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Abstract. The advent of multicore processors represents a disruptive
event in the history of computer science as conventional parallel program-
ming paradigms are proving incapable of fully exploiting their potential
for concurrent computations. The need for different or new programming
models clearly arises from recent studies which identify fine-granularity
and dynamic execution as the keys to achieve high efficiency on multi-
core systems. This work presents an implementation of the sparse, mul-
tifrontal QR factorization capable of achieving high efficiency on multi-
core systems through using a fine-grained, dataflow parallel programming
model.
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1 Introduction

The QR factorization is the method of choice for the solution of least-squares
problems arising from a vast field of applications including, for example, geodesy,
photogrammetry and tomography (see [15, 3] for an extensive list).

The cost of the QR factorization of a sparse matrix, as well as other factor-
izations such as Cholesky or LU, is strongly dependent on the fill-in generated,
i.e., the number of nonzero coefficients introduced by the factorization. Although
the QR factorization of a dense matrix can attain very high efficiency because
of the use of Householder reflections (see [16]), early methods for the QR factor-
ization of sparse matrices were based on Givens rotations with the objective of
reducing the fill-in. One such method was proposed by Heath and George [10],
where the fill-in is minimized by using Givens rotations with a row-sequential
access of the input matrix. In order to exploit the sparsity of the matrix, such
methods suffered a considerable lack of efficiency due to the poor utilization
of the memory subsystem imposed by the data structures that are commonly
employed to represent sparse matrices.

The multifrontal method, first developed for the Cholesky factorization of
sparse matrices [8] and then extended to the QR factorization [12, 9], quickly
gained popularity over these approaches thanks to its capacity to achieve high
performance on memory-hierarchy computers. In the multifrontal method, the



2 Alfredo Buttari

factorization of a sparse matrix is cast in terms of operations on relatively smaller
dense matrices (commonly referred to as frontal matrices or, simply, fronts)
which gives a good exploitation of the memory subsystems and the possibility
of using Householder reflections instead of Givens rotations while keeping the
amount of fill-in under control. Moreover, the multifrontal method lends itself
very naturally to parallelization because dependencies between computational
tasks are captured by a tree-structured graph which can be used to identify
independent operations that can be performed in parallel.

Several parallel implementations of the QR multifrontal method have been
proposed for shared-memory computers [14, 2, 7]; all of them are based on the
same approach to parallelization which suffers scalability limits on modern, mul-
ticore systems (see Section 3.1).

This work describes a new parallelization strategy for the multifrontal QR
factorization that is capable of achieving very high efficiency and speedup on
modern multicore computers. This method leverages a fine-grained partitioning
of computational tasks and a dataflow execution model [17] which delivers a
high degree of concurrency while keeping the number of thread synchronizations
limited.

2 The Multifrontal QR Factorization

The multifrontal method was first introduced by Duff and Reid [8] as a method
for the factorization of sparse, symmetric linear systems and, since then, has
been the object of numerous studies and the method of choice for several, high-
performance, software packages such as MUMPS [1] and UMFPACK [6].

At the heart of this method is the concept of an elimination tree, exten-
sively studied and formalized later by Liu [13]. This tree graph describes the
dependencies among computational tasks in the multifrontal factorization. The
multifrontal method can be adapted to the QR factorization of a sparse ma-
trix thanks to the equivalence of the R factor of a matrix A and the Cholesky
factor of the normal equation matrix ATA. Based on this equivalence, the elim-
ination tree for the QR factorization of A is the same as that for the Cholesky
factorization of ATA.

In a basic multifrontal method, the elimination tree has n nodes, where n
is the number of columns in the input matrix A, each node representing one
pivotal step of the QR factorization of A. Every node of the tree is associated
with a frontal matrix that contains all the coefficients affected by the elimination
of the corresponding pivot. The whole QR factorization consists in a bottom-up
traversal of the tree where, at each node, two operations are performed:

– assembly: a set of rows from the original matrix is assembled together with
data produced by the processing of child nodes to form the frontal matrix;

– factorization: one Householder reflector is computed and applied to the
whole frontal matrix in order to annihilate all the subdiagonal elements in
the first column. This step produces one row of the R factor of the original
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Fig. 1. Example of multifrontal QR factorization. The cij coefficients denote the con-
tribution blocks.

matrix and a complement which corresponds to the data that will be later
assembled into the parent node (commonly referred to as a contribution
block). The Q factor is defined implicitly by means of the Householder vectors
computed on each front.

