
This is a repository copy of Fine-grained visualization pipelines and lazy functional
languages.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/1896/

Article:

Walllace, Malcolm, Rita, Borgo, Colin, Runciman et al. (1 more author) (2006) Fine-grained
visualization pipelines and lazy functional languages. IEEE Transactions on Visualization
and Computer Graphics. pp. 973-980. ISSN 1077-2626

https://doi.org/10.1109/TVCG.2006.145

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE Copyright Notice

Title of Work: Fine-grained Visualization Pipelines and Lazy
Functional Languages

Author(s): David Duke, Malcolm Wallace, Rita Borgo, Colin
Runciman

Publication in the IEEE Transactions on Visualization & Computer
Graphics Journal, Vol 12, Issue 5

"This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein are
retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases,
these works may not be reposted without the explicit permission of
the copyright holder."

"©20xx IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE."

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fine-grained Visualization Pipelines and Lazy Functional

Languages

David Duke, Malcolm Wallace, Rita Borgo, and Colin Runciman

Abstract—The pipeline model in visualization has evolved from a conceptual model of data processing into a widely used architecture
for implementing visualization systems. In the process, a number of capabilities have been introduced, including streaming of data
in chunks, distributed pipelines, and demand-driven processing. Visualization systems have invariably built on stateful programming
technologies, and these capabilities have had to be implemented explicitly within the lower layers of a complex hierarchy of services.
The good news for developers is that applications built on top of this hierarchy can access these capabilities without concern for how
they are implemented. The bad news is that by freezing capabilities into low-level services expressive power and flexibility is lost.
In this paper we express visualization systems in a programming language that more naturally supports this kind of processing model.
Lazy functional languages support fine-grained demand-driven processing, a natural form of streaming, and pipeline-like function com-
position for assembling applications. The technology thus appears well suited to visualization applications. Using surface extraction
algorithms as illustrative examples, and the lazy functional language Haskell, we argue the benefits of clear and concise expres-
sion combined with fine-grained, demand-driven computation. Just as visualization provides insight into data, functional abstraction
provides new insight into visualization.

Index Terms—Pipeline model, laziness, functional programming.

✦

1 INTRODUCTION

A number of architectures have been proposed and developed for data
visualization, including spreadsheets [17], relational databases [23],
spray-rendering [24], scene graphs [22], and pipelines [7, 28]. They
provide a layer of application-oriented services on which problem-
specific visualization tools can be constructed. Of the approaches ex-
plored to date, the pipeline model has found the most widespread use.
It underlies the implementation of well-known systems such as AVS
[28], SCIRun [25], and VTK [26], and also serves as a conceptual
model for visualization workflow [6].

Building layers of service abstraction is an approach that has
served computing well in the past, giving developers reusable domain-
independent blocks for building an application. For the pipeline
model, services provide the capability to organize visualization op-
erations within a dataflow-like network. Some pipelined systems ex-
tend the basic model with demand-driven evaluation and streaming
of dataset chunks, again frozen into the service layer. However, this
layered approach fixes design decisions associated with the services,
without regard for the operations that are implemented in terms of
those services. Pipeline services provide a lazy, dataflow-like model,
but client operations are defined as a separate layer of stateful compu-
tation.

An alternative set out in this paper is to use a programming tech-
nology that naturally supports operations fundamental to pipelined
visualization. Implementations of ‘lazy’ functional languages have
advanced significantly over the last decade. They now have well-
developed interfaces to low-level services such as graphics and I/O.
In this paper we take surfacing as an archetypal visualization task, and
reconstruct two fundamental algorithms. We illustrate how pipelin-
ing and demand-driven evaluation become naturally integrated within
the expression of an algorithm. The result is a simplified presenta-
tion, generating fresh insight into how these algorithms are related.

• Rita Borgo and David Duke are with the School of Computing, University

of Leeds, UK, E-mail: {rborgo,djd}@comp.leeds.ac.uk.

• Colin Runciman and Malcolm Wallace are with the Department of

Computer Science, University of York, UK, E-mail:

{Colin.Runciman,Malcolm.Wallace}@cs.york.ac.uk

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6

November 2006.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

The resulting implementations have a pattern of space utilization quite
different to their imperative counterparts, occupying an intermediate
point between purely in-core and out-of-core approaches.

Section 2 summarizes the main features of the pipeline model, in
particular the capabilities that we seek to improve. Section 3 revis-
its the basic marching cubes algorithm for surface extraction, using
the lazy functional language Haskell [14]. Through a series of refine-
ments, we show how pipelining and demand-driven evaluation allow
the use of memoization to improve performance. An extension to re-
solve topological ambiguities [18] in Section 4 shows how these fine-
grained abstractions can be reused. Section 5, on evaluation, gives
particular attention to the space performance of our implementation.
The lazy streaming approach set out here features low memory resi-
dency, even with larger datasets. Section 6 discusses related research.
The work reported here is a first step in a much larger programme of
work, and in Section 7 we set out a longer-term vision of how func-
tional programming can contribute novel ways of solving the technical
challenges of visualization.

2 PIPELINES: PLUMBING FOR VISUALIZATION

Pipelines as a conceptual model for the visualization process were
first proposed by Haber and McNabb [6]. Their use for implement-
ing visualization is usually traced to the work of Upson et.al. [28] on
AVS; they in turn cite the earlier work of Haeberli [7] on the ConMan
dataflow system for interactive graphics. All these models represent
the visualization process as a directed graph. Nodes are processing el-
ements; arcs represent data dependencies: an arc from component A to
B means the output of A is required in order for B to execute. Impor-
tantly, this can also be expressed by saying that if B needs to execute,
it must first ensure it has up-to-date data from A. In this way, a visu-
alization application can be considered as a demand-driven dataflow
system, with update demands on graphics windows at the end of the
pipeline “pulling” the data through intermediate transformations. The
pipeline originates at source components, typically interfaces to the
external environment.

