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Abstract. The application of run-time reconfigurable component
models to networked embedded systems has a number of significant ad-
vantages such as encouraging software reuse, adaptation to dynamic envi-
ronmental conditions and management of changing application demands.
However, reconfiguration at the granularity of components is inherently
heavy-weight and thus costly in embedded scenarios. This paper argues
that in some cases component-based reconfiguration imposes an unnec-
essary overhead and that more fine-grained support for the tailoring of
component functionality is required. This paper advocates for a high-
level policy-based approach to tailoring component functionality. To that
end, we introduce a lightweight framework that supports fine-grained
adaptation of component functionality based upon high-level policy spec-
ifications. We have realized and evaluated a prototype of this framework
for the LooCI component model.

1 Introduction

Run-time reconfigurable component models provide an attractive programming
model for Wireless Sensor Networks (WSN). As WSN environments are typically
highly dynamic, run-time reconfigurable component models allow this dynamism
to be effectively managed through the deployment of new functionality or the
modification of existing compositions. WSNs are also increasingly expected to
support multiple applications in the long-term perspective. In response, reconfig-
urable component models allow system functionality to evolve to meet changing
application requirements. Run-time reconfigurable component models also pro-
mote reuse, which is essential in resource-constrained WSN environments.

A number of run-time reconfigurable component models have been developed
for embedded systems, most notably OpenCOM [4], RUNES [3], and OSGi [13].
These component models address the problems of dynamism, evolution and reuse
by offering developers:

– Concrete interfaces that promote the reuse of components between
applications.

– On demand component deployment that can be used to manage dynamism
and evolution through the injection of new functionality.
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– Component rewiring that can be used to modify component compositions
on the fly and thus offers a mechanism to manage dynamism and evolution.
The ability to dynamically wire a third party component into a composition
also promotes reuse.

In sum, run-time reconfigurable component models allow for reconfiguration of
system functionality through the introduction of new components, or the modifi-
cation of relationships between existing components. However, component-based
reconfiguration has two critical disadvantages:

– Coarse granularity: As reconfigurations may be enacted only by modifying re-
lationships between components or deploying new components, component-
based reconfiguration is a poor fit for enacting fine-grained changes. Thus,
while component-based reconfiguration provides a generic mechanism for en-
acting changes, it is inefficient when that change may be represented by a
few lines of code. This is particularly critical for embedded platforms, such as
WSN nodes, where memory is limited and software updates are costly
operations.

– Complexity of abstraction level: Component-based reconfiguration is com-
plex and requires a domain expert to be enacted properly. This complexity
prevents end-users from tailoring the functionality of the deployed system
themselves. Furthermore, expressing simple changes in a component-based
system should be offered at the abstraction level of the end-user.

This paper addresses the problems of coarse granularity and complexity through
the introduction of a lightweight policy framework for adapting component be-
haviour. Policies for this framework are high-level and platform independent,
thus allowing end-users to more easily tailor component behaviour. The perfor-
mance of this system is evaluated through a number of case studies.

The remainder of this paper is structured as follows: Section 2 provides back-
ground on component and policy frameworks for networked embedded systems,
while Section 3 presents the design of a policy language and corresponding frame-
work for tailoring component behaviour. An initial prototype of this framework
is evaluated based on a case study in Section 4. Section 5 critically discusses
advantages and shortcomings of our approach. Finally, Section 6 concludes and
presents directions for future work.

2 Background

This section firstly discusses the state-of-the-art in component models for net-
worked embedded systems. Section 2.2 then discusses existing policy-based mech-
anisms for tailoring component functionality. Finally, Section 2.3 provides a brief
overview of the LooCI component model.

2.1 Component Models for Networked Embedded Systems

NesC [6] is perhaps the best known component model for networked embed-
ded systems and is used to implement the TinyOS [12] operating system. NesC
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provides an event-driven programming approach together with a static compo-
nent model. NesC components cannot be dynamically reconfigured, however, the
static approach of NesC allows for whole-program analysis and optimization.

Maté [11] extends NesC and provides a framework to build application-specific
virtual machines. As applications are composed using specific virtual machine in-
structions, they can be represented concisely, which saves power that would oth-
erwise be consumed due to transmitting software modules. However, compared
to component-based approaches, Maté has one critical shortcoming - composi-
tions are limited by the functionality that is already deployed on each node and
thus it is not possible to inject new functionality into a Maté application without
reflashing each node.