Figure 1 shows how the QR factorization of the small 8 × 5 matrix in the
top-left part can be achieved through the multifrontal method. The related elim-
ination tree is depicted in the bottom-right part of the figure. Beside each node
of the tree, the corresponding frontal matrix is shown after the assembly and
after the factorization operations (the transition between these two states is
illustrated by the dashed arrows).

In practical implementations of the multifrontal QR factorization, nodes of
the elimination tree are amalgamated to form supernodes. The amalgamated piv-
ots correspond to rows of R that have the same structure and can be eliminated
at once within the same frontal matrix without producing any additional fill-in.
This operation can be performed by means of efficient Level-3 BLAS routines.
The amalgamated elimination tree is also commonly referred to as assembly tree.

In order to reduce the operation count of the multifrontal QR factorization,
two optimizations are commonly applied:

1. once a frontal matrix is assembled, its rows are sorted in order of increasing
index of the leftmost nonzero (Figure 2 (middle)). The number of operations
can thus be reduced by ignoring the zeroes in the bottom-left part of the
frontal matrix;

2. the frontal matrix is completely factorized (Figure 2 (right)). Despite the fact
that more Householder vectors have to be computed for each frontal matrix,
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Fig. 2. Techniques to reduce the complexity of the multifrontal QR factorization.

the overall number of floating point operations is lower since frontal matrices
are smaller. This is due to the fact that contribution blocks resulting from
the complete factorization of frontal matrices are smaller.

A detailed presentation of the multifrontal QR method, including the opti-
mization techniques described above, can be found in Amestoy et al. [2].

The multifrontal method can achieve very high efficiency on modern comput-
ing systems because all the computations are arranged as operations on dense
matrices; this reduces the use of indirect addressing and allows the use of ef-
ficient Level-3 BLAS routines which can achieve a considerable fraction of the
peak performance of modern computing systems.

The factorization of a sparse matrix is commonly preceded by a preprocessing
phase, commonly referred to as the analysis phase, where a number of (mostly
symbolic) operations are performed on the matrix such as row and column per-
mutations to reduce the amount of fill-in, the determination of the elimination
tree or the symbolic factorization to estimate the amount of memory needed
during the factorization phase.

In the reminder of this paper, we will assume that the analysis phase is
already performed, and thus we will only focus on the factorization; specifically,
we will assume that a fill-reducing permutation of the input matrix and the
corresponding assembly tree have been computed.

3 Thread-Level Parallelism

Sparse computations are well known for being hard to parallelize on shared-
memory, multicore systems. This is due to the fact that the efficiency of many
sparse operations, such as the sparse matrix-vector product, is limited by the
speed of the memory system. This is not the case for the multifrontal method;
since computations are performed as operations on dense matrices, a surface-
to-volume ratio between memory accesses and computations can be achieved
which reduces the utilization of the memory system and opens opportunities for
multithreaded, parallel execution.

In a multifrontal factorization, parallelism is exploited at two levels:

– tree-level parallelism: computations related to separate branches of the as-
sembly tree are independent and can be executed in parallel;
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– node-level parallelism: if the size of a frontal matrix is big enough, its partial
factorization can be performed in parallel by multiple threads.

3.1 The classical approach

The classical approach to shared-memory parallelization of QR multifrontal
solvers (see [14, 2, 7]) is based on a complete separation of the two sources of
concurrency described above. The node parallelism is delegated to multithreaded
BLAS libraries and only the tree parallelism is handled at the level of the multi-
frontal factorization. This is commonly achieved by means of a task queue where
a task corresponds to the assembly and factorization of a front. A new task is
pushed into the queue as soon as it is ready to be executed, i.e., as soon as all the
tasks associated with its children have been treated. Threads keep polling the
queue for tasks to perform until all the nodes of the tree have been processed.

