
RESEARCH ARTICLE

Fine-granularity inference and estimations to
network traffic for SDN

Dingde Jiang1,2*, Liuwei Huo2, Ya Li2

1 School of Astronautics and Aeronautic, University of Electronic Science and Technology of China,
Chengdu, China, 2 School of Computer Science and Engineering, Northeastern University, Shenyang, China

* jiangdd@uestc.edu.cn

Abstract

An end-to-end network traffic matrix is significantly helpful for network management and for

Software Defined Networks (SDN). However, the end-to-end network traffic matrix’s infer-

ences and estimations are a challenging problem. Moreover, attaining the traffic matrix in

high-speed networks for SDN is a prohibitive challenge. This paper investigates how to esti-

mate and recover the end-to-end network traffic matrix in fine time granularity from the sam-

pled traffic traces, which is a hard inverse problem. Different from previous methods, the

fractal interpolation is used to reconstruct the finer-granularity network traffic. Then, the

cubic spline interpolation method is used to obtain the smooth reconstruction values. To

attain an accurate the end-to-end network traffic in fine time granularity, we perform a

weighted-geometric-average process for two interpolation results that are obtained. The

simulation results show that our approaches are feasible and effective.

Introduction

With extensive applications of new generational information technologies, smart city, Internet

of Things and Software Defined Networks (SDN) applications have explosively grown. High-

speed backbone networks for supporting these applications carry huge network traffic loads.

The backbone network scale has been expanding, and its speed has continuously improved [1–

2]. These changes have brought great challenges to network measurement techniques. To mea-

sure the performance of networks, network operators need to collect traffic data from a large

number of network test nodes [2–3]. However, only an OC48 link can collect hourly traffic up

to 600 GB. We must spend a lot of resources to store, transfer and handle the traffic data, since

incorrect methods can cease network measurements. Therefore, in next-generation networks

such as SDN, large-scale and high-speed sampling techniques have become one of main

choices to measure and monitor communications networks [3–5]. These techniques signifi-

cantly reduce the amount of measuring data and can also avoid adding the extra overhead

brought by network measurements. However, sampling techniques can only obtain incom-

plete measured data that affect the correct analysis of network monitoring, network manage-

ment, and performance assessment [4–8]. This may lead to an incorrect final decision. Hence,

how to accurately derive the end-to-end traffic in finer time granularity from the limited sam-

pling information has aroused extensive academic attention in recent years.
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End-to-end traffic estimation has received extensive research attention and now has

become the most important research topic of the IP network [9–11]. Cao et al. [12] used the

expectation-maximization algorithm to estimate the origin-to-destination (or end-to-end)

flow. Xie et al. [13] introduced a fast low-rank matrix method to detect network traffic anoma-

lies. Zhang et al. [14] studied end-to-end traffic inference in a large-scale IP backbone network.

Moreover, they also investigated the end-to-end network traffic in point-to-point and point-

to-multipoint cases [15]. Juva et al. studied the sensitivity of the existing end-to-end network

traffic recovery approaches [16]. Additionally, Fumo et al. used a joint spatial and temporal

approach to classify mobile traffic demands [17]. Stoev et al. found that the probability model

that combined traditional single-link (single-flow) traffic models with routing could capture

the global behavior of network traffic [18]. Some synthetic methods have been presented to

generate end-to-end network traffic in order to conduct normal network activities [2]. Spatio-

temporal compressive sensing sufficiently considers sparsity in the end-to-end network traffic

[1]. Current studies have found that network traffic has long-range dependence and a self-sim-

ilar nature [19–22]. In other words, when the network traffic is measured at different time

scales (milliseconds to hours), we find that network traffic has similar characteristics. Different

these methods, SDN provides direct network flow measurements with a chance.

Our motivations include several aspects. Firstly, an accurate end-to-end network traffic

matrix is very important and helpful for performing effective network managements and traf-

fic engineering. Unfortunately, the direct measurements of them in the traditional network is

prohibitive. Moreover, the end-to-end network traffic matrix’s inferences and estimations are

a huge challenge, and these methods have the larger estimation errors. Secondly, in contrast to

traditional networks, SDN can provide better solutions to traffic measurements of network

flows, which allows to directly obtain the end-to-end traffic via reading the flow counter in the

OpenFlow switch. Compared with the estimation methods based on the Simple Network Man-

agement Protocol (SNMP) link load measurements, this can improve the traffic measurement

accuracy. However, under the SDN framework, to obtain the measurement results in fine time

granularity is still complex, difficult and prohibitive, particularly for the high-speed network.

Thereby, based on SDN idea, it is necessary to construct a light-weight accurate method to

obtain network traffic for network managements and designs. Thirdly, the sampling measure-

ments for the end-to-end flow traffic can obtain their accurate sample value by the little mea-

surement overhead, but the sampling results are too coarse for some applications (such as

billing, real time traffic scheduling, traffic anomaly detection, and so forth). Fortunately, the

matrix complement can obtain the finer-granularity traffic value based on the end-to-end sam-

pling. Therefore, in this paper, underlying the SDN idea and framework, we consider how to

construct a fine-granularity inference and estimations to the end-to-end network traffic from

the sampling results in coarse time granularity.

Our main contributions in this paper are summarized as follows:

• We propose a new approach to attain the fine-granularity end-to-end network traffic for

SDN. Extracting the accurate end-to-end network traffic matrix has far-reaching impacts on

network planning, network optimization, and network dimensioning in SDN applications.

However, with the successful application of new network technologies, network traffic has

exponentially boomed. Attaining the needed traffic volume of flows in high-speed networks

is a prohibitive challenge. We also perform the detailed theoretical derivation for the end-to-

end reconstruction and estimation. Our method can effectively overcome these problems.