OpenCOM [4] is a general purpose, run-time reconfigurable component model
and while it is not specifically targeted at networked embedded systems, it has
been deployed in a number of WSN scenarios [7]. OpenCOM supports dynamic
reconfiguration via a compact runtime kernel. Reconfiguration in OpenCOM is
coarse-grained, being achieved through the deployment of new components and
modifying connections between components.

The RUNES [3] component model brings OpenCOM functionality to more
embedded devices. Along with a smaller footprint, RUNES adds a number of
introspection API calls to the OpenCOM kernel. Like OpenCOM, RUNES allows
for only coarse-grained component-based reconfiguration.

The OSGi component model [13] targets powerful embedded devices along
with desktop and enterprise computers. OSGi provides a secure execution envi-
ronment, support for run-time reconfiguration and life-cycle management. Un-
fortunately, while OSGi is suitable for powerful embedded devices, the smallest
implementation, Concierge [15] consumes more than 80KB, making it unsuitable
for highly resource-constrained devices.

2.2 Policy Techniques for Tailoring Component Behaviour

Over the last decade, research on policy-based management [2] has primarily
been applied to facilitate management tasks, such as component configuration,
security, or Quality of Service in large-scale distributed systems. Policy-based
management allows the specification of requirements about the intended be-
haviour of a managed system using a high-level policy language, which are then
automatically enforced in the system. Furthermore, policies can be changed dy-
namically without having to modify the underlying implementation or requiring
the consent or cooperation of the components being governed.

ESCAPE [16] is a component-based policy framework for programming sen-
sor network applications using TinyOS [12]. Similar to our approach, ESCAPE
advocates the use of policy rules to govern component behaviour. However, poli-
cies in ESCAPE are exclusively used to specify interactions between components,
removing interaction code from the individual components, whereas in our ap-
proach we apply policy techniques to configure entire component compositions,
including the existing information flow. In addition, ESCAPE is implemented
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on top of the static NesC component model [6], whereas our policy framework
builds on top of a more flexible run-time reconfigurable component model.

Recently, the Service Component Architecture (SCA) defined a Policy frame-
work specification [14], which aims to use policies for describing capabilities and
constraints that can be applied to service components or to the interactions
between different service components. While not being bound to a specific im-
plementation technology, the SCA policy framework focusses on service-oriented
environments such as OSGi [13] which may only be applied to relatively powerful
embedded devices.

The approach this paper proposes is to combine the key benefits of a run-
time reconfigurable component model (i.e. the ability to inject new functionality
dynamically and reason about distributed relationships between components),
with the efficiency of policy-based tailoring of functionality. As we will show in
Section 4, this reduces the burden on developers while also reducing performance
overhead for simple reconfigurations. Furthermore, the policy language we pro-
pose is high-level and easy to understand, allowing end-users, as well as domain
experts, to customize the functionality of component compositions.

2.3 LooCI: The Loosely-Coupled Component Infrastructure

The Loosely-coupled Component Infrastructure (LooCI) [8] is designed to sup-
port Java ME CLDC 1.1 platforms such as the Sun SPOT [17]. LooCI is com-
prised of a component model, a simple yet extensible networking framework and
a common event bus abstraction. LooCI components support run-time recon-
figuration, interface definitions, introspection and support for the rewiring of
bindings. LooCI offers support for two component types, macrocomponents and
microcomponents.

Macrocomponents are coarse-grained and service-like, building upon the no-
tion of Isolates inherent in embedded Java Virtual Machines such as Sentilla [1]
or SQUAWK [18]. Isolates are process-like units of encapsulation and provide
varying levels of control over their execution (exactly what is provided depends
on the specific JVM). LooCI standardizes and extends the functionality offered
by Isolates. Each macrocomponent runs in a separate Isolate and communicates
with the runtime middleware via Inter Isolate RPC (IIRPC), which is offered
by the underlying system. Unlike microcomponents, macrocomponents may use
multiple threads and utility libraries.

Microcomponents are fine-grained and self-contained. All microcomponents
run in the master Isolate alongside the LooCI runtime. Unlike macrocompo-
nents, microcomponents must be single threaded and self-contained, using no
utility libraries. Aside from these restrictions, microcomponents offer identical
functionality to macrocomponents in a smaller memory footprint.

Unlike OpenCOM or RUNES, LooCI components are indirectly bound over a
lightweight event bus. LooCI components define their provided interfaces as the
set of LooCI events that they publish. The receptacles of a LooCI component
are similarly defined as the events to which they subscribe. As bindings are indi-
rect, they may be modified in a manner that is transparent to the composition.



160 N. Matthys et al.

Furthermore, as all events are part of a globally specified event hierarchy, it
becomes easier to understand and modify data flows.