Although this approach works reasonably well for a limited number of cores
or processors, it suffers scalability problems mostly due to two factors:

– separation of tree and node parallelism: the degree of concurrency in both
types of parallelism changes during the bottom-up traversal of the tree; fronts
are relatively small at leaf nodes of the assembly tree and grow bigger towards
the root node. On the contrary, tree parallelism provides a high level of
concurrency at the bottom of the tree and only a little at the top part
where the tree shrinks towards the root node. Since the node parallelism is
delegated to an external multithreaded BLAS library, the number of threads
dedicated to node parallelism and to tree parallelism has to be fixed before
the execution of the factorization. Thus, a thread configuration that may be
optimal for the bottom part of the tree will result in a poor parallelization
of the top part and vice-versa.

– synchronizations: the assembly of a front is an atomic operation. This in-
evitably introduces synchronizations that limit the concurrency level in the
multifrontal factorization.

3.2 A new, fine-grained approach

The limitations of the classical approach discussed above can be overcome by
employing a different parallelization technique based on fine granularity par-
titioning of operations combined with a data-flow model for the scheduling of
tasks. This approach was already applied to dense matrix factorizations [4] and
extended to the supernodal Cholesky factorization of sparse matrices [11].

In order to handle both tree and node parallelism in the same framework, a
block-column partitioning of the fronts is applied and three elementary opera-
tions defined:

1. panel: this operation amounts to computing the QR factorization of a block-
column;
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2. update: updating a block-column with respect to a panel corresponds to
applying to the block-column the Householder reflections resulting from the
panel reduction;

3. assemble: assembles a block-column into the parent node (if it exists);

The multifrontal factorization of a sparse matrix can thus be defined as a
sequence of tasks, each task corresponding to the execution of an elementary op-
eration of the type described above on a block-column. The tasks are arranged
in a Direct Acyclic Graph (DAG); the edges of the DAG define the dependen-
cies among tasks and thus the order in which they have to be executed. These
dependencies are defined according to the following rules:

– a block-column is fully assembled when all the corresponding portions of the
contribution blocks from its children have been assembled into it. Once a
block-column is fully assembled, any elementary operation can be performed
on it (according to the other dependencies) even if the rest of the front is
not yet assembled or if the factorization of its children is not completed;

– a panel factorization can be executed on a fully assembled block-column if
the block-column is up-to-date with respect to all the previous panel factor-
izations in the same front;

– a fully assembled block-column can be updated with respect to panel i in its
front if it is up-to-date with respect to all the panels 1, ..., i− 1 in the same
front and if the panel factorization on block-column i has completed;

– a block-column can be assembled into the parent (if it exists) when it is
up-to-date with respect to the last panel factorization to be performed on
the front it belongs to.

Figure 3 shows the DAG associated with the problem in Figure 1 for the
case where the block-columns have size one. The dashed boxes surround all the
tasks that are related to a single front and the horizontal displacement of a task
identifies the index, within the front, of the column on which the task is executed.
In the figure and in the above discussion, the assembly of the matrix nonzero
entries into the frontal matrices has been ignored for the sake of readability.

This DAG globally retains the structure of the assembly tree but expresses a
higher degree of concurrency because tasks are defined on a block-column basis
instead of a front basis. This allows us to handle both tree and node parallelism
in a consistent way.

The execution of the tasks in the DAG is controlled by a data-flow model;
a task is dynamically scheduled for execution as soon as all the input operands
are available to it, i.e., when all the tasks on which it depends have finished. The
scheduling of tasks can be guided by a set of rules that prioritize the execution
of a task based on, for example,

– cache awareness: in order to maximize the reuse of data into cache memories,
tasks may be assigned to threads based on a locality policy (see [11]);

– fan-out: the fan-out of a task in the DAG defines the number of other tasks
that depend on it. Thus, tasks with a higher fan-out should acquire higher
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Fig. 3. The DAG associated to the problem in Figure 1.

priority since they generate more concurrency. In the case of the QR method
described above, panel factorizations are regarded as higher priority opera-
tions over the updates and assemblies.