• We propose a system model of the end-to-end traffic recovery to attain the fine-granularity

accurate traffic estimation from the coarse-granularity sampled traffic data. The sampling

measurement is one possible choice for the ligh-weight end-to-end traffic measurement. We
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investigate how to recover the end-to-end network traffic in the fine time granularity from

sampled traffic traces, based on the proposed model in this paper.

• We present several algorithms to implement our reconstruction method of the end-to-end

traffic. Due to the fractal and self-similar features of network traffic, we employ the fractal

interpolation method to reconstruct network traffic in finer time granularity. After doing so,

we obtain one result that meets the fractal properties. Generally, although such a result can

accurately capture the fractal and self-similar nature of network traffic, it is inconsistent with

real network traffic due to the non-smoothing nature of fractal interpolation results. Accord-

ingly, the cubic spline interpolation method is used to obtain the smooth reconstruction val-

ues. To attain the accurate network traffic in fine time granularity, we perform the weighted

geometric average process for the two obtained interpolation results. In such a case, we can

recover the network traffic in the needed time granularity.

• A larger amount of simulation experiments are conducted to validate our approach. We ana-

lyze in detail the reconstruction results in the different sampling granularities. The spatial

and temporal estimation errors are carefully discussed and analyzed. Simulation results

show that our approach is feasible and effective.

The rest of this paper is organized as follows. Section 2 introduces the system model of the

end-to-end network traffic reconstruction. Section 3 describes our end-to-end network traffic

reconstruction methods. Section 4 presents the simulation results and analysis. It evaluates the

reconstruction errors, the impact of the sampling time granularity on performance, and the

average performance improvement. Finally, we conclude our work in Section 5.

Systemmodel

End-to-end traffic in a network reflects the volume of flows from the origin to the destination.

All end-to-end traffic describes their flows in the given network. This gives us the network-

wide traffic information, which is very important for traffic engineering and network design.

As mentioned in [1,13,23–24], all end-to-end traffic traverses the network according to the

routing configuration. Simultaneously, the end-to-end traffic flows on the same link and

aggregates into linked traffic. Thus, end-to-end traffic, linked traffic, and the routing configu-

ration information meet a linear constraint. For time t, the following equation is obtained:

zðtÞ ¼ ByðtÞ ð1Þ

where z(t) = (z1(t),z2(t),. . .,zv(t))
T denotes all linked traffic. zi(t) represents the traffic amount

of link i where i = 1,2,. . .,v. T is the matrix transpose operator. v represents the total number of

links in a given network. y(t) = (y1(t),y2(t),. . .,yu(t))
T is all end-to-end network traffic in a

given network (namely, traffic matrix). u is the total number of origin-destination node pairs.

yj(t) is the traffic amount of origin-destination flow j. B = (bji)u×v represents the routing matrix

that describes the routing configuration information in the given network. bji = 1 if the origin-

destination flows from j through the link i, and rij = 0 otherwise. Generally, B is obtained by

network topology and routing configuration information.

In contrast to linked traffic z(t), end-to-end traffic y(t) is more significant for network man-

agement and network operations. As shown in Eq (1), end-to-end traffic is hidden in linked

traffic. The inference method is primarily used to obtain the end-to-end traffic. Although

some such approaches can obtain considerably accurate values for the end-to-end traffic,

reconstruction errors always exist due to indirect measurements. In this paper, we perform the

direct measurement to quickly obtain the end-to-end traffic in the coarser time granularity.

Fig 1 denotes a certain direct measurement case of end-to-end traffic in coarse time
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granularity. From Fig 1, we can clearly see that the sampling measurement has loss, which can-

not reflect the real end-to-end traffic in the given network. Therefore, an approach to accu-

rately recover and reconstruct the end-to-end traffic is significantly important.

For SDN applications, network traffic has an important impact on the controller decisions

[25–26]. Therefore, traffic recovery is important for network activities [27–28]. Fig 2 describes

the system model of the end-to-end traffic recovery from coarse time granularity to fine. In

this model, we use inverse sampling technologies to attain the accurate end-to-end traffic in

fine time granularity. Without loss of generality, we assume that when the sampling interval is

5 ×mminutes, wherem> 1, the sampling value of end-to-end traffic is ym(t). We use the

interpolation method to achieve the inverse sampling process, which can utilize the sampling

values to reconstruct the fine-time-granularity traffic. ŷ f ðtÞ represents the origin-destination

traffic reconstructed by the fractal interpolation method such that ymðtÞ ) ŷ f ðtÞ. ŷ sðtÞ repre-

sents the end-to-end traffic reconstructed by the cubic spline interpolation method such that

Fig 1. Direct measurement of the end-to-end traffic in coarse time granularity.

https://doi.org/10.1371/journal.pone.0194302.g001

Fig 2. Systemmodel of the end-to-end traffic recovery.

https://doi.org/10.1371/journal.pone.0194302.g002
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ymðtÞ ) ŷ sðtÞ. Then, we make full use of the constraint relationship denoted in Eq (1) to attain

the recovered end-to-end traffic ŷ fpðtÞ and ŷ spðtÞ, which correspond to ŷ f ðtÞ and ŷ sðtÞ, respec-

tively. Moreover, according to ŷ fpðtÞ and ŷ spðtÞ, we employ the weighted geometric average to

the needed end-to-end traffic ŷðtÞ. Thus,

ŷðtÞ ¼ ðŷ fpðtÞÞ
b1ðŷ spðtÞÞ

ð1�b1Þ ð2Þ

where b1 represents the weighted coefficient, and 0� b1 � 1. Eq (2) combines the advantages

of the fractal interpolation and the cubic spline interpolation methods to attain the accurate

reconstruction result ŷðtÞ. The fractal interpolation result ŷ fpðtÞ can effectively characterize the

self-similar nature of network traffic, while the cubic spline interpolation estimation ŷ spðtÞ can

capture its highly dynamic change. This guarantees that ŷðtÞ can generate the optimal recon-

struction traffic.