3 A Policy-Based Component Tailoring Framework

3.1 Policy Language Design and Tool Support

The specification of policies to tailor component behaviour is accomplished by
using policy rules following Event-Condition-Action (ECA) semantics, which
correspond well to the event-driven nature of the target embedded platforms.
An ECA policy consists of a description of the triggering events, an optional
condition which is a logical expression typically referring to external system as-
pects, and a list of actions to be enforced in response. In addition, our prototype
policy language allows various functions to be called inside the condition and
action parts of a policy. By using these policies, we offer a simple, yet powerful
method to tailor component behaviour for end-users. In addition, we provide
tool support to the end-users to allow simple tailoring of system behaviour. Our
tool allows the end-user to firstly select the components and interfaces that can
be tailored. Secondly, after specification of the corresponding policies, the tool
parses and analyzes each policy for syntactic consistency. Finally, the tool allows
the end-user to choose which nodes he wants to deploy the policy to. Concrete
examples of the policy language can be found in Section 4.

3.2 Policy Framework Design

As illustrated in Figure 1, the policy framework is deployed on each sensor node
and consists of three key components: the Policy Engine, the Rule Manager, and
a Policy Distribution component.

The Policy Engine is the main component in the framework and is responsible
for intercepting events as they pass between two components and evaluating
them based upon the set of policy rules on each node. In case of a match (i.e.
a triggering event and a condition evaluating to true), the engine enforces the
actions defined in the action part of the matching policy. Typical examples
of actions are, e.g. denying the event to pass, publishing a custom event, or
invoking a particular function in the middleware runtime. Potential conflicts
between multiple matching policies are handled by following a priority-based
ordering of policies, whereas only the actions of the highest priority policy are
executed.

Distribution of policy files from the back-end to the sensor network is achieved
using a Policy Distribution component hosted on each individual sensor node.
After specification and analysis of a policy by our tool, the policy is transformed
into a compact binary representation that can be efficiently disseminated to
the sensor nodes. On reception of this binary policy representation, the policy
distribution component passes it to the Rule Manager component.

The Rule Manager on each individual sensor node is responsible for storing
and managing the set of policy rules on the node. After reception of a binary
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Fig. 1. Overview of the policy framework

policy from the distribution component, the rule manager converts the policy
into a data structure suitable for more efficient evaluation which is then passed
to the policy engine on a per triggering-event base. By retaining the ability to
dynamically change the set of policies at run-time, the framework can be adapted
according to evolving application demands.

4 Case-Study Based Evaluation

This section presents a scenario that requires two archetypal reconfigurations of
a distributed component composition: (i.) introduction of filtering functionality
and (ii.) binding interception and monitoring. For each case, we compare the
overhead of realizing reconfigurations using LooCI macrocomponents and mi-
crocomponents to that of realizing reconfiguration using the policy framework
introduced in Section 3. Specifically Section 4.1 describes our motivating appli-
cation scenario. Section 4.2 describes how compositions may be modified through
component reconfiguration and policy application. Section 4.3 then considers the
overhead for developers inherent in each approach, while Section 4.4 analyzes
the memory consumption of each approach. Finally, Section 4.5 explores the
performance overhead of component-based versus policy-based reconfiguration.

4.1 Application Scenario

Consider the scenario of a WSN-based warehouse monitoring scenario. In this
scenario, a company STORAGO CO provides temperature controlled storage of
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goods, wherein the temperature of stored packages is monitored using a WSN
running the LooCI middleware. STORAGE CO offers two classes of service for
stored goods: best effort temperature control and assured temperature control.
The customers of STORAGE CO (CHOCOLATE CO and CHEMICAL CO)
each have different storage requirements that evolve over time.

– Best effort temperature control : in this scheme, STORAGE CO sets temper-
ature alarms, which alert warehouse employees if the temperature of a stored
package has breached a specified threshold. As the scheme is alarm-based, it
generates low levels of traffic, increasing battery life and reducing cost.

– Assured temperature control : in this scheme, STORAGE CO provides con-
tinuous data to warehouse employees, who may view detailed temperature
data and take pre-emptive action to avoid package spoiling. As this scheme
transmits continuous data, it decreases node battery life and increases costs.

Scenario 1. CHOCOLATE CO begins by requesting the assured temperature
service level from STORAGE CO, however, due to tightening cost-constraints,
CHOCOLATE CO later requests their service level to be switched to best effort.
CHEMICAL CO begins by requesting the low-cost best effort service, however
stricter government regulations require CHEMICAL CO increasing their cover-
age to assured temperature control.