Pipelined systems often provide memoization: computed outputs
are stored, and only regenerated when there is a change to some pa-
rameter of the component used to produce them. For each component
there is usually a choice whether to retain its output or regenerate it
each time it is required; the trade-off is between memory use and com-
putation time. Figure 1 shows a simple pipeline with four components,
each retaining its output: a file reader, an isosurfacer, a filter to com-
pute polygon normals, and a mapper which renders the polygons to

973

1077-2626/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

a display. Three of the components have parameters. If any parame-
ter is changed, some or all of the pipeline may need to re-execute. In
the example, changes to the viewing parameters require only the map-
per to re-execute, but if the user adjusts the isosurface threshold, the
isosurfacer, normals filter and mapper all need to re-execute, in that
order.

Fig. 1. Isosurfacing Pipeline

There are different approaches to managing pipeline execution.
Systems such as IRIS Explorer employ a central executive to monitor
the state of components and decide which to re-execute in response
to a parameter change. VTK, in contrast, implements a decentralized
model1 where components and data are timestamped, and an update
request at one part of the pipeline triggers ‘upstream’ components to
execute only if their data needs to be regenerated. Relative merits of
these schemes are discussed in [26].

Streaming [16] is an enrichment to the basic model that allows a
pipeline to pass datasets in chunks. For scientific data, such chunks
are usually spatially contiguous subsets of the full extent. Some algo-
rithms, for example Marching Cubes [19], can operate on individual
chunks in isolation. Others require access to the full dataset, for exam-
ple surface reconstruction: the dataset may be passed as a sequence of
chunks, with downstream and upstream algorithms working on these
sequences. In between the extremes of full-dataset versus arbitrary
chunk are algorithms such as Gaussian smoothing which require only
some overlap between adjacent chunks; this requirement is handled in
VTK, for example, by the use of ‘ghost’ points within chunks.

While pipeline capabilities have advanced, both the services and
the algorithms that use those services continue to be implemented us-
ing imperative languages, usually C or C++. The underlying com-
putational model is call-by-value parameter-passing, yet the way to
assemble applications from services is conceptually call-by-need. In
contrast, non-strict functional languages such as Haskell [14, 9] use
a call-by-need evaluation strategy in which function arguments are
only evaluated to the extent they are demanded (if at all). Apart from
closely matching the pipeline model, this strategy also provides a ‘new
kind of glue’ [10] for assembling programs from components.

3 MARCHING CUBES, FUNCTIONALLY

Without giving a full tutorial on Haskell, we need to introduce some
key aspects of functional languages, for which we use the classic
Marching Cubes algorithm as an exemplar. We first implement it in
the standard fashion, iterating through an array of sample values, then
refine the implementation into two lazily streaming variations. These
illustrate two of the main benefits of laziness – on-demand process-
ing (permitting fine-grained pipelining of input and output data), and
automatic sharing of already-computed results.

3.1 Ordinary, array-based algorithm.

First, we explore a straightforward representation of the dataset as a
three-dimensional array of sample values.

type XYZ = (Int,Int,Int)

type Num a => Dataset a = Array XYZ a

These type definitions declare synonyms for the actual array rep-
resentation. Concrete type names are capitalised, for instance the

1Since VTK5.0, there is the capability to associate different executives with

specific parts of the pipeline.

Array index domain type is XYZ. The array is 0-based; its first el-
ement is at index (0,0,0). The type variable (lower-case a) in the
range of the array indicates that the type of the samples themselves is
generic (polymorphic). The predicate Num a constrains the polymor-
phism: samples must have arithmetic operations defined over them.
Thus, we can reuse the algorithm with bytes, signed words, floats,
complex numbers, and so on, without change.

isosurface ::

Num a => a -> Dataset a -> [Triangle]

This type declaration of the Marching Cubes isosurface func-
tion shows that it takes two arguments, a threshold value and the
dataset, and computes from them a sequence of triangles approximat-
ing the surface. The triangles can be fed directly into e.g. OpenGL for
rendering. The full pipeline shown in Figure 1 can be written:2

pipeline t = mapper view

. normalize

. isosurface t

. reader

Here the dot . operator means pipelined composition of functions.
The last function in the chain is applied to some input (a filename),
and its results are fed back to the previous function, whose results are
fed back, and so on. The backward direction is just convention – it
is equally easy to write forward-composition in the style of unix shell
pipes, just less common.

Now to the algorithm itself. We assume the classic table, either
hard-coded or generated by the Haskell compiler from some specifi-
cation. Full details of these tables are not vital to the presentation and
are omitted; see [19] for example.

mcCaseTable = { 0 |-> []

, 1 |-> [0,8,3]

, 3 |-> [1,8,3,9,8,1]

...

, 254 |-> [0,3,8]

, 255 |-> []

}

Marching Cubes iterates through the dataset from the origin. At
every cell it considers whether each of the eight vertices is below or
above the threshold, treating this 8-tuple of Booleans as a byte-index
into the case table. Having selected from the table which edges have
the surface passing through them, we then interpolate the position of
the cut point on each edge, and group these points into threes as tri-
angles, adding in the absolute position of the cell on the underlying
grid.

isosurface threshold sampleArray =

concat [mcube threshold lookup (i,j,k)

| k <- [1 .. ksz-1]

, j <- [1 .. jsz-1]

, i <- [1 .. isz-1]]

where

(isz,jsz,ksz) = rangeSize sampleArray

lookup xyz = eightFrom sampleArray xyz

In Haskell, application of a function to arguments is by jux-
taposition – no parentheses are needed – so in the definition of
isosurface, the arguments are threshold and sampleArray.
The standard array function rangeSize extracts the maximum co-
ordinates of the grid.