End-to-end traffic estimation

This section discusses our algorithm, which is based on fractal interpolation, cubic spline

interpolation and the weighted geometric average algorithm, according to the system model

shown in Fig 2.

Fractal interpolation reconstruction

Fractal theory can describe the regularity of many irregular things and phenomena in the

world. At present, it has a wide range of applications in natural, economic and social sciences

[19]. One of the most important properties of fractal theory is that it must have a self-similar-

ity. Self-similarity refers to the similarity existing between the whole and part of the system or

between two separate parts. Current studies show that network traffic holds an obvious long-

range dependent and self-similar nature. Furthermore, researchers have found that the packet

lengths of TCP, FTP, video and other data have self-similarity that do not meet the exponential

distribution. Moreover, they also discovered that the packet length distribution was a step

function, and the length of the flow followed a log-normal distribution [20–21].

From the view of network topology, the current topology between the entire network and

the segment network has the characteristics of self-similarity. From the view of the data con-

tents from networks, network traffic is self-correlated. The distribution of the network files

(including the file that the user requested, the file that was actually transferred, the time of file

transfer, and the file’s storage in the server-side) is a heavy-tailed distribution. Furthermore,

from the transfer process of the network traffic point of view (including the application layer,

the network transportation layer and the physical link layer), the self-similarity nature can be

observed. The application layer is the data source of network communications [20]. It displays

the self-similarity properties within a wide range of time, which is reflected in the distribution

of its file size and the distribution of free time.

By analyzing the message size that comes from the traffic of the world wide web server,

researchers have found that the distribution of the document obeys the heavy-tailed distribu-

tion [21]. Furthermore, through the analysis of Telnet and FTP, researchers have also found

that the burst degree and the data size are also in line with the heavy-tailed distribution. The

transportation layer of networks contains a series of protocols, such as the use of flow control

and congestion control, to implement the upper-layer services of network communication.

Both network retransmission and congestion control mechanisms become the factors that

induce self-similarity. The transportation layers of networks realize transmissions and are

dependent on the availability of network resources [21]. These resource include the buffering
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capacity and network bandwidth. The buffer can temporarily accommodate multiple network

traffic. Its size directly affects the loss rate of packets and queuing delay. Network bandwidth

determines the throughput of networks and decides the pros and cons of network perfor-

mance. The self-similarity of network protocols in the higher level can be mapped to its under-

lying layer. For example, we can map the heavy-tailed characteristics of the file distribution in

the application layer to the network layer so that it also has self-similarity. Likewise, this feature

of the network layer will also be mapped to the data-link layer and make the network traffic

have self-similarity. For the end-to-end traffic of big-time granularity, we can take advantage

of its characteristics of fractal and self-similarity and then reconstruct it using fractal interpola-

tion theory. In general, if we use fractal interpolation, we need to obtain an accurate function

of fractal interpolation.

According to the above discussion and our system model in Fig 2, for the measurement

value yg(t) of end-to-end network traffic in the certain time granularity g and the given mea-

surement duration [0,z], we create the following set of points:

fðt; ygðtÞÞjt 2 ½0; z�; ygðtÞ 2 Rg; ð3Þ

where R denotes the real number domain.

For the sampling measurement process, time t is discretized. Then, Eq (3) can be converted

as follows:

fðns; yg ½ns�Þjns 2 Z; yg ½ns� 2 Rg; ð4Þ

where ns2{0,1,. . .,N} denotes the sampling time slots and ns2Z, N is the total time slots of the

sampling measurement, and where R denote the real number domain.

According to Eq (4) and the fractal interpolation function theory, we can easily create the

below interpolation function series:

ffnsð:Þjyg ½ns� ¼ fnsðnsÞ; ns 2 f0; 1; . . . ;Ngg: ð5Þ

For yg[n] = [yg[0],. . .,yg[N]] and n 2 {1,2,. . .,N}, the fractal interpolation function can be

denoted as:

f ð:Þ ¼ ff
0
ð:Þ; f

1
ð:Þ; . . . ; fNð:Þg: ð6Þ

In Eq (6), fi(.) (where i2{1,2,. . .,N}) denotes the fractal interpolation function at point i,

while f(.) the fractal interpolation function at all the points. Furthermore, the following equa-

tion holds:

fk
n

yg ½n�

 !

¼
ak 0

bk gk

 !

n

yg ½n�

 !

þ
εk

dk

 !

ð7Þ

where k2{1,2,. . .,N}. For endpoints (0,yg[0]) and (N,yg[N]), the fractal interpolation function f

(.) is satisfied with the following two equations:

fk

0

yg ½0�

0

@

1

A ¼
k� 1

yg ½k� 1�

0

@

1

A

fk

N

yg ½N�

0

@

1

A ¼
k

yg ½k�

0

@

1

A

ð8Þ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

where k 2 {1,2,. . .,N}.
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According to the fractal interpolation function theory and Eqs (7) and (8), we let γk2(−1,1).
Then, the affine transformation coefficient can be obtained:

ak ¼ 1=N

εk ¼ Nðk� 1Þ=N

bk ¼ ðyg ½k�yg ½k� 1�Þ=Ngkðyg ½N�yg ½0�Þ=N

dk ¼ Nyg ½k� 1�=Ngkyg ½0�

ð9Þ

8

>

>

>

>

<

>

>

>

>

:

In terms of the above discussion and Eqs (4)–(9), given the sampling measurement value

yg(n) with the coarse time granularity, we can easily reconstruct the end-to-end traffic ŷgðkÞ

with the fine time granularity using the fractal interpolation function theory. Without the loss

of generality, suppose our reconstruction granularity is v time units. When the sampling inter-

val is v × j (where j>1 and j 2 Z) time units, the sampled network traffic is yv,j. If the data

acquisition lasts t(0<t<v×j×N) time units, then each end-to-end flow has a total of N sampled

data. Reconstructing the end-to-end traffic of v time units requires (j−1)×N interpolation

points. The sampling points are uv,j,k (k = 1,2,. . .,N) and uv,j = (u1,u2,. . .uN). Using Eqs (4)–(9),

the following equation can be obtained:

n^kf ;v;j

y^kf ;v;j

0

@

1

A ¼ fk
uv;j

yv;j

 !

