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agriculture. Here, we report on a fine-mapping approach of 
a major quantitative trait locus (QTL) ALS4.1GS, UC for ALS 
resistance in a mapping population derived from the resist-
ant genotype G5686 and the susceptible cultivar Sprite. 180 
F3 individuals of the mapping population were evaluated 
for ALS resistance and genotyped with 22 markers distrib-
uted over 11 genome regions colocating with previously 
reported QTL for ALS resistance. Multiple QTL analysis 
identified three QTL regions, including one major QTL on 
chromosome Pv04 at 43.7 Mbp explaining over 75 % of the 
observed variation for ALS resistance. Additional evaluation 
of 153 F4, 89 BC1F2 and 139 F4/F5/BC1F3 descendants with 
markers in the region of the major QTL delimited the region 
to 418 kbp harboring 36 candidate genes. Among these, 
11 serine/threonine protein kinases arranged in a repetitive 
array constitute promising candidate genes for controlling 
ALS resistance. Single nucleotide polymorphism markers 
cosegregating with the major QTL for ALS resistance have 
been developed and constitute the basis for marker-assisted 
introgression of ALS resistance into advanced breeding 
germplasm of common bean.

Introduction

Common bean (Phaseolus vulgaris L.) is the most 
important grain legume for direct human consumption 
(Broughton et al. 2003), rich in protein, iron and zinc (Sathe 
2002; Hemalatha et al. 2007; Martinez Meyer et al. 2013). 
The global production of dry and green beans is steadily 
increasing and has reached 44 million metric tons per year 
(FAOSTAT 2011). Around 111,000 years ago, common 
bean diverged from a common ancestor into two different 
gene pools: large-seeded Andean and small- to medium-
seeded Mesoamerican beans (Debouck et al. 1993; Gepts 
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1998; Singh et al. 2002; Mamidi et al. 2013). Snap beans 
for green pod harvest are mainly of Andean origin (Gepts 
and Bliss 1985; Myers and Davis 2002). Common bean is 
a self-pollinating, diploid species with 11 chromosomes 
(2n = 2x = 22) (Mok and Mok 1976; Singh 2005), whereof 
473 Mbp of DNA sequence have been assembled (Phyto-
zome.net 2014; Schmutz et al. 2014).

Angular leaf spot (ALS) caused by the hemibiotrophic 
fungus Pseudocercospora griseola (Sacc.) Crous and U. 
Braun (Bassanezi et al. 2002; Crous et al. 2006) was reported 
to be responsible for up to 60 and 80 % yield losses in Brazil 
(de Jesus et al. 2001) and Colombia (Schwartz et al. 1981), 
respectively. P. griseola spores germinate on the leaf surface 
after 3 days of moist conditions, enter the leaf through the 
stomata and grow intercellularly, limited by the leaf veins 
resulting in an angular lesion shape (Monda et al. 2001; 
Willocquet et al. 2004). Infection and sporulation occurs in 
a broad temperature range, from 10 to 33 °C (reviewed in 
Allorent and Savary 2005). Following the two gene pools 
of common bean, Mesoamerican and Andean, the pathogen 
evolved in each gene pool separately (Guzman et al. 1995; 
Crous et al. 2006). Whereas Andean pathogens are mainly 
virulent on Andean beans, Mesoamerican and some Andean 
isolates found in Africa attack both Andeans and Mesoa-
merican beans (Pastor-Corrales et al. 1998; Mahuku et al. 
2002). Since P. griseola is highly variable (Abadio et al. 
2012), breeding for a broad ALS resistance involves genes of 
Andean and Mesoamerican origin or introduction of resist-
ance genes from the secondary gene pool (Mahuku et al. 
2003). Genetic resistance is the most efficient strategy to 
prevent yield loss considering ecological and economic fac-
tors (Miklas et al. 2006). However, only few resistance genes 
have been tagged with closely linked markers.

