( f R · f T )+(1−δ )∗ exp

(

−|
wR

hR
−

wT

hT
| ·

max(hR,hT )

min(hR,hT )

)

, (2)

where the first term represents appearance similarity (dot product is inherited from [9]), and

the second term accounts for size and aspect ratio variations of the root filters. δ is a linear

weighting factor balancing the significance of both terms. The appearance feature f R and f T

are extracted after normalizing rR and rT to the same size.

Part Similarity (Spart ) The part-level similarity between two DPMs depends on the un-

known mapping of the parts from one DPM to another. We achieve this by finding the

mapping that maximizes the overall geometrical and appearance consistency between the

two DPMs’ part filters. Since the part filters are organized as a star graph, we formalize this

mapping task as a graph-matching problem between the part filter star graphs.

Given two DPMs MR and MT , their part filters are represented as star graphs GR =
(V R,ER,AR) and GT = (V T ,ET ,AT ). We are going to find out a set of one-to-one matchings

from all the nodes in V R to all the nodes in V T that maximizes the overall geometrical

and appearance consistency of GR and GT . The mutual consistency of geometrical and

appearance attributes between one pair of matching candidates (vR
i ,v

T
a ) and (vR

j ,v
T
b ) can be

described by an affinity function Wia; jb = f (aR
i ,a

R
j ,e

R
ic,e

R
jc,a

T
a ,a

T
b ,e

T
ac,e

T
bc). It follows that we

can construct an affinity matrix W, whose non-diagonal element Wia; jb contains a pair-wise

affinity between two matching candidates (vR
i ,v

T
a ) and (vR

j ,v
T
b ) and whose diagonal element

Wia;ia denotes a unary affinity of one matching candidate (vR
i ,v

T
a ).

If the number of parts of DPM is N, the correspondence between the parts of two DPMs

can be represented by an assignment matrix X ∈ {0,1}N×N , where Xia = 1 states that node

vR
i corresponds to node vT

a . It can then be further substituted by its column-wise vectorized

replica x ∈ {0,1}N·N . Finally, the graph matching problem can be formulated as seeking an
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assignment x∗ that maximizes the quadratic score function:

x∗ =argmax(xT Wx)

s.t. x ∈ {0,1}N·N ,∀i
N

∑
a=1

xia ≤ 1,∀a
N

∑
i=1

xia ≤ 1,
(3)

where the two-way constrains define a one-to-one matching from GR to GT . It follows that

the part similarity can be calculated by :

Spart(M
R|MT ) = x∗T Wx∗ (4)

where W is the affinity matrix given by:

Wia; jb = max(sapp(mia)∗ sgeo(mia)+ sapp(m jb)∗ sgeo(m jb),0) (5)

where mia = (aR
i ,a

T
a ,e

R
ic,e

T
ac) and m jb = (aR

j ,b
T
b ,e

R
jc,e

T
bc) represent matching pair (vR

i ,v
T
a )

and (vR
j ,v

T
b ), respectively. Wia; jb denotes the overall similarity between such pairs, in which

sapp(mia) denotes feature similarity, sgeo(mia) represents geometrical similarity, and they can

be computed as follows:

sapp(mia) = aR
i ·a

T
a (6)

sgeo(mia) = exp(−(eR
ic − eT

ac)
T S−1

D (eR
ic − eT

ac)) (7)

where SD is a constant covariance matrix controlling the allowed deviation of the matched

cross-domain parts and is empirically set to the normalized side length of the part of DPM.

sgeo(m jb) and sapp(m jb) can also be calculated as above.

In principle, any graph matching algorithm that is capable of solving a binary quadratic

maximisation function can be used to solve Equation 3. In this paper, we employ the method

of [4] that delivers good performance for our purpose.

3.3 Algorithm Overview

The desired input of our proposed method is a sketch probe S with known category, and

the output is a sequence of images from the same category ordered by their similarities

with the probe S in terms of pose/appearance details. Achieving this fine-grained SBIR re-

quires two major steps: (i) Training: DPM training and component alignment; (ii) Retrieval:

fine-grained retrieval based on matching a probe sketch DPM detection with image DPM

detections. Below, we refer to DPM component as Mc, and DPM detection as Md .

DPM Training and component alignment: At this step, a mixture DPM is learned from

each domain, comprising several components. We denote the mixture DPM for sketch as

Ls = {Mc
i }

U
i=1, and mixture DPM for image as Lp = {Mc

j}
V
j=1. For each Mc

i , its similarities

with {Mc
j}

V
j=1 are calculated with Eq. (1). And {Mc

j} are rearranged in descending order

of the similarities into {Mc
j}i, which is preserved for the next step. As each component

represents a coarse pose category (e.g., left, right or 45◦ views), this step will establish a

consistent coarse pose mapping across domains.