¼
ak 0

bk gk

 !

uv;j

yv;j

 !

þ
εk

dk

 !

ð10Þ

where n̂k
f ;v;j and ŷ

k
f ;v;j respectively denote the time slots and the fractal interpolation results cor-

responding to the sampling network traffic yv,j and the time granularity v after performing the

fractal interpolation. Furthermore, k2{1,2,. . .,N}.

Then, the reconstruction results ðn̂f ; ŷ f Þ using the fractal interpolation method are as fol-

lows:

y^f ¼ ð y^1

f ;v;j; y
^2

f ;v;j; . . . ; y
^ N

f ;v;jÞ

n^ f ¼ ðn^1

f ;v;j; n
^2

f ;v;j; . . . ; n
^N
f ;v;jÞ

ð11Þ

(

where n̂ f and ŷ f respectively denote the time slots and the fractal interpolation results corre-

sponding to n̂f .

The following states the detailed steps of our proposed fractal interpolation reconstruction

approach.

Algorithm 1:

Step1. Give the sampling value yg(t) of the end-to-end network traffic.

Step2. According to Eqs (8) and (9), determine the parameters αk, βk, γk, εk, and δk.
Step3. According to Eqs (6) and (7), attain the fractal interpolation function f(.).

Step4. For each fractal interpolation function fk(.) where k = 1,2,. . .,N, perform the opera-

tion shown in Eq (10) and obtain the corresponding reconstruction result ŷk
f ;v;j of the end-to-

end network traffic.

Step5. By Eq (11), obtain the fractal interpolation results ŷ f and the corresponding time

slots n̂ f .

Cubic spline interpolation reconstruction

Although the fractal interpolation is able to obtain the reconstructed results of the end-to-end

network traffic, its reconstruction error is relatively large, and the interpolation curve is not
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smooth. In this section, we discuss how to use the cubic spline interpolation to reconstruct the

end-to-end traffic. Interpolation is one of the important methods of numerical approximation,

which is based on the given values of the independent variable and approximate an unknown

function. The cubic spline interpolation method can use a smooth curve to fit each trunk

point. It constructs polynomials to form a smooth curve connecting all trunk points. More-

over, it can reconstruct the unique new sequence as long as it is given the original sample data

and the reconstruction interval. We apply the cubic spline interpolation method to reconstruct

the end-to-end network traffic.

According to the spline interpolation theory, to achieve network traffic with finer time

granularity, we divide the sample interval of network traffic into q equal parts and then (on

each subinterval) use the cubic Hermite interpolation method to deduce the cubic interpola-

tion function s(t). Without the loss of generality, for the kth sample interval of network traffic

[k,k+1], to interpolate the q−1 points of network traffic, assume that the following equation

holds:

k ¼ tk
0
< tk

1
< . . . < tkq�1

< tkq ¼ kþ 1 ð12Þ

Then, the cubic interpolation function sk(t) that corresponds to the interval [k,k+1] is satis-

fied with the following equation:

skðtki Þ ¼ yig ½k�; i ¼ 0; 1; . . . ; q ð13Þ

where yig ½k� denotes the functional values corresponding to the time point tki . s
k(t) is no more

than the cubic polynomial in each of the subintervals ½tki ; t
k
iþ1
�. Moreover, sk(t), (sk(t))’, and

(sk(t))" are all continuous in the range of [k,k+1].

Then, for the kth sample interval of network traffic [k,k+1], the cubic interpolation function

sk(t) can be denoted as the following equation:

skðtÞ ¼ aki
ðtkiþ1

� tÞ
3

6hk
i

þ akiþ1

ðt � tki Þ
3

6hk
i

þ ð
yig ½k�

hi

�
aki hi

6
Þðtkiþ1

� tÞ þ ð
yiþ1

g ½k�

hk
i

�
akiþ1

hk
i

6
Þðt � tki Þ ð14Þ

where t 2 ½tki ; t
k
iþ1
�, i = 0,1,. . .,q, hk

i ¼ tkiþ1
� tki , and a

k
i a

k
iþ1

are two parameters to solve.

The function sk(t) has a continuous second derivative at the sample points tki . According to

the cubic natural spline interpolation method, the following holds:

skðtki Þ ¼ yig ½k�

ðskðtk
0
ÞÞ} ¼ ðy0g ½k�Þ} ¼ 0

ðskðtkqÞÞ} ¼ ðyqg ½k�Þ} ¼ 0

ð15Þ

8

>

>

<

>

>

:

where i = 0,1,. . .,q. According to Eqs (14) and (15), we can solve parameters aki and a
k
iþ1
. Then,

sk(t) is built.

Similar to subsection B, we assume that our reconstruction granularity is v time units.