2Our Haskell implementation is actually built directly on the HOpenGL

binding, so the mapping phase is implemented slightly differently, via a func-

tion that is invoked as the GL display callback. This is the only place where the

presentation departs from the executable implementation.

974

DUKE et al.: FINE-GRAINED VISUALIZATION PIPELINES

The larger expression in square brackets is a list comprehension3,
and denotes the sequence of all applications of the function mcube

to some arguments, where the variables (i,j,k) range over (or are
drawn from) the given enumerations. The enumerators are separated
from the main expression by a vertical bar, and the evaluation order
causes the final variable i to vary most rapidly. This detail is of interest
mainly to ensure good cache behaviour, if the array is stored with x-
dimension first. The comprehension can be viewed as equivalent to
nested loops in imperative languages.

The result of computing mcube over any single cell is a sequence
of triangles. These per-cube sequences are concatenated into a single
global sequence, by the standard function concat.

Now we look more closely at the data structure representing an in-
dividual cell. For a regular cubic grid, this is just an 8-tuple of values
from the full array.

type Cell a = (a,a,a,a,a,a,a,a)

eightFrom :: Array XYZ a -> XYZ -> Cell a

eightFrom arr (x,y,z) =

(arr!(x,y,z), arr!(x+1,y,z)

, arr!(x+1,y+1,z), arr!(x,y+1,z)

, arr!(x,y,z+1), arr!(x+1,y,z+1)

, arr!(x+1,y+1,z+1), arr!(x,y+1,z+1)

)

Next, we need to introduce higher-order functions. From the very
name “functional language” one can surely guess that functions are
important. Indeed, passing functions as arguments, and receiving
functions as results, comes entirely naturally. A function that receives
or returns a function is called higher-order. We have seen two ex-
amples thus far: mcube’s second argument is the function lookup,
but also, the composition operator . is just a higher-order function
as well. Since this operator is the essence of the pipeline model, let’s
look briefly at its definition:

(.) :: (b->c) -> (a->b) -> a -> c

(f . g) x = f (g x)

Dot takes two functions as arguments, with a third argument being
the initial data. The result of applying the second function to the data
is used as the argument to the first function. The type signature should
help to make this clear - each type variable, a, b, and c, stands for
any arbitrary (polymorphic) type, where for instance each occurrence
of a must be the same, but a and b may be different. Longer chains
of these compositions can be built up, as we have already seen in the
earlier definition of pipeline.

Shortly, we will need another common higher-order function, map,
which takes a function f and applies it to every element of a sequence:

map :: (a->b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

This definition uses pattern-matching to distinguish the empty se-
quence [], from a non-empty sequence whose initial element is x,
with the remainder of the sequence denoted by xs. Colon : is used
both in pattern-matching, and to construct a new list.

Finally, to the definition of mcube:

mcube :: a -> (XYZ->Cell a) -> XYZ

-> [Triangle]

mcube th lookup (x,y,z) =

group3 (map (interpolate th cell (x,y,z))

(mcCaseTable ! bools))

where

cell = lookup (x,y,z)

bools = toByte (map8 (>th) cell)

3It bears similarities to Zermelo-Frankel (ZF) set comprehensions in math-

ematics.

group3 :: [a] -> [(a,a,a)]

group3 (x:y:z:ps) = (x,y,z):group3 ps

group3 [] = []

The cell of vertex sample values is found using the lookup

function that has been passed in. We derive an 8-tuple of booleans
by comparing each sample with the threshold (map8 is a higher-order
function like map, only over a fixed-size tuple rather than an arbitrary
sequence), then convert the 8 booleans to a byte (bools) to index into
the classic case table (mcCaseTable).

The result of indexing the table is the sequence of edges cut by
the surface. Using map, we perform the interpolation calculation for
every one of those edges, and finally group those interpolated points
into triples as the vertices of triangles to be rendered; group3 is used
again in later steps, and hence is defined globally. The linear interpo-
lation is standard:

interpolate :: Num a => a -> Cell a -> XYZ

-> Edge

-> TriangleVertex

interpolate thresh cell (x,y,z) edge =

case edge of

0 -> (x+interp, y, z)

1 -> (x+1, y+interp, z)

...

11 -> (x, y+1, z+interp)

where

interp = (thresh - a) / (b - a)

(a,b) = selectEdgeVertices edge cell

Although interpolate takes four arguments, it was initially
applied to only three in mcube. This illustrates another important
higher-order technique: a function of n arguments can be partially ap-
plied to its first k arguments; the result is a specialised function of n−k
arguments, with the already-supplied values ‘frozen in’.

3.2 Observations.

The implementation outlined so far is naive in several respects: (1)
The entire dataset is needed in memory before we can begin any pro-
cessing. (2) The work of comparing a vertex to the threshold value
is repeated eight times, once for every cell it adjoins. (3) The work
of interpolating along an edge is repeated if we revisit the same edge
again within that cell. (4) The same interpolation calculation is re-
peated again when we visit the three neighbouring cells that share the
same edge. The following sections address these issues in turn.

3.3 Streaming the dataset on-demand.

The monolithic array data structure implies that the entire dataset is
in memory simultaneously, yet the algorithm only ever needs a small
portion of the dataset. At any one moment, a single point and 7 of
its neighbours suffices, making up a unit cube of sample values. If we
compare this with a typical array or file storage format for regular grids
(essentially a linear sequence of samples), then the unit cube is entirely
contained within a “window” of the file, corresponding to exactly one
plane + line + sample of the volume. The ideal solution is to slide this
window over the file, constructing one unit cube on each iteration, and
dropping the previous unit cube. Figure 2 illustrates the idea.