4 Experimental results

The method discussed in Section 3.2 was implemented in a software package
referred to as qrm below. The code is written in Fortran95 and OpenMP is the
technology chosen to implement the multithreading. Although there are many
other technologies for multithreaded programming (e.g., pThreads, Intel TBB,
Cilk or SMPSS), OpenMP offers the best portability since it is available on any
relatively recent system. The current version of the code does not include cache-
aware scheduling of tasks. The qrm code was compared to the SuiteSparseQR [7]
(referred to as spqr) released by Tim Davis in 2009. For both packages, the
COLAMD matrix permutation was applied in the analysis phase to reduce the
fill-in and equivalent choices were made for other parameters related to matrix
preprocessing (e.g., nodes amalgamation); as a result, the assembly trees pro-
duced by the two packages only present negligible differences. Both packages
are based on the same variant of the multifrontal method (that includes the
two optimization techniques discussed in Section 2) and, thus, the number of
floating point operations done in the factorization and the number of entries in
the resulting factors are comparable. The size of block-columns in qrm and the
blocking size (in the classical LAPACK sense) in spqr were chosen to be the
best for each matrix. The rank-revealing feature of spqr was disabled as it is
not present in qrm.

The two packages were tested on a set of ten matrices with different charac-
teristics from the UF Sparse Matrix Collection [5]; in this section, only results
related to the matrices listed in Table 1 are presented as they are representative
of the general behavior of the qrm and spqr codes measured on the whole test



8 Alfredo Buttari

Mat. name m n nz nz(R) nz(H) Gflops

Rucci1 1977885 109900 7791168 184115313 1967908664 12340
ASIC 100ks 99190 99190 578890 110952162 53306532 729

ohne2 181343 181343 6869939 574051931 296067596 3600
mk11-b4 10395 17325 51975 21534913 42887317 396

route 20894 43019 206782 3267449 7998419 2.4

Table 1. Test matrices. nz(R), nz(H) and Gflops result from the qrm factorization.

set. In the case of underdetermined systems, the transposed matrix is factorized,
as it is commonly done to find the minimum-norm solution of a problem.

Experiments were run on two architectures whose features are listed in Ta-
ble 2.

Type # of cores freq. mem. type compilers BLAS/LAPACK

Intel Xeon 8 2.8 GHz UMA Intel 11.1 Intel MKL 10.2
(4-cores × 2-sockets)

AMD Opteron 24 2.4 GHz NUMA Intel 11.1 Intel MKL 10.2
(6-cores × 4-sockets)

Table 2. Test architectures.

Figure 4 shows the speedup achieved by the qrm code for the factorization
of the Rucci1 matrix on both test architectures compared to the spqr code; the
curves plot the results in Tables 3 and 4 normalized to the sequential execution
time.

On the Intel Xeon platform (Figure 4, left), a remarkable 6.9 speedup is
achieved on eight cores which is extremely close to the value obtained by the
LAPACK dgeqrf dense factorization routine; the spqr code only achieves a 3.88
speedup using eight cores on the Intel Xeon system.

On the AMD Opteron system (Figure 4, right), the qrm code still shows a
good speedup when compared to spqr and dgeqrf although it must be noted
that all of them exhibit some scalability limits; this is most likely caused by
poor data locality due to the NUMA architecture of the memory subsystem.
An ongoing research activity aims at investigating cache-aware task scheduling
policies that may mitigate this problem.

Figure 5 shows the fraction of the dgemm matrix multiply routine performance
that is achieved by the qrm and spqr factorizations.

Tables 3 and 4 show the factorization times for the test matrices on the two
reference architectures. Analysis times are also reported for qrm in parentheses.