When the sampling interval is v×j (where j>1 and j2Z) time units, the sampled network traffic

is yv,j. If the data acquisition lasts t (0<t<v×j×N) time units, then each end-to-end flow has a

total of N sampling data. Reconstructing the end-to-end traffic of v time units requires (j

−1)×N interpolation points. The sampling points are uv,j,k (k = 1,2,. . .,N) and uv,j = (u1,u2,. . .

uN). Using Eqs (12)–(15), the following equation can be obtained:

y^ k
c;v;j ¼ skðtÞ

n^ k
c;v;j ¼ uv;j;k

ð16Þ

(
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where n̂k
c;v;j and ŷ

k
c;v;j respectively denote the time slots and the cubic interpolation results corre-

sponding to the sampling network traffic yv,j and time granularity v after performing the cubic

interpolation. Furthermore, t 2 ½tki ; t
k
iþ1
�, i = 0,1,. . .,j, and k2{1,2,. . .,N}.

Then, the reconstruction results ðn̂c; ŷcÞ using the fractal interpolation method are as fol-

lows:

y^c ¼ ðy^1c;v;j; y
^2

c;v;j; . . . ; y
^N
c;v;jÞ

n^c ¼ ðn^1c;v;j; n
^2

c;v;j; . . . ; n
^N
c;v;jÞ

ð17Þ

(

where n̂c and ŷc respectively denote the time slots and the fractal interpolation results corre-

sponding to n̂c.

The following states the detailed steps about our proposed fractal interpolation reconstruc-

tion approach.
Algorithm 2:
Step1. Give the sampling value yg(t) of the end-to-end network traffic.
Step2. According to Eq (12), determine q equal intervals of network
traffic.
Step3. According to Eqs (13)–(15), select the parameters aki and akiþ1

.
Step4. Using Eq (14), determine the cubic interpolation function sk(t)
corresponding to the interval [k,k+1], where k = 1,2,. . .,N.
Step5. Perform the operation shown in Eq (16) and obtain the corre-
sponding reconstruction result ŷk

c;v;j of the end-to-end network traffic.
Step6. Using Eq (17), obtain the fractal interpolation results ŷc and
the corresponding time slots n̂c.

Weighted geometric average

Although the fractal and cubic spline interpolation methods can reconstruct the end-to-end

network traffic, the reconstruction errors are inevitable. To further improve the reconstruction

accuracy, we employ the weighted geometric average method to combine both interpolation

approaches. We minimize the sum of squares of logarithm errors of the combination model to

determine the optimal weighted coefficients.

According to the above discussion, for the reconstruction results ŷ f and ŷc of the fractal and

cubic spline interpolation methods, without the loss of generality, we assume that the following

holds:

y^f ¼ ðy^f ð1Þ; y
^

f ð2Þ; . . . ; y
^

f ðj� NÞÞ

y^c ¼ ðy^cð1Þ; y
^

cð2Þ; . . . ; y
^

cðj� NÞÞ
ð18Þ

(

Then, the weighted geometric average model for them can be denoted as:

ŷðtÞ ¼ ŷb
f ðtÞŷ

1�b
c ðtÞ ð19Þ

where b represents the weighted coefficient and 0�b�1. ŷðtÞ denotes the reconstruction

results of the end-to-end network traffic at time t after performing the weighted geometric

average. 0�t�j×N and t2N. Eq (18) denotes the reconstruction results ŷ f and ŷc via the fractal

and cubic spline interpolation methods, respectively. Eq (19) obtain the reconstruction and

estimation results according to our system model shown in Eq (2).

To calculate the weighted coefficient b, we assume y(t) represents the sample values of the

end-to-end network traffic where 0�t�j×N. Using Eq (19), we obtain the following objective

Fine-granularity inference and estimations to network traffic
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function:

EðtÞ
2
¼ ðlnŷ ðtÞ � lnyðtÞÞ

2
¼ ½blnŷðtÞ þ ð1� bÞlnŷcðtÞ � lnyðtÞ�

2

¼ ½bðlnŷ f ðtÞ � lnyðtÞÞ þ ð1� bÞðlnŷcðtÞ � lnyðtÞÞ�
2
¼ BTDðtÞB ð20Þ

where 0�t�j×N.D(t) meets the following equation:

DðtÞ ¼ ½lnŷ f ðtÞ � lnyðtÞ; lnŷcðtÞ � lnyðtÞ�
T
½lnŷ f ðtÞ � lnyðtÞ; lnŷcðtÞ � lnyðtÞ� ð21Þ

According to Eqs (20) and (21), for 0�t�j×N, we obtain the following objective function:

min E2 ¼
X

j�N

t¼0

EðtÞ
2
¼ BT

X

j�N

t¼0

DðtÞ

 !

B ¼ BTDB ð22Þ

Generally, D is a symmetric positive definite matrix. Therefore, for B = (b,1−b)T, E2>0.

Then, Eq (22) can be converted into:

min BTDB

s:t: b > 0
ð23Þ

(

By solving Eq (23), we can the optimal weighted coefficient as follows:

b ¼

X

j�N

t¼0

EcðtÞ
2
�
X

j�N

t¼0

Ef ðtÞEcðtÞ

X

j�N

t¼0

Ef ðtÞ
2
þ
X

j�N

t¼0

EcðtÞ
2
� 2

X

j�N

t¼0

Ef ðtÞEcðtÞ

ð24Þ

The following equation holds:

1� b ¼

X

j�N

t¼0

Ef ðtÞ
2
�
X

j�N

t¼0

Ef ðtÞEcðtÞ

X

j�N

t¼0

Ef ðtÞ
2
þ
X

j�N

t¼0

EcðtÞ
2
� 2

X

j�N

t¼0

Ef ðtÞEcðtÞ

ð25Þ

where Ef(t) and Ec(t) are satisfied with:

Ef ðtÞ ¼ lny^f ðtÞ � lnyðtÞ

EcðtÞ ¼ lny^cðtÞ � lnyðtÞ
ð26Þ

(

According to Eqs (19)–(26), we can obtain the accurate reconstruction results ŷðtÞ. The fol-

lowing states the detailed steps about our reconstruction approach.
Algorithm 3:
Step1. Give the sampling value yg(t) of the end-to-end network traffic.
Step2. Using Algorithm 1, obtain the fractal interpolation results ŷ f.
Step3. According to Algorithm 2, get the cubic spline interpolation
result ŷc.
Step4. Using Eq (24), determine the optimal weighted coefficient b and
build the weighted geometric average model shown in Eq (19).
Step5. For the new sampling value yg,new(t), attain the accurate recon-
struction result ŷðtÞ of the end-to-end network traffic according to Eq
(19).
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In short, we have proposed three algorithms to obtain the fine-granularity accurate end-to-

end traffic reconstruction and estimation from the coarse-granularity sampled data. Algorithm

1 is used to establish the fractal interpolation reconstruction and estimation, while algorithm 3

are utilized to attain the cubic spline interpolation result. Based on Algorithms 1–2, Algorithm

3 is exploited to reconstruct the total resulting estimation.

Simulation results and analysis

To verify our reconstruction approach to the end-to-end network traffic for SDN applications,

simulation experiments use the real data from the Abilene network [13] that contains 12 nodes

and 144 end-to-end flows. We use the Mininet simulation platform to simulate the SDN applica-

tion. In our simulation, we simulate the Abilene network topology and take the real data from it

as the input of our simulation topology. The TomoGravity [14], PCA [22] and SRSVD [1] meth-

ods are reported as accurate methods for the reconstruction of end-to-end traffic. Here, we com-

pare the proposed fractal interpolation reconstruction method proposed (Algorithm 1), the

proposed cubic spline interpolation reconstruction method (Algorithm 2), and the proposed

weighted geometric average reconstruction method (Algorithm 1). Then, we also analyze the

reconstruction errors, including the spatial relative errors (SREs), the temporal relative errors

(TREs), and the cumulative distribution function (CDF) of the SREs and TREs. Concurrently, we

Fig 3. Reconstruction results of end-to-end network traffic from the 60-minute time granularity to 5-minute.

https://doi.org/10.1371/journal.pone.0194302.g003
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analyze the impact of the different sampling granularities on the reconstruction performance and

discuss the performance improvement of our three methods compared to previous methods.

Reconstruction of network traffic

Figs 3, 4 and 5 respectively denote the reconstruction results of the Origin-Destination (OD)

(or end-to-end) flows when the time sampling granularity is 1 hour, 4 hours, and 8 hours. We

reconstruct the network traffic for every five minutes within seven days. For different sampling

granularities, we draw two OD flows. Each OD flow shows a comparison of the reconstructed

value and the true value. The figures show the reconstructed value obtained by the three meth-

ods proposed in this paper and the three methods mentioned in the literature, where the Pink

line indicates the real value. The Fractal, Spline and Geometry methods are represented by the

dark green, ink blue and bright blue lines, respectively. The SRSVD, TomoG, and PCAmeth-

ods are indicated with blue, yellow and green lines, respectively. Comparing the differences

between the true value and the reconstructed value shown in each figure, we have come to the

following three conclusions. First, Figs 3, 4 and 5 show that the reconstructed value of the Frac-

tal, Spline and Geometry methods are closer to the true value, and their reconstruction results
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Fig 4. Reconstruction results of the end-to-end network traffic from the 4-hour time granularity to 5-minute.

https://doi.org/10.1371/journal.pone.0194302.g004
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are superior to those of the SRSVD, TomoG and PCAmethods. Second, by comparing Fig 3A,

Fig 4A and Fig 5A, we see that with the increase of sampling granularity (from 60 minutes to 8

hours), the reconstruction results of the Fractal Method slightly worsen, but they are still better

than those of the SRSVD, TomoG and PCAmethods. Comparing subfigures (b) and (c) in

Figs 3, 4 and 5, the Spline and Geometry methods reach the same conclusion. Third, from Figs

3, 4 and 5, we find that the geometry method is superior to the Fractal and Spline methods and

much closer to the true value of the end-to-end network traffic.

Reconstruction error analysis

In the reconstruction of the end-to-end traffic, the SREs indicate the spatial relationships

between the reconstruction error and the end-to-end flow and reflects the reconstruction

accuracy of the reconstruction method in space. The TREs show the change in the reconstruc-

tion error over time and reflects the reconstruction accuracy of the reconstruction method in

time. The SREs and TREs of the end-to-end traffic are important indicators to measure the
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Fig 5. Reconstruction results of the end-to-end network traffic from the 8-hour time granularity to 5-minute.

https://doi.org/10.1371/journal.pone.0194302.g005
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reconstruction method. They are defined as follows:

errsp nð Þ ¼
jjx̂NðnÞ � xNðnÞjj2

jjxNðnÞjj2
; n ¼ 1; 2; . . . ; u

errtmðtÞ ¼
jjx̂uðtÞ � xuðtÞjj2

jjxuðtÞjj2
; t ¼ 1; 2; . . . ;N

ð27Þ

8

>

>

>

<

>

>

>

:

where errsp(n) and errtm(t) denote the SRE and TRE for node pairs n and at time slot t, respec-

tively; u and N represent the node pairs’ and measurement time slots’ number.