Fig. 2. Sliding a window over a grid

975

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Haskell allows us to read data out of a file in this streamed fashion
using lazy file I/O. The content of the file appears to the program as
a sequence of bytes, extended on-demand one byte at a time.4 As
for dropping data after it has been consumed, Haskell is a garbage-
collected language, so when a datum is no longer referenced by the
computation, the memory storing it is recycled automatically.

The datatype representing the dataset is now constructed from a
lazy sequence of samples, stored along with the bounds of the grid:

data Num a => Dataset a = D XYZ [a]

Unlike the type definition, which only introduces a synonym, a
data definition in Haskell can be thought of as a record, tagged with
a constructor name (D) that can be used in pattern matching.5

The sliding window of eight point values (cell) is extracted from the
lazy stream of samples as follows. We (conceptually) lay 8 copies of
the datastream side-by-side, then repeatedly slice off one value from
each of the 8 and glue them together into a cell. Each of the 8 copies
of the stream is advanced on its predecessor by an offset representing
the distance between the sample points in the original data stream. In
Haskell, the zip family of functions (here, zip8) is used to turn a
tuple-of-streams into a stream-of-tuples. (Compare this mkStream
function with the earlier point-wise eightFrom.)

mkStream :: XYZ -> [a] -> [Cell a]

mkStream (isz,jsz,ksz) origin =

zip8 origin

(drop 1 origin)

(drop (line+1) origin)

(drop line origin)

(drop plane origin)

(drop (plane+1) origin)

(drop (planeline+1) origin)

(drop planeline origin)

where

line = isz

plane = isz * jsz

planeline = plane + line

As written, mkStream generates ‘phantom’ cells that wrap around
the boundaries of the dataset, at the end of each line and plane.
Rather than trying to ‘fix’ mkStream, we insert another small
function in the pipeline to eliminate the phantoms. The function
disContinuities recursively copies items from its input stream
to its output stream, but drops items whenever the counter reaches a
boundary.

disContinuities :: XYZ -> [b] -> [b]

disContinuities (isz,jsz,ksz) = step (0,0,0)

where

step (i,j,k) (x:xs)

| i==(isz-1) = step (0,j+1,k) xs

| j==(jsz-1) = step (0,0,k+1)

(drop (isz-1) xs)

| k==(ksz-1) = []

| otherwise = x : step (i+1,j,k) xs

The vertical bars in this definition introduce guarded equations;
given a function of the form f a | p = e, the call f v evaluates
to e provided v matches the pattern a and the expression p evalu-
ates to True. Multiple guards are tried from top to bottom until one
succeeds.

4For efficiency, the underlying system may choose to hold variable-size

buffers for the file, but crucially, that buffering can be tuned to match avail-

able resources of memory, disc, and processor.
5Constructor names are required because in general, a data definition may

introduce several alternative constructors for a given type; for example, a type

that allowed both regular and rectilinear grids might appear as Dataset a =

Reg XYZ [a] | Rect ([Float],[Float],[Float]) [a]. Dif-

ferent kinds of dataset are then distinguished by their constructor.

By glueing the generating and pruning processes together with
functional composition, we achieve our aim of transforming a lazy
stream of samples from the file into a lazy stream of cells, also ex-
tended only on demand. The top-level function for isosurfacing be-
comes:

isosurfaceS thresh (D size samples) =

concat (zipWith2 (mcubeS thresh)

(cellStr samples)

allXYZ)

where

cellStr = disContinuities size . mkStream

allXYZ = [(i,j,k) | k <- [1 .. ksz-1]

, j <- [1 .. jsz-1]

, i <- [1 .. isz-1]]

The standard zipWith2 higher-order function is like map, but its
function argument is iteratively applied to two items, pulled simulta-
neously from the front of its stream arguments. The zipWith family
thus ensures that multiple streams are consumed at the same rate.

A feature of this example is the clean separation between generat-
ing a list of cells, and dealing with discontinuities. By separating these
concerns, the individual functions are simplified. As they are smaller
and more generic, they present more opportunity for reuse. The appar-
ent inefficiency of computing ‘phantom’ cells only to discard them in
the next step is eliminated through compiler optimization [27]. Note
that the new function mcubeS is now slightly different from the pre-
vious mcube. Instead of passing a lookup function as an argument,
we directly pass a cell from the stream of incoming cells. Compare
the old and new type signatures:

mcube ::

a -> (XYZ->Cell a) -> XYZ -> [Triangle]

mcubeS ::

a -> Cell a -> XYZ -> [Triangle]

3.4 Sharing the threshold calculation.

The advantage of call-by-need over call-by-name is that although the
evaluation of an item might be delayed until it is needed, it is never
repeated, no matter how often the value is used. If we want to share
a computation between different parts of the program, we just arrange
for the shared value to be constructed in one place, by one expres-
sion, rather than constructing it multiple times which leads to multiple
evaluations.