In Mesoamerican germplasm, the ALS resistance gene 
Phg-2 was identified in the cultivar Mexico 54 on chro-
mosome Pv08 (Sartorato et al. 2000; Mahuku et al. 2011). 
Localization of reported markers revealed ALS resist-
ance loci at the same region in Mesoamerican germplasm 
MAR 2 (Ferreira et al. 2000), Cornell 49-242 (Nietsche 
et al. 2000), Ouro Negro (Corrêa et al. 2001; Faleiro et al. 
2003), G10474 (Mahuku et al. 2004) and G10909 (Mahuku 
et al. 2011). A genetic test for allelism with one pathotype 
indicated that the Mesoamerican line BAT 322 contained 
resistance locus Phg-2 as Mexico 54 (Namayanja et al. 
2006), whereas in MAR 2, Mexico 54 and Ouro Negro, 
five additional independent dominant genes (Phg-3 to 
Phg-7) were identified using different pathotypes (Caixeta 
et al. 2003, 2005; Sanglard et al. 2013). As for the Andean 
lines, several markers linked to ALS resistance have been 
reported (Table 1). Phg-1 of the Andean cultivar AND 
277 (Carvalho et al. 1998) was mapped to chromosome 1 
(Goncalves-Vidigal et al. 2011). In the Andean accession 
G5686, Mahuku et al. (2009) identified a major resistance 

locus on Pv04 later confirmed by Oblessuc et al. (2012) 
and named ALS4.1GS, UC. In addition, Mahuku et al. (2009) 
reported two complementary resistance genes in G5686 
on Pv09 (ALS9.1GS) and Pv04 (ALS4.2GS). Further QTL 
studies support a more quantitative nature of ALS resist-
ance (Lopez et al. 2003; Teixeira et al. 2005; Mahuku et al. 
2011; Oblessuc et al. 2012).

Wang et al. (2005) reported a genotyping method based 
on shifting melting temperatures (Tm) of PCR amplicons 
introduced by allele-specific primers differing in Tm. How-
ever, the primer design is rather inflexible due to the neces-
sity for the primers to end exactly on the SNP. High-reso-
lution melting curve analysis (HRM) developed by Gundry 
et al. (2003) and Wittwer et al. (2003) can overcome this 
disadvantage: Any sequence polymorphism between ampli-
cons can be detected by fluorescence in much larger PCR 
amplicons (Reed and Wittwer 2004; Montgomery et al. 
2007). HRM was used to fine-map resistance loci based on 
a well-defined DNA sequence polymorphism (Lehmensiek 
et al. 2008) or even when type, number and composition 
of the DNA sequence polymorphism in a particular PCR 
amplicon were unknown (Studer et al. 2009).

In this study, we aimed at (1) validating effective ALS 
resistance regions in common bean, (2) fine-mapping the 
source of resistance to identify candidate genes for ALS 
resistance and (3) developing closely linked markers for 
breeding applications.

Materials and methods

Plant material

A cross between the resistant Andean common bean gen-
otype G5686 and the susceptible cultivar Sprite had been 
used for the development of an F2 population to character-
ize the genetics of ALS resistance (Mahuku et al. 2009). 
This population was now advanced to an F3 and F4 popu-
lation with 180 and 153 individuals, respectively. Addi-
tionally, a resistant F1 plant backcrossed to the susceptible 
parental genotype was used to generate a BC1F2 mapping 
population (89 individuals). G5686 is a highly ALS-resist-
ant Andean dry bean accession from Ecuador (Mahuku 
et al. 2009). Sprite is an Andean snap bean cultivar (Cunha 
et al. 2004; Gepts et al. 2008) and was susceptible to over 
400 of 503 tested ALS isolates (Mahuku et al. 2009).