The number of threads participating in the factorization in the spqr code is
given by the product of the number of threads that exploit the tree parallelism
times the number of threads in the BLAS routines. As discussed in Section 3.1,
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Fig. 4. Speedup for the qrm and spqr multifrontal factorization of the Rucci1 ma-
trix compared to the LAPACK dense dgeqrf factorization routine. The dashed lines
represent linear speedup.

this rigid partitioning of threads may result in suboptimal performance; choosing
a total number of threads that is higher than the number of cores available on
the system may yield a better compromise. This obviously does not provide any
benefit to qrm. The last line in Tables 3 and 4 shows, for spqr, the factorization
times for the best combination of tree and node parallelism; for example, for
the ohne2 matrix, on the Intel Xeon system, the shortest factorization time is
achieved by allocating five threads to the tree parallelism and three to the BLAS
parallelism for a total of 15 threads.

The experimental results show that the proposed approach described in Sec-
tion 3.2 achieves better scalability and better overall execution times on modern,
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the LAPACK dgeqrf dense matrix factorization routine compared to the BLAS dgemm

dense matrix product routine.
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Intel Xeon
q
r
m

# th. Rucci1 ASIC 100ks ohne2 mk11-b4 route
1 1237.4 (3.0) 81.7 (0.5) 427.7 (6.6) 41.3 (0.1) 0.88 (0.1)
2 629.5 41.9 218.3 21.2 0.54
4 319.8 21.7 110.8 11.2 0.33
8 179.4 12.4 60.8 6.6 0.21

s
p
q
r

# th. Rucci1 ASIC 100ks ohne2 mk11-b4 route
1 1245.2 84.8 449.3 42.3 0.85
2 714.9 50.3 271.3 24.4 0.53
4 430.0 32.3 161.0 15.0 0.34
8 320.7 25.0 111.9 10.8 0.31
best 295.5 22.2 104.4 10.8 0.29

Table 3. Factorization times, in seconds, on the Intel Xeon system for qrm (top) and
spqr (bottom). Analysis times are reported in parentheses for qrm.

AMD Opteron

q
r
m

# th. Rucci1 ASIC 100ks ohne2 mk11-b4 route
1 1873.8 (2.5) 125.9 (0.3) 664.8 (4.1) 66.7 (0.1) 1.33 (0.1)
2 969.0 64.7 338.8 34.8 0.76
4 507.1 33.8 175.7 18.5 0.45
8 281.7 18.3 92.2 11.4 0.31
16 193.7 12.7 55.7 10.5 0.61
24 175.4 12.2 46.0 9.9 0.97

s
p
q
r

# th. Rucci1 ASIC 100ks ohne2 mk11-b4 route
1 2081.1 134.4 712.8 65.8 1.15
2 1206.8 83.1 428.2 38.8 0.63
4 773.2 54.2 279.4 25.4 0.37
8 574.1 40.2 178.8 17.8 0.26
16 443.4 31.1 138.0 17.0 0.21
24 390.1 28.0 108.4 16.5 0.24
best 379.5 26.5 107.1 16.5 0.21

Table 4. Factorization times, in seconds, on the AMD Opteron system for qrm (top)
and spqr (bottom). Analysis times are reported in parentheses for qrm.

multicore-based systems when compared to the classical parallelization strategy
implemented in the spqr software. On the AMD Opteron architecture, the qrm

code has consistently higher factorization times than spqr and a poor scaling
for the route matrix: this is exclusively due to flaws in the implementation of
the tasks scheduler and are not related to the proposed parallelization approach.
The qrm tasks scheduler is currently undergoing a complete rewriting that aims
at improving its efficiency by reducing the search space in the tasks DAG.



Fine granularity sparse QR factorization for multicore based systems 11

Acknowledgments

I would like to thank the MUMPS team and, particularly, Chiara Puglisi and
Patrick Amestoy for their precious help and support.

References

1. P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. MUMPS: a general purpose
distributed memory sparse solver. In A. H. Gebremedhin, F. Manne, R. Moe, and
T. Sørevik, editors, Proceedings of PARA2000, the Fifth International Workshop on
Applied Parallel Computing, Bergen, June 18-21, pages 122–131. Springer-Verlag,
2000. Lecture Notes in Computer Science 1947.

2. P. R. Amestoy, I. S. Duff, and C. Puglisi. Multifrontal QR factorization in a
multiprocessor environment. Int. Journal of Num. Linear Alg. and Appl., 3(4):275–
300, 1996.
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