In the streaming version of marching cubes presented so far, we
can see that the reading of sample values from file is shared and per-
formed only once. However, comparison against the threshold value
(in mcubeS) is performed eight times for every sample, because on
each occasion, the sample is at a different vertex position in the cell.
To compute the comparison only once per sample, we just need to do
the thresholding against the original byte stream, before it is tupled up
into cells, rather than after.

isosurfaceT th (D size samples) =

concat (zipWith3 (mcubeT th)

(cellStream samples)

(idxStream samples)

allXYZ)

where

allXYZ = ... -- as before

cellStream = disContinuities size . mkStream

idxStream =

map toByte . cellStream . map (>th)

There are now three streams of incoming data to be consumed by
mcubeT: the cells for interpolation, the indexes into the case table,
and the co-ordinates. Note how the idxStream is itself built using
smaller pipelines. The consumer mcubeT is now even simpler:

976

DUKE et al.: FINE-GRAINED VISUALIZATION PIPELINES

mcubeT :: a -> Cell a -> Byte -> XYZ

-> [Triangle]

mcubeT th cell index (x,y,z) =

group3 (map (interpolate th cell (x,y,z))

(mcCaseTable ! index))

3.5 Sharing the edge interpolation calculation.

Taking the notion of sharing-by-construction one step further, we now
memoize the interpolation of edges. Recall that, in the result of the
mcCaseTable, the sequence of edges through which the isosurface
passes may have repeats, because the same edge belongs to more than
one triangle of the approximated surface.

But in general, an edge that is incident on the isosurface is also com-
mon to four separate cells, and we would like to share the interpolation
calculation with those cells too. So, just as the threshold calculation
was performed at an outer level, on the original datastream, we can do
something similar here.

Instead of an 8-tuple of vertices, we build a 12-tuple of possible
edges. Before looking up the case table in mcubeI, we cannot know
which of those edges are actually incident on the surface. But that does
not matter – we describe how to calculate the interpolation on all 12
edges, safe in the knowledge that each result will only be computed if
that edge is actually needed!

type CellEdge a = (a,a,a,a,a,a,a,a,a,a,a,a)

mkCellEdges :: a -> XYZ -> [a] -> [CellEdge a]

mkCellEdges thresh (isz,jsz,ksz) stream =

zip12 inter_x

(drop line inter_x)

(drop plane inter_x)

(drop (plane+line) inter_x)

inter_y

(drop 1 inter_y)

(drop plane inter_y)

(drop (plane+1) inter_y)

inter_z

(drop 1 inter_z)

(drop line inter_z)

(drop (line+1) inter_z)

where

line = isz

plane = isz*jsz

offset d = zipWith2 interpolate

stream

d

inter_x = offset (drop 1 stream)

inter_y = offset (drop line stream)

inter_z = offset (drop plane stream)

interpolate v0 v1 = (thresh-v0) / (v1-v0)

Here, the datastream is offset in each of the x, y, and z dimensions,
zipped with the original copy, and the interpolation calculated pairwise
in each dimension. The three dimensions are then zipped together,
taking four edges from each, to make up each cell.

isosurfaceI th (D size samples) =

concat (zipWith3 mcubeI

(edgeStream samples)

(idxStream samples)

allXYZ)

where

edgeStream = disContinuities size

. mkCellEdges th size

... -- idxStream, allXYZ as before

Finally, mcubeI does no interpolation itself, it merely selects
already-interpolated values from the CellEdge structure and adds
the absolute grid position.

mcubeI :: CellEdge a -> Byte -> XYZ

-> [Triangle]

mcubeI edges index (x,y,z) =

group3 (map (selectEdge edges (x,y,z))

(mcCaseTable ! index))

4 UNAMBIGUOUS MARCHING CUBES

It is well-known that in the original marching cubes, ambiguous cases
can occur, and the original method has been enhanced and general-
ized in various ways to assure topological correctness of the result.
Chernyaev [4] proposed a definitive classification of all the ambiguous
cases. Lewiner et.al. [18] completed the resolution of internal ambi-
guities, and defined a method, ‘MC33’, guaranteed to yield a manifold
surface with no cracks between or within cubes. Although MC33 re-
quires a more extensive set of test/case tables than the original algo-
rithm, changes to the top level structure of the functional implemen-
tation are surprisingly small; at the top level, we have simply added,
as a fourth stream, the original cells of samples (used to resolve ambi-
guities), to the streams of ready-interpolated edges, case-table indices
and grid positions. Compare the following with isosurfaceT and
isosurfaceI:

isosurfaceU thresh (D size samples) =

concat (zipWith4 (mcubeU thresh)

(edgeStream samples)

(idxStream samples)

(cellStream samples)

allXYZ)

where

... -- cellStream etc. just as before

The mcubeU function differs from mcubeT in only two ways. (1)
It uses a different two-stage case-table to look up the edges incident
on the surface, of which the tiling stage occasionally needs the original
sample cell to test for face-cracks. (2) The edges returned now in-
clude a distinguished marker to signal the need for tri-linear interpola-
tion to resolve internal ambiguity. A simple auxiliary function detects
the marker, or otherwise just picks the corresponding edge from the
edge stream.

mcubeU :: a -> CellEdge a -> Byte -> Cell a

-> XYZ -> [Triangle]

mcubeU thresh edges index cell (x,y,z) =

group3 (map (select (x,y,z))

cases)

where

cases =

mc33tiles cell (mc33CaseTable ! index)

select idx 12 =

triInterpolate idx cell thresh

select idx _ = selectEdge edges idx

5 RESULTS AND EVALUATION

Figures 3 and 4 show the ‘fuel’ and ‘neghip’ datasets, surfaced using
our functional implementation. Triangles are coloured as a function of
the point within the output stream at which they arrive, and the figures
thus show how the streaming implementation progresses through the
dataset (compare with Figure 2). In the remainder of this section the
functional approach is evaluated against three criteria: time and space
performance, requirements for data streaming [16], and the issue of
clarity and economy of expression.