Figs 6, 7 and 8 show the SREs and TREs of the end-to-end network traffic reconstruction

using the Fractal, Spline, Geometry, SRSVD, TomoG, and PCAmethods from the 60-minute,

4-hour, and 8-hour time granularities to the 5-minute one. From Fig 6A, 6B and 6C, we see

that for the network traffic reconstruction from the 60-minute to the 5-minute time granular-

ity, our proposed three methods have lower SREs and TREs than the SRSVD, TomoG, and

PCA. Moreover, in contrast to the SRSVD, TomoG, and PCA, the SREs of our three methods

Fig 6. The SREs and TREs of the six methods from the 60-minute time granularity to the 5-minute one.

https://doi.org/10.1371/journal.pone.0194302.g006
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are lower and have no large fluctuations. This indicates that our three methods can perform

more accurate and robust reconstructions of the end-to-end network traffic from 60 minutes

to 5 minutes for all end-to-end flows than the SRSVD, TomoG, and PCA. Similarly, the TREs

of our three methods are lower and also have no large fluctuations. This also indicates that our

three methods can perform more accurate and robust reconstructions of the end-to-end net-

work traffic from 60 minutes to 5 minutes for all reconstruction time slots than the SRSVD,

TomoG, and PCA. More importantly, the SREs and TREs of the fractal, spline and geometry

methods are all respectively below 0.4 and 0.15. In our three methods, Fig 6D illustrates that

the SREs and TREs of the geometry method are the lowest, but those of the fractal and spline

methods are nearly identical. This is consistent with our expectations. Thus, for the recon-

struction of the end-to-end network traffic from the 60-minute to the 5-minute, our three

methods hold lower reconstruction errors.

From Fig 7A, 7B and 7C, we see that for the network traffic reconstruction from the 4-hour

to the 5-minute time granularity, our proposed three methods hold lower SREs and TREs than
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Fig 7. The SREs and TREs of the six methods from the 4-hour time granularity to the 5-minute one.

https://doi.org/10.1371/journal.pone.0194302.g007
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the SRSVD, TomoG, and PCA. Moreover, compared with the SRSVD, TomoG, and PCA, the

SREs of our three methods are lower and have no large fluctuations. This indicates that our

three methods can perform more accurate and robust reconstructions of the end-to-end net-

work traffic from 4 hours to 5 minutes for all end-to-end flows than the SRSVD, TomoG, and

PCA. Similarly, the TREs of our three methods are lower and have no large fluctuations. This

also indicates that our three methods can perform more accurate and robust reconstructions

of the end-to-end network traffic from 4 hours to 5 minutes for all reconstruction time slots

than the SRSVD, TomoG, and PCA. More importantly, the SREs and TREs of the fractal,

spline and geometry methods are all respectively below 0.5 and 0.2. In our three methods, Fig

7D illustrates that the SREs and TREs of the geometry method are the lowest, but those of the

fractal and spline methods are nearly identical. This is consistent with our expectations. Thus,

for the reconstruction of end-to-end network traffic from 4 hours to 5 minutes, our three

methods hold lower reconstruction errors.
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Fig 8. SREs and TREs of six methods from 8-hour time granularity to 5-minute one.

https://doi.org/10.1371/journal.pone.0194302.g008
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From Fig 8A, 8B and 8C, we also see that for the network traffic reconstruction from the

8-hour to the 5-minute time granularity, our proposed three methods also hold lower SREs

and TREs than the SRSVD, TomoG, and PCA. Moreover, in contrast to the SRSVD, TomoG,

and PCA, the SREs of our three methods are lower and have no large changes. This shows that

our three methods can make more accurate and robust reconstructions of the end-to-end net-

work traffic from 8 hours to 5 minutes for all end-to-end flows than the SRSVD, TomoG, and

PCA. Similarly, the TREs of our three methods are lower and also have no large fluctuations.

This also suggests that our three methods can perform more accurate and robust reconstruc-

tions of the end-to-end network traffic from 8 hours to 5 minutes for all reconstruction time

slots than the SRSVD, TomoG, and PCA. More importantly, the SREs and TREs of fractal, the

spline and geometry methods are all respectively below 0.5 and 0.2. In our three methods, Fig

8D tells us that the SREs and TREs of the geometry method are lowest, but those of the fractal

and spline methods are nearly identical. This is consistent with our expectations. Thus, for the

reconstruction of end-to-end network traffic from the 8-hour to the 5-minute, our three meth-

ods hold lower reconstruction errors.

Figs 6, 7 and 8 show that for different time granularities of end-to-end network traffic, the

curves of the SREs and TREs of our methods are all below those of the SRSVD, TomoG, and

PCA. Moreover, the curves of the SREs and TREs of the geometry method are below those of

the fractal and spline methods, but those of the fractal and spline methods are nearly overlap-

ping. This indicates that our methods can perform more accurate reconstructions of the end-
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Fig 9. The CDF of the SREs and TREs with the 60-minute sampling granularity.

https://doi.org/10.1371/journal.pone.0194302.g009
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to-end network traffic, and the geometry method proposed in this paper exhibits the lowest

construction error for all end-to-end flows and time slots.

Impact of sampling granularity on performance

To more accurately evaluate the reconstruction results of these methods, here we discuss the

impact of the sampling granularity on reconstruction performance by analyzing the CDFs of

the SREs and TREs of these methods, namely, the CSRE (the CDFs of the SREs) and the CTRE

(the CDFs of the TREs). Figs 9, 10 and 11 respectively denote the CSRE and CTRE of each

method, with the sampling granularities of 60 minutes, 4 hours, and 8 hours. From Fig 9, for

the 60-minute sampling granularity, we see that for the geometry, fractal, spline, TomoG,

SRSVD, and PCAmethods, the SREs of approximately 91%, 88%, 87%, 60%, 45%, and 42% of

the end-to-end flows are below 0.5. Moreover, the TREs of approximately 80%, 67%, 58%, 0%,