Phenotypic evaluation of angular leaf spot (ALS) 
resistance

Plants were grown in the greenhouse for 17 days at 
24–32 °C and infected with the P. griseola isolate 268-COL 
belonging to pathotype 31-0 (Pastor-Corrales et al. 1998; 
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Mahuku et al. 2009). The inoculation with P. griseola was 
done according to the CIAT practical guide (Castellanos 
et al. 2011). The standard visual scale in which 1–3 means 
resistant, 4–6 intermediate and 7–9 susceptible was used 
for phenotypic scoring (Schoonhoven and Pastor-Corrales 
1987). The plants were evaluated 11, 15 and 20 days after 
inoculation in the first cycle. Additionally, at the first evalu-
ation, visible hypersensitive reaction (HR) was recorded. 
In a second infection cycle with 139 selected recombinant 
descendants, faster disease development was noted. Plants 
were visually scored after 9, 13 and 15 days post-inocula-
tion. The calculated area under the disease progress curve 
(AUDPC) was used for classification into susceptible and 
resistant plants (Mahuku et al. 2009).

Genotyping

Genotyping was conducted according to the strategy of 
Peleman et al. (2005): The 180 F3 plants were genotyped 
using two SSR and 17 Tm markers which were found to be 
polymorphic out of a set of 64 tested Tm markers (Table 1, 
Supplemental Table S1). The 153 F4, 89 BC1F2 and 139 F4/
F5/BCF3 descendants were genotyped using three selected 
SNPs (Marker63, Marker50 or Marker9) in order to iden-
tify recombination events in a particular region of interest 
on chromosome Pv04. Finally, 47 recombinant plants were 
selected and genotyped using three HRM markers, which 
were found to be polymorphic out of 27 tested amplicons. 
Primers were designed by the Primer3web version 4.0.0 
(Koressaar and Remm 2007; Untergasser et al. 2012).

DNA was extracted according to Xin et al. (2003) from 
approximately 30 mm2 young trifoliate leaf sample tissue 
or young unopened trifoliate leaves, using 100 µl buffer 
A (50 mM NaOH, 2 % Tween 20) and 75 µm buffer B 
(100 mM Tris–HCl, 1.7 mM EDTA, pH 7.3). The extract 
was diluted 1:10 in distilled water for PCR.

Simple sequence repeat (SSR) genotyping

SSR markers Pv-ag004 and Pv-ctt001 from Yu et al. (2000) 
were amplified by PCR in a 20- µl reaction volume. The 
PCR mix contained 5 μl of genomic DNA solution, 1X 
Taq buffer [10 mM Tris–HCl pH 8.8, 50 mM KCl, 0.8 % 
(v/v) Nonidet P40 (Fermentas)], 2.5 mM MgCl2, 0.4 mM 
dNTPs mix (Promega), 0.2 μM of each primer (forward 
and reverse) and 0.15 μl of homemade Taq polymerase. 
0.1 % Bovine serum albumin (BSA) and 1 % polyvinylpyr-
rolidone (PVP) were added to counteract polymerase inhib-
itors present in the DNA extract (Xin et al. 2003).

Pv-ag004 and Pv-ctt001 were amplified under the fol-
lowing PCR conditions: initial denaturation at 94 °C for 
3 min followed by 35 cycles of denaturation at 94 °C for 
30 s, 48 °C annealing temperature (Yu et al. 2000) for 30 s Fo
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and extension at 72 °C for 8 min. The SSR marker visuali-
zation was described in Mahuku et al. (2009) with a separa-
tion at 80 V for approximately 1 h using an Owl T-Rex™ 
vertical S3S camera (ThermoFisher Scientific Inc, USA).