5.1 Time and Space Profiles

Performance numbers are given for the initial array-based version, and
an optimised streaming version of marching cubes written in Haskell,
over a range of sizes of dataset (all taken from volvis.org), and
compared with VTK 5’s marching cubes implementation in C++.
The relevant characteristics of the datasets are summarised in Ta-
ble 1, where the streaming window size is calculated in bytes as one

977

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 3. Functionally surfaced dataset coloured to show age of triangles in stream.

Fig. 4. Streamed dataset, colour mapped to stream position.

Table 1. Dataset Statistics.
dataset size input (b) window (b) surface (v)

silicium (98,34,34) 113,288 3,431 103,020
neghip (64,64,64) 262,144 4,161 131,634
hydrogen (128,128,128) 2,097,152 16,513 134,952
lobster (301,324,56) 5,461,344 97,826 1,373,196
engine (256,256,128) 8,388,608 65,793 1,785,720
statueLeg (341,341,93) 10,814,133 116,623 553,554
aneurism (256,256,256) 16,777,216 65,793 1,098,582
skull (256,256,256) 16,777,216 65,793 18,415,053
stent8 (512,512,174) 45,613,056 262,657 8,082,312
vertebra8 (512,512,512) 134,217,728 262,657 197,497,908

plane+line+1, and the size of the extracted surface is measured in ver-
tices.

Table 2 gives the absolute time taken to compute an isosurface at
threshold value 20 for every dataset, on a 2.3GHz Macintosh G5 with
2Gb of memory, compiled with the ghc compiler and -O2 optimiza-
tion. We also normalise time against dataset size, giving the average
number of microseconds expended per sample.

Table 3 shows the peak live memory usage of each version of the
algorithm, as determined by heap profiling. Again, we normalise the
absolute numbers against the size of the dataset required in memory
at any one time. For the VTK and array-based versions, this is the
entire dataset, whilst for the streaming version, it is the (much smaller)
window size.

The time performance in Haskell (both array-based and streaming
versions) scales linearly with the size of dataset. It can also be seen
that the memory performance is exactly proportional to the size of
the input (array) or sliding window (streaming). In contrast, the VTK
results, both time and memory, are more proportionally weighted to
the size of the output surface, than the input.

Although for smaller datasets, our current speeds do not compare
well with VTK, the clear and readable specification of the algorithms
was our main aim. Elegant Haskell is not necessarily efficient Haskell!
But, due to referential transparency and equational reasoning, it is pos-
sible to apply formal transformations that preserve the code’s seman-
tics whilst improving its runtime performance. Some improvement

Table 2. Time Performance
time (s) (µs/sample)

dataset array stream VTK arr str VTK

silicium 0.626 0.386 0.19 5.53 3.40 1.67
neghip 1.088 0.852 0.29 4.15 3.25 1.11
hydrogen 8.638 6.694 0.51 4.12 3.19 0.24
lobster 25.37 18.42 5.69 4.65 3.37 1.04
engine 44.51 28.06 5.29 5.31 3.35 0.63
statueLeg 48.78 34.54 2.78 4.51 3.19 0.25
aneurism 72.98 54.44 5.69 4.35 3.24 0.33
skull 79.50 57.19 79.03 4.74 3.41 4.71
stent8 287.5 154.9 33.17 6.30 3.40 0.73
vertebra8 703.0 517.1 755.0 5.24 3.85 5.62

techniques that achieve speeds within 2-3× of C code, may currently
be applied manually [8, 2], whilst research continues in generalizing
similar transformations to be applied automatically during the opti-
mization stage of the compiler [27]. This approach promises (eventu-
ally) to allow elegance to co-exist with efficiency.

Even without these possible performance improvements, it is clear
that the ability to stream datasets in a natural fashion makes the func-
tional approach much more scalable to larger problem sets. For in-
stance, the streaming Haskell version is actually faster than VTK for
the larger surfaces generated by skull and vertebra8. We speculate that
where other toolkits might eventually need to swap to a different out-
of-core algorithm, the streaming approach will just continue to work.

5.2 Visualization Criteria

Compare the properties of our fine-grained streaming approach with
the requirements for data streaming set out in [16].

Caching is achieved by coupling streamed data access (sec 3.3) with
memoization (sec 3.5) of results.

Demand-Driven computation is a natural product of call-by-need
evaluation (Section 3.4). Shared sub-expressions are evaluated at most
once, e.g. the bi-linear interpolant of a given edge is computed only
if needed (sec 3.4). Incoming data is transformed only to the extent
that it contributes to the growing surface mesh, and grid memory that
‘falls off’ the back of the window is recycled automatically. By mem-

978

DUKE et al.: FINE-GRAINED VISUALIZATION PIPELINES

Table 3. Memory Usage

memory (MB) (bytes/residency)
dataset array stream VTK array stream VTK

silicium 0.120 0.120 1.1 1.06 35.0 9.71
neghip 0.270 0.142 1.4 1.03 34.1 5.34
hydrogen 2.10 0.550 3.0 1.00 33.3 1.43
lobster 5.45 3.10 19.5 1.00 31.7 3.57
engine 8.25 2.10 25.4 0.98 31.9 3.03
statueLeg 11.0 3.72 15.9 1.02 31.9 1.47
aneurism 17.0 2.10 28.1 1.01 31.9 1.67
skull 17.0 2.13 185.3 1.01 32.4 11.04
stent8 46.0 8.35 119.1 1.01 31.8 2.61
vertebra8 137.0 8.35 1,300.9 1.02 31.8 9.69

oization, we extend laziness to wider sharing of computations, e.g.
avoiding recomputing the edge interpolant for each neighbouring cell
(sec 3.5).