Scenario 2. STORAGE CO wishes to perform a detailed analysis of how their
WSN infrastructure is being used, and thus deploys functionality to monitor all
component bindings in their WSN. This functionality includes accounting of all
events that pass.

4.2 Component-Based Modification versus Policy-Based
Modification

Scenario 1. This section explores how the changing requirements of the cus-
tomers on both temperature monitoring schemes can be reflected using (i.)
component-based modification of the compositions, and (ii.) by a single com-
position customized using our policy-based approach.

Component-Based Tailoring of Functionality. The assured and best effort
temperature monitoring schemes discussed in Section 4.1 may be represented by
two distinct component compositions. This is shown in Figure 2. In the assured
monitoring scheme, a TEMP SENSOR exposes a single interface of type TEMP,
which is wired to the matching receptacle of a TEMP MONITORING compo-
nent. In the best effort temperature monitoring scheme, the TEMP SENSOR
component is wired to the matching receptacle of a TEMP ALARM compo-
nent, the ALARM interface of which is then wired to the matching interface of
a TEMP MONITORING component.



Fine-Grained Tailoring of Component Behaviour for Embedded Systems 163

Fig. 2. Component configurations

In the case of CHOCOLATE CO, switching from assured to best effort temper-
ature monitoring, the existing TEMP SENSOR component will be unwired from
the TEMP MONITORING component and rewired to a TEMP ALARM com-
ponent, the ALARM interface of which is wired to the TEMP MONITORING
component.

In the case of CHEMICAL CO, switching from best effort to assured moni-
toring, the existing TEMP ALARM component will be unwired from the TEMP
MONITORING and TEMP SENSOR component. Subsequently, the TEMP
interface of the TEMP SENSOR component will be wired to the matching re-
ceptacle of the TEMP MONITORING component.

Policy-Based Modification. To enable CHOCOLATE CO to switch from
assured to best effort monitoring, the developer needs to specify and enable the
following policy with priority 1:

policy "assured -to-best -effort" "1" {

on TEMP as t; //TEMP contains (source ,dest ,value)

if(t.value > 20 && t.dest == TEMP_MONITORING_CHOC_CO)

then( // publish an ALARM event to TEMP_MONITORING_CHOC_CO

publish ALARM(t.source , TEMP_MONITORING_CHOC_CO , t.value);

deny t; //and block TEMP event for further dissemination

)

}

This policy specifies that the policy engine should intercept all TEMP events,
while only allowing those events to pass with a temperature value higher then
20 degrees Celsius and by converting them to ALARM events destined for the
TEMP MONITORING component.

To enable CHEMICAL CO switching from best effort to assured temperature
monitoring, the developer needs to specify and enable the following policy:
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policy "best -effort -to-assured" "1" {

on TEMP as t;

if(t.dest == TEMP_ALARM )

then( // allow sending to TEMP_ALARM for threshold checking

allow t;

t.dest = TEMP_MONITORING_CHEM_CO; // change destination

publish t; // assure sending to TEMP_MONITORING_CHEM_CO

)

}

This policy changes the destination of TEMP events from the TEMP ALARM
to the TEMP MONITORING CHEM CO component to enforce the assured
monitoring scheme. In addition, it may not break the existing composition (i.e.
TEMP events must also be sent to the TEMP ALARM component).

Scenario 2: Insertion of Global Monitoring Behaviour. The network-
wide monitoring of component interactions described in Section 4.1 may also
be implemented using a component-based or policy-based approach. In either
case, the reception and transmission of an event should be logged to a AC-
COUNTING component which stores events for future retrieval and analysis. In
order to implement logging or accounting using component-based modification,
STORAGE CO would be required to continually probe the network to discover
the state of compositions and then insert a BINDING MONITOR interception
component into each discovered binding - clearly a resource intensive process.

In contrast, as the LooCI Event manager provides a common point of in-
terception for all events on each node, a single, generic policy may be inserted
to perform equivalent monitoring. As all events are routed through the policy
engine, such a configuration is agnostic to the component compositions execut-
ing on the WSN, and clearly entails significantly lower overhead. A policy to
implement this is shown below:

policy "logging" "1" {

on * as e; //all events have source , dest , data [] as payload

then( // always do accounting of event occurrence

invoke ACCOUNTING (e.source , e.dest , e.data []);

allow e; //do not block e, allow it to continue

)

}

While this example is simple, we believe that the ability to install per-node,
as well as per binding policies to enforce various non-functional concerns may
reduce overhead in many scenarios.