Fine-grained Retrieval: Given the query sketch S, the mixture DPM Ls is used to gen-

erate a detection Md
s for the sketch S, while all corresponding image detections {Md

k }
W
k=1

are generated by Lp. Supposing the sketch is detected by Mc
i and the images are grouped

into V groups {G j}
V
j=1 according to which component Mc

j detected it (each group G j =
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{Md
k j
}

W j

k j=1,∑
V
j=1 Wj = W ), we sort {G j} into the same order of {Mc

j}i obtained in the com-

ponent alignment. Graph matching is then performed again within each group G j, to rank

{Md
k j
}’s similarities with Md

s via Eq. (1), and this will ensure the consistency of the detailed

part shape and appearance.

4 Experiments

In this section, we first introduce a challenging SBIR dataset with human labels that enables

fine-grained SBIR performance to be quantified. We then use this dataset to evaluate per-

formance of the proposed fine-grained SBIR framework compared to conventional baselines

[2, 3, 11, 12, 13, 19, 24] employing bag-of-words (BOW) and spatial pyramid (SP).

4.1 SBIR Dataset and Annotation

We create our SBIR dataset by intersecting 14 common categories from the 20,000 sketch

dataset and PASCAL VOC dataset, resulting in a new dataset of 14× 80 = 1,120 sketches

and 7,267 images (made up of 14×ni images, where ni is the total number of images in the

corresponding PASCAL category).

We divide the whole dataset into testing and training sets of the equal size. To enable

quantitative evaluation, we manually annotate a subset of the testing set with exhaustive pair-

wise similarity ground-truth. Specifically, 6 sketches and 60 images from each category are

sampled from the full testing set, and sketch-image pair has its similarity manually annotated.

For each sketch-image pair (14×6×60 = 5,040 pairs in total), we score their similarity in

terms of four independent criteria: (i) viewpoint (V), e.g., left or right, (ii) zoom (Z), e.g.,

head only or whole body; (iii) configuration (C), e.g., position and shape of the limbs; (iv)

body feature (B), e.g., fat or thin. For each criterion, we annotate (5,040× 4 = 20,160 an-

notations in total) three levels of similarity: 0 for not similar, 1 for similar and 2 for very

similar. The results in Figure 3 include some example annotations.

4.2 Experimental Settings

We compare our framework to HOG Bag-of-Words and Spatial Pyramid baselines. The

settings for each model are given as follows.

Bag-of-Words Following common practice [19, 20], to compute the BOW representation,

images are first converted into edge maps using Canny edge detector [1]. Both images and

sketches are then scaled into a fixed size of 256× 256 pixels. HOG features are generated

from sketch/image patches of the size 90× 90 pixels. A 51× 51 grid is applied to each

sketch/image, and the patches are centered in the grid intersections. A large set of n features

are randomly sampled from all HOG features extracted (including both sketch and image

features). Afterwards, K-means clustering is employed to cluster those n features into M

clusters. A code book V = {ui}
M
i=1 is formed using the mean values of the clusters. After

obtaining the codebook, a feature f is represented by its distance to all the words ui. The

distance is measured by Gaussian kernel with parameter σ . We set n = 1,000,000, M =
2000, σ = 0.1 for our experiments.

Spatial Pyramid The spatial pyramid strategy [15] aims to encode the geometrical struc-

ture of BOW by partitioning the image into increasingly finer equal sub-regions (i.e., in level

1 the image has 1× 1 region, and in level 2 the image has 2× 2 regions) and compute the
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Table 1: SBIR performance comparison for top K = 5,10 retrievals: Ours, Spatial Pyramid

(SP) and Bag-of-Words (BOW).

(a) K = 5

Top 5 Ours SP BOW

airplane 22.00 20.33 18.83

bicycle 11.67 13.83 13.67

standing bird 14.67 13.50 11.33

bus 24.67 10.50 10.50

car (sedan) 18.83 14.50 13.50

cat 12.17 7.67 7.50

chair 20.00 20.33 19.50

cow 19.67 14.00 13.17

table 8.67 3.33 4.33

dog 9.50 6.83 5.50

horse 31.67 7.33 4.67

motorbike 22.50 9.00 11.50

sheep 17.67 5.00 6.17

train 12.50 10.33 11.50

Average 17.58 11.18 10.83

(b) K = 10

Top 10 Ours SP BOW

airplane 48.17 34.00 32.33

bicycle 25.50 26.67 25.00

standing bird 26.33 25.83 25.50

bus 37.67 19.17 20.00

car (sedan) 36.50 27.00 26.33

cat 20.33 16.17 15.17

chair 38.50 33.50 31.67

cow 27.17 26.50 25.33

table 12.33 9.00 9.33

dog 20.33 11.17 11.00

horse 57.33 14.50 13.33

motorbike 38.17 20.17 20.50

sheep 23.67 11.50 12.33

train 26.67 25.33 23.50

Average 31.33 21.46 20.81

BOW for each sub-region. The final representation is a concatenated vector of weighted

BOW from all the sub-regions. In our experiment, we use 2 levels of pyramid, and adopted

the implementation of [15].