Hardware architecture independence is supported in two ways.
Through polymorphic types (sec 3.1) functions can be defined inde-
pendent of the datatypes available on a specific architecture; type pred-
icates (e.g. ‘Num a’) allow developers to set out the minimum require-
ments that particular types must satisfy. Beyond the scope of this pa-
per, polytypism [13], also known as structural polymorphism on types,
has the capability to abstract over data organisation and traversal, e.g.
a polytypic marching cubes could be applied to other kinds of dataset
organization like irregular grids.

Component Based development, as highlighted throughout Section 3,
is fundamental to functional programming [10]. In [16], ‘components’
are coarse-grained modules encapsulating visualization algorithms; in
this paper we have shown that component-based assembly can be
much finer-grained. For example, the streaming operators would be
just as applicable in the implementation of flow algorithms, generat-
ing streamlines. Functional building blocks, in the form of combinator
libraries, have been developed for a range of problems, e.g. pretty-
printing [11], XML transformation [29], and circuit layout [1]. The
rich type systems found in functional languages aid in program de-
velopment; higher-order types exactly describe how components may
be safely plugged together. The assembly of functional abstractions
from smaller units has a similar feeling to pipeline assembly [26], but
applies across all levels of abstraction.

5.3 Clarity

In the quest for faster, more space-efficient algorithms, other quali-
ties required of visualization systems are easily overlooked. Law et.al.
briefly discuss other software design properties like robustness and ex-
tensibility. But when pictures inform us on critical issues as diverse as
surgical procedure, storm forecasting and long-term decision-making
linked to climate change, we should add the over-riding criterion that
algorithms must be evidently correct.

Assurance of correctness is aided in functional programming by
three means. (1) Strong static polymorphic type systems, and auto-
matic memory management, eliminate entire classes of errors that are
otherwise commonplace in imperative languages. (2) Conciseness of
expression means that it is possible for a reader to understand more
of the big picture at once. (This paper contains the majority of the
marching cubes code – the complete program beyond the classic table
is about 200 lines.) (3) As there are no ‘side-effects’, expressions can
be manipulated using the kind of equational reasoning familiar from
mathematics.

6 RELATED WORK

While call-by-need is implicit in lazy functional languages, several
efforts have explored more ad hoc provision of lazy evaluation in im-
perative implementations of visualization systems. Moran et al. [21]
exploit lazy evaluation for working with large time-series datasets in
a visualization system based on the Demand Driven Visualizer (DDV)

calculator paradigm for computation and visualization of large fields.
In their system derived fields quantities are evaluated either on demand
(lazy evaluation), as a whole field (eager evaluation), or via a cache of
lazily evaluated results (lazy but thrifty evaluation).

Lazy evaluation has also been used in several visualization systems.
The Unsteady Flow Analysis Toolkit (UFAT) [15] allows users to com-
pute field values on demand. Cox et.al. [5] modified UFAT to support
demand-driven loading of data into main memory, achieving good per-
formance in the visualization of large computational fluid dynamics
data sets. More generally, in the demand-driven (‘pull-model’) sys-
tems noted in Section 2, e.g. VTK [26] and SCIRun [25], laziness un-
derpins a streaming interface; modules can request just the data needed
from upstreams modules within given spatial extents, and operations
to produce these data are executed only on demand.

Isenburg et.al. [12] propose a streaming mesh format for polygo-
nal meshes and discuss techniques to construct streamed meshes. In
this approach mesh elements (faces and vertices) appear interleaved
in the stream, and finalization tags record when a vertex is last ref-
erenced. Finalized vertices are guaranteed not to be accessed further,
and can thus be removed from main memory, an ad hoc form of the
general garbage collection techniques provided by the Haskell run-
time system. Laziness is achieved by introducing vertices only when
needed, but at the cost of re-organizing the entire file data-structure
to generate a proper data layout in terms of vertices and faces order-
ing. The authors propose an application of their streaming approach
to isosurface extraction techniques, and show the benefits gained from
streamed inputs; but the advantage is limited to cases where the vol-
ume data changes often and only few isosurface values are evaluated.

When data are generated by computationally intense simulations
and multiple isosurfaces are generated to explore the dataset, the tech-
nique of Mascarenhas et.al. [20] is more suitable. Adopting a contour
following approach, their method uses sparse traversal to avoid com-
putation at each grid location. Coupled with lazy evaluation of data
based on a streamed format, performance is reported as faster than ex-
emplar eager systems (as in [21]). As shown by Chandrasekaran et.al.
[3] a lazy approach improves the throughput of an application: from a
user’s point of view, first results are returned quickly; from the appli-
cation point of view, often only a portion of the result set is actually
needed.

7 CONCLUSION

The purely functional streaming implementation of marching cubes
developed in this paper demonstrates significant space savings com-
pared with an approach based on monolithic datasets. This is not in
itself surprising, given prior work on streaming, but shows that ele-
gance and clarity need not be sacrificed to meet certain performance
criteria. Streaming within visualization occupies an important niche
between fully in-core and fully out-of-core methods. A feature of the
functional approach is that data is pulled off-disk as needed, without
the programmer resorting to explicit control over buffering. Data is
retained in memory only as long as required: in our case a sample is
held while plane + line + 1 cells are processed, and discarded auto-
matically.

Motivated by the demands of large-scale data, visualization re-
searchers have explored techniques for lazy and demand-driven eval-
uation. But deployment of these techniques has been limited by the
need to access these services from within an imperative programming
system. We have shown how a programming technology based funda-
mentally on lazy evaluation allows the use of streaming, call-by-need,
and memoization at a fine level of granularity. Functional forms for
traversal and computation can be reused across different algorithms; in
surface extraction for example, the sliding window used here is appli-
cable to sweep-based seed-set generation. We are currently exploring
use of generic programming techniques to extend the work to other
types of grid (e.g. tetrahedral meshes and unstructured datasets), and
to other surface extraction methods. The result should be a small set
of combinators from which specific traversal and surfacing tools can
be constructed.