4.3 Overhead for the Developer

In this section, we analyze the effort required to implement the TEMP ALARM
component and compare this with the effort required to develop a functionally
equivalent policy, as described in Section 4.2. Each implementation was analyzed
in terms of Source Lines of Code (SLoC). The results are shown in Table 1.
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Table 1. Development Effort Comparison

Micro-component Macro-component Policy
35 SLoC 35 SLoC 8 SLoC

Perhaps more critically than the conservation of development effort, as illus-
trated by the SLoC savings shown in Table 1, is the high-level and platform
independent nature of the policy specification language, which unlike a Java-
based LooCI component could equally be applied to a TinyOS [12] or Contiki
[5] software configuration where a suitable policy interpreter exists.

4.4 Memory Footprint

The size of the policy framework is 26 kB. Subsequently, we analyzed the static
memory (size on disk) and dynamic memory (RAM) consumed by the software
elements introduced in Section 4.2. As can be seen in Table 2, policy-based re-
configuration consumes significantly less memory than component-based recon-
figuration, a critical advantage in memory-constrained environments like WSNs.

Table 2. Memory Consumption

Micro-component Macro-component Policy
Static 1 kB 1 kB 103 bytes
Dynamic 3 kB 26 kB 376 bytes

4.5 Performance Overhead

We evaluated the performance of policy-based and component-based reconfigu-
ration using a standard SunSPOT node (180 MHz ARM9 CPU, 512 kB RAM,
SQUAWK VM ‘BLUE’ version) and a 3 GHz Pentium 4 desktop with 1 GB of
RAM running Linux 2.6 and Java 1.6. We first logged the time required to deploy
and initialize the policy specification and component implementation required
to achieve the reconfigurations described in Section 4.2. We then analyzed the
time which each took to handle an incoming TEMP event (i.e. process it and
disseminate an ALARM event to the gateway). In each case, the SPOT node was
deployed between 20 cm and 30 cm from the network gateway and we performed
50 experiments, the averaged results of which are illustrated in Table 3.

As can be seen from Table 3, not only is the overhead inherent in deploying
and initializing a policy significantly lower than that of deploying and initializing
a component, the ongoing performance overhead per event caused by applying
a policy to a binding is also lower (or equal to microcomponent performance)
than that caused by inserting a new macrocomponent. In embedded environ-
ments where CPU and energy resources are scarce, we believe that policy-based
reconfiguration provides concrete benefits over component-based reconfiguration
for tailoring compositions as it does not introduce additional overhead.
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Table 3. Performance Comparison

Microcomponent Macrocomponent Policy
Deployment 11330 ms 11353 ms 200 ms
Initialization 8418 ms 7420 ms 6 ms
Execution overhead 28 ms 43 ms 28 ms

5 Discussion

The evaluation presented in the previous section clearly shows that policy-based
modification of component compositions can have significant advantages in terms
of: (i.) lowering development overhead, (ii.) reducing memory footprint and
(iii.) improving performance. This leads to a critical question: When to apply
component-based modification of functionality, and when to use policy-based
tailoring of functionality?

The policy-based approach is suited to enforce non-functional concerns like
accounting or security on component compositions, as these non-functionalities
are orthogonal to the composition and not radically change the end-to-end in-
formation flow in the component composition.

Despite the concrete advantages of policy-based composition modification, this
approach is not without drawbacks: it can reduce reusability of components. In a
pure (or functional) component composition, the functionality of each component
is solely identified by its type along with the interfaces and receptacles it provides.
As the application of policies to component bindings can modify functionality in
a manner that is opaque, this can effectively render the component unreliable for
use in other compositions and thus reduces the maintainability of the system.

Managing long-term system evolution must be done with care. Rather, we
believe that policies should be used to efficiently realize transient modifications
to compositions and to enforce non-functional concerns on compositions.

6 Conclusions

This paper has presented a policy-based framework that can be used to tai-
lor the functionality of component compositions. We have presented a compact
and lightweight prototype of this framework realized for the LooCI component
model and, through evaluation, we have shown that policy-based tailoring can
reduce overhead for developers, reduce memory consumption and improve the
performance of reconfiguration when compared to purely component-based re-
configuration approaches.

In the short term, future work will focus upon further researching the impact
of policy-based modifications on component compositions. In addition, we plan
evaluating policy-based tailoring of functionality in a logistics scenario with con-
crete WSN end-users. In the longer term we hope to improve the expressiveness
of our policy language, and implement prototypes of our policy engine and eval-
uate its performance for the OpenCOM [4] and OSGi [13] component models.
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