DPM training and detection We train DPMs in each domain on the full training set of

sketches/images for each category, using the implementation of [9]. Each DPM is set to

3 mixture components and 8 parts per component. For each category, the sketches/images

of that category are used as positive training examples while those from all remaining cat-

egories are employed as negative examples. During training, bounding boxes provided by

PASCAL VOC are used to crop image objects, and sketch bounding box is extracted from

the borders of the sketch object. During detection, we choose the DPM detection with the

largest probability in each image.

Graph Matching Our graph matching works both on the obtained DPM components and

detections. Two parameters, the root-part weight γ and the root filter appearance-geometry

weight δ , are optimized by searching among [0,1] with interval of 0.1 on half of the anno-

tated dataset, and applied to the other half upon testing.

4.3 SBIR Performance Evaluation

We perform quantitative evaluation on the ground-truth dataset previously introduced in Sec-

tion 4.1. Given a probe sketch, we retrieve K images, and accumulate the ground-truth sim-

ilarity scores of those K images as the performance metric (the larger the better). Table 1

summarizes our results when K = 5 and K = 10. The per-category score is the average over

all 3 query sketches in that category. It can be seen that our method significantly outperforms

the conventional alternatives on most categories.

In Figure 2 we offer precision-recall curves computed over the full available range K =
1 : 60, utilizing all four criteria combined (Figure 2(a)) and each criterion alone (Figure 2(b)).

Given an image with retrieval score S, we compute its precision as p = S/N, where N is the

maximum score an image can have (8 in our case), and recall as r = S/M, where M is the

accumulative image score of the entire category. The results show that our SBIR framework

provides the biggest margin in its ability to perform at high-precision, suggesting that it has a

much better chance of retrieving the most relevant images in the first few results. Moreover,
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Figure 2: Precision-recall curves comparing bag-of-words (BOW), spatial pyramid (SP),

and our method (Ours), using: (a) all 4 criteria, (b) criterion viewpoint, configuration, body

feature, zoom separately.

our framework is more effective at fine-grained SBIR under all individual criteria.

Qualitative retrieval results with ground-truth annotation are provided in Figure 3. It can

be seen that our SBIR framework generally retrieves images having the same pose as the

sketch query. This is because the DPM training has summarized and encoded the repre-

sentative poses in the category as components, and our matching has corresponded similar

representative poses from two domains.

To provide further insight into the mechanism of our model, in particular graph matching,

we also demonstrate retrieval using only root similarity versus both root and part similari-

ties. Figure 4 shows a qualitative comparison, in this case querying the entire test set rather

than just the subset with ground-truth similarity annotation, as more sufficient images avail-

able for evaluation. Part-level graph-matching is illustrated in the second row by way of

color coding the parts based on their sketch-image correspondence. Part similarity helps

our method retrieve images with more similar fine-grained details (e.g., the bent legs of the

running horse). Although not all the parts are perfectly aligned, their cumulative impact still

helps to retrieve better matches than using the root similarity alone.

5 Conclusion

In this paper, we propose the fine-grained SBIR problem for the first time. It importantly

recognizes the descriptive power of sketches over text and conventional SBIR where retrieval

is performed at category-level only. DPMs are introduced as a novel mid-level representa-

tion strategy that captures pose information at an abstract level suitable for cross-domain

mapping. Graph matching is utilized to perform pose alignment and upon retrieval to rank

images. By constructing a carefully annotated cross-domain ground-truth dataset, we clearly

demonstrated our system’s effectiveness over conventional SBIR approaches. In the future,

this work can be extended in many directions, e.g., pose discovery, retrieval metric optimi-

sation, etc. We hope that this line of work will lead towards more practical SBIR systems

suitable for realistic data and in particular for fine-grained retrieval: where SBIR can provide

a qualitative advantage over conventional tag-based indexing and querying.
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Ours

SP

BOW

V:2 C:1 B:1 Z:2 V:0 C:0 B:0 Z:0 V:2 C:2 B:2 Z:2 V:2 C:1 B:1 Z:2 V:2 C:2 B:1 Z:2

V:0 C:0 B:0 Z:0 V:0 C:0 B:0 Z:0 V:2 C:2 B:0 Z:2 V:2 C:2 B:0 Z:1 V:0 C:0 B:0 Z:0

V:0 C:0 B:0 Z:0 V:0 C:0 B:0 Z:0 V:0 C:0 B:0 Z:0 V:1 C:1 B:1 Z:2 V:2 C:2 B:0 Z:1

Figure 3: Two example retrievals of our method (Ours), spatial pyramid (SP) and bag-of-

words (BOW). Ground truth similarity is also illustrated with the decomposition of viewpoint

(V), configuration (C), body (B) and zoom (Z).

Root&

Parts

Root

Only

Figure 4: Comparison of retrievals using root similarity only (Root Only) and root and part

similarities (Root&Parts) in graph matching.
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