979

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Source Material: All programs used in the paper are available from:
http://hackage.haskell.org/trac/PolyFunViz/

ACKNOWLEDGEMENTS

The work reported in this paper was funded by the UK Engineering
and Physical Sciences Research Council.

REFERENCES

[1] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware de-

sign in haskell. In International Conference on Functional Programming,

pages 174–184, 1998.

[2] M. Chakravarty and G. Keller. An approach to fast arrays in haskell. In

Advanced Functional Programming 2002, number 2638 in Lecture notes

in Computer Science, pages 27–58. Springer-Verlag, 2003.

[3] S. Chandrasekaran and M. Franklin. PSoup: a system for streaming

queries over streaming data. VLDB Journal, 12(2):140–156, 2003.

[4] E. Chernyaev. Marching cubes 33: Construction of topologically correct

isosurfaces. Technical Report Technical Report CERN CN 95-17, CERN,

1995.

[5] M. Cox and D. Ellsworth. Application-controlled demand paging for out-

of-core visualization. In Proceedings of Visualization ’97, pages 235–ff.

IEEE Computer Society Press, 1997.

[6] R. Haber and D. McNabb. Visualization idioms: A conceptual model for

scientific visualization systems. In Visualization in Scientific Computing.

IEEE Computer Society Press, 1990.

[7] P. Haeberli. ConMan: a visual programming language for interactive

graphics. In Proceedings of SIGGRAPH’88, pages 103–111. ACM Press,

1988.

[8] P. H. Hartel et. al. Benchmarking implementations of functional lan-

guages with pseudoknot, a float-intensive benchmark. Journal of Func-

tional Programming, 6(4):621–656, 1996.

[9] Haskell: A purely functional language. http://www.haskell.org, Last vis-

ited 27-03-2006.

[10] J. Hughes. Why functional programming matters.

Computer Journal, 32(2):98–107, 1989. See also

http://www.cs.chalmers.se/ rjmh/Papers/whyfp.html.

[11] J. Hughes. The design of a pretty-printing library. In J. Jeuring and

E. Meijer., editors, Advanced Functional Programming, volume 925.

Springer Verlag, 1995.

[12] M. Isenburg and P. Lindstrom. Streaming meshes. In Proceedings of

Visualization’05, page 30, 2005.

[13] J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury,

E. Meijer, and T. Sheard, editors, Tutorial Text 2nd Int. School on Ad-

vanced Functional Programming, Olympia, WA, USA, 26–30 Aug 1996,

volume 1129, pages 68–114. Springer-Verlag, 1996.

[14] S. P. Jones, editor. Haskell’98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003.

[15] D. Lane. UFAT: a particle tracer for time-dependent flow fields. In Pro-

ceedings of Visualization ’94, pages 257–264. IEEE Computer Society

Press, 1994.

[16] C. Law, W. Schroeder, K. Martin, and J. Temkin. A multi-threaded

streaming pipeline architecture for large structured data sets. In Proceed-

ings of Visualization ’99, pages 225–232. IEEE Computer Society Press,

1999.

[17] M. Levoy. Spreadsheets for images. Computer Graphics, 28(Proceedings

of SIGGRAPH’94):139–146, 1994.

[18] T. Lewiner, H. Lopes, A. Vieira, and G. Tavares. Efficient implementa-

tion of marching cubes’ cases with topological guarantees. Journal of

Graphics Tools, 8(2):1–15, 2003.

[19] W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface

construction algorithm. In Proceedings of SIGGRAPH’87, pages 163–

169. ACM Press, 1987.

[20] A. Mascarenhas, M. Isenburg, V. Pascucci, and J. Snoeyink. Encoding

volumetric grids for streaming isosurface extraction. In 3DPVT, pages

665–672, 2004.

[21] P. Moran and C. Henze. Large field visualization with demand-driven cal-

culation. In Proceedings of Visualization’99, pages 27–33. IEEE Com-

puter Society Press, 1999.

[22] D. Nadeau. Volume scene graphs. In Proceedings of the Symposium on

Volume Visualization, pages 49–56. ACM Press, 2000.

[23] C. North and B. Shneiderman. Snap-together visualization: a user inter-

face for coordinating visualizations via relational schemata. In AVI’00:

Proceedings of Advanced Visual Interfaces, pages 128–135. ACM Press,

2000.

[24] A. Pang and K. Smith. Spray rendering: visualization using smart parti-

cles. In G. Nielson and R. Bergeron, editors, Proceedings of Visualiza-

tion’93, pages 283–290. IEEE Computer Society Press, 1993.

[25] S. Parker, D. Weinstein, and C. Johnson. The SCIRun computational

steering software system. In Modern software tools for scientific comput-

ing, pages 5–44. Birkhauser Boston Inc., 1997.

[26] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An

Object-Oriented Approach to 3D Graphics. Prentice Hall, second edition,

1998.

[27] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like

functions. In ICFP ’02: Proc. of International Conference on Functional

Programming, pages 124–132. ACM Press, 2002.

[28] C. Upson, T. Faulhaber Jr, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom,

and A. van Dam. The application visualization system: A computational

environment for scientific visualization. Computer Graphics and Appli-

cations, 9(4):30–42, 1989.

[29] M. Wallace and C. Runciman. Haskell and XML: Generic combinators

or type-based translation? In Proceedings of the Fourth ACM SIGPLAN

International Conference on Functional Programming (ICFP‘99), pages

148–159. ACM Press, 1999.

980