0%, and 0% of the time slots are below 0.1. Furthermore, the curves of the CSRE and CTRE of

the geometry, fractal, and spline methods are far above those of the TomoG, SRSVD, and

PCA. That of geometry method is on the top. Similarly, from Fig 10, for the 4-hour sampling

granularity, we see that for the geometry, fractal, spline, TomoG, SRSVD, and PCAmethods,

the SREs of approximately 82%, 81%, 80%, 60%, 45%, and 42% of the end-to-end flows are

below 0.5. Moreover, the TREs of approximately 48%, 38%, 21%, 0%, 0%, and 0% of the time

slots are below 0.1. Furthermore, the curves of the CSRE and CTRE of the geometry, fractal,

and spline methods are far higher than those of the TomoG, SRSVD, and PCA. Moreover, that

of the geometry method is on the top. From Fig 11, for the 8-hour sampling granularity, we see
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Fig 10. The CDF of the SREs and TREs with the 4-hour sampling granularity.

https://doi.org/10.1371/journal.pone.0194302.g010
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that for the geometry, fractal, spline, TomoG, SRSVD, and PCAmethods, the SREs of approxi-

mately 80%, 79%, 75%, 60%, 45%, and 42% of the end-to-end flows are below 0.5. Moreover,

the TREs of approximately 25%, 24%, 5%, 0%, 0%, and 0% of the time slots are below 0.1. The

curves of the CSRE and CTRE of the geometry, fractal, and spline methods are far higher than

those of the TomoG, SRSVD, and PCA. Again, that of the geometry method is on the top.

Figs 9, 10 and 11 show that as the sampling granularity of the end-to-end network traffic

increases, the reconstruction errors of the geometry, fractal, and spline methods proposed in

this paper also increase. This indicates that different sampling granularities can have impacts

on the reconstruction performance for our methods, which is consistent with our expectations.

Figs 9, 10 and 11 illustrate that, in contrast to the TomoG, SRSVD, and PCA, the geometry,

fractal, and spline methods still possess more accurate reconstruction performance.

Performance improvement

Figs 12, 13 and 14 illustrate the performance improvement ratios of the fractal, spline and

geometry methods relative to the TomoG, PCA, and SRSVD when the sampling time granu-

larities are 60 minutes, 4 hours, and 8 hours. From Fig 12, we discover that when the sampling

time granularity is 60 minutes, the average performance improvement ratios of the fractal

method to the TomoG, PCA, and SRSVD are up to 61.9%, 62.4%, and 65.5%, respectively.

When the sampling time granularity is 4 hours, the average performance improvement ratios

of the fractal method relative to the TomoG, PCA, and SRSVD are 53.7%, 54.3%, and 58.1%,

respectively. When the sampling time granularity is 8 hours, the average performance
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Fig 11. The CDF of the SREs and TREs with the 8-hour sampling granularity.

https://doi.org/10.1371/journal.pone.0194302.g011
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improvement ratios of the fractal method relative to the TomoG, PCA, and SRSVD, are 43.9%,

44.6%, and 49.2%, respectively. This indicates that, in this scenario, the proposed fractal

method holds the best reconstruction performance.

Fig 13 illustrates that when the sampling time granularity is 60 minutes, the average perfor-

mance improvement ratios of the spline method relative to the TomoG, PCA, and SRSVD are

64.7%, 65.8%, and 67.8%, respectively. When the sampling time granularity is 4 hours, the

average performance improvement ratios of the spline method relative to the TomoG, PCA,

and SRSVD are 57.9%, 59.2%, and 61.6%, respectively. When the sampling time granularity is

8 hours, the average performance improvement ratios of the spline method relative to the

TomoG, PCA, and SRSVD are 54.1%, 55.6%, 58.2%, respectively. This suggests that, in this

scenario, the proposed spline method exhibits the most accurate reconstruction performance.

From Fig 14, we can see that when the sampling time granularity is 60 minutes, the average

performance improvement ratios of the geometry method relative to the TomoG, PCA, and

SRSVD are 66.5%, 67.0%, and 69.7%, respectively. When the sampling time granularity is 4

hours, the average performance improvement ratios of the geometry method relative to the

TomoG, PCA, and SRSVD are 58.9%, 59.5%, and 62.8%, respectively. When the sampling

time granularity is 8 hours, the average performance improvement ratios of the geometry

method relative to the TomoG, PCA, and SRSVD are 53.0%, 53.6%, and 57.4%, respectively.

This suggests that, under this scenario, the proposed spline method has the best reconstruction

performance.
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Fig 12. The performance improvement of the fractal relative to the TomoG, PCA, SRSVD.
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https://doi.org/10.1371/journal.pone.0194302.g013

60min 4h 8h
0

10%

20%

30%

40%

50%

60%

70%

80%

im
p

ro
v
e

m
e

n
t 
ra

ti
o

Geometry:TomoG

Geometry:PCA

Geometry:SRSVD

Fig 14. The performance improvement of the geometry relative to the TomoG, PCA, SRSVD.
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Conclusion

This paper studies how to recover the end-to-end network traffic in fine time granularity from

the sampled traffic traces in high-speed backbone networks for SDN applications. By taking

advantage of the fractal and self-similar features of the end-to-end network traffic, we use the

fractal interpolation method to recover them in the finer time granularity. Concurrently, we

also use the cubic spline interpolation method to reconstruct the end-to-end network traffic in

the finer time granularity. To fully exploit the advantages of the two reconstruction methods

proposed in this paper, we account for the weighted geometric average process to improve the

reconstruction accuracy of the end-to-end network traffic. By combining both of the presented

reconstruction methods, we propose the third reconstruction approach for the end-to-end net-

work traffic. Simulation results show that our approaches hold the best reconstruction

performance.
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