Melting temperature (Tm) shift genotyping

The physical positions of reported markers linked with 
ALS resistance were identified using sequences from the 
PhaseolusGenes Toolbox (http://phaseolusgenes.bioin-
formatics.ucdavis.edu) (2013) and positional information 
from the Phytozome platform (Goodstein et al. 2012). In 
those regions (Table 1), SNPs were selected out of a SNP 
collection provided by The Common Bean Coordinated 
Agricultural Project (BeanCAP) available on NCBI (2013) 
and Blair et al. (2013) presenting over 3,300 SNPs. SNP 
assays were designed following Wang et al. (2005). DNA 
was amplified by PCR in a total volume of 20 μl contain-
ing 4 μl of genomic DNA, 1X Taq buffer, 1.5 mM MgCl2, 
0.2 mM dNTPs mix, 0.15 μM each primer (two allele-spe-
cific forward primers and the common reverse primer), 1X 
EvaGreen® (Biotium) and 0.1 μl of homemade Taq poly-
merase. Amplification was carried out with the following 
program: initial denaturation at 94 °C for 3 min followed 
by 35 cycles of denaturation at 92 °C for 15 s, annealing 
of 15 s (temperature specific to each primer trio, Table 1) 
and extension at 72 °C for 15 s, finally followed by 10 min 
extension at 72 °C and 5 min at 10 °C. Tm shifts of the 
amplicons were measured by melting point analysis in a 
fluorescence-detecting thermocycler (Mx3000P Strata-
gene) and used to classify the samples into GG (homozy-
gous DNA sequence of G5686), GS (heterozygous) or SS 
(homozygous DNA sequence of Sprite) genotypes.

Genotyping using high-resolution melting curve analysis 
(HRM)

HRM genotyping was used to further delimit the position 
of the QTL ALS4.1GS, UC. Genes of common bean within 
this region were selected using the Phytozome genome 
browser (Phytozome.net 2014), and primer pairs spanning 
introns were designed with the Primer3web version 4.0.0 
(Rozen and Skaletsky 2000). For genes without introns, 
EST sequences of different common bean genotypes were 
extracted from the database of Ramirez et al. (2005) and 
CleanEST (Lee and Shin 2009) and aligned to the common 
bean genome in order to identify SNPs. Primer pairs were 
designed to flank the SNPs in 150–300 bp distance. Primer 
sequences were compared against other closely related 
species such as soybean (Glycine max) or barrel medic 
(Medicago truncatula) using the Phytozome platform 
(Goodstein et al. 2012) to select most conserved primer 
sequences.

Thirteen EST-derived and fourteen intron-flanking 
primer pairs were designed between 43.5 and 44.5 Mbp 
on Pv04. The amplification was carried out in a PCR vol-
ume of 7.3 μl containing 1X LightScanner high sensitivity 
master mix (BioFire Diagnostics Inc., UT, USA) including 
LCGreen® PLUS, 0.10 mM of each forward and reverse 
primer and 1.3 μl of DNA. Additionally, 14 μl of mineral 
oil was added to each sample, covering the mix to prevent 
evaporation during PCR and melting analysis. PCR con-
ditions were set as following: denaturation for 2 min at 
95 °C, 40 cycles of 30 s at 94 °C, 30 s annealing at the 
optimal temperature for each primer pair (Table 1) and 30 s 
for elongation at 72 °C followed by a final cycle of 2 min 
at 72 °C, 30 s at 94 °C and 30 s at 25 °C. Using a LightS-
canner Instrument (BioFire Diagnostics Inc.; 96-well plate 
format), the amplification product was melted ramping 
from 60 to 95 °C in 0.05 °C steps per second under contin-
uous fluorescence measurement. The melting curves were 
related to genotype GG, SS and GS using the LightScan-
ner® and Call-IT® software modules (BioFire Diagnostics 
Inc.).

Identification of candidate genes within the region of QTL 
ALS4.1GS, UC

In order to identify homologies to previously reported 
candidate resistance genes, an NCBI megaBLAST query 
(Zhang et al. 2000) was conducted using the sequence in 
the region cosegregating with ALS4.1 of the common bean 
reference genome (Andean accession G19833, Schmutz 
et al. 2014). Function of genes analogous to Arabidopsis 
was studied using The Arabidopsis Information Resource 
(TAIR) (Swarbreck et al. 2008). Phylogenetic analysis 
of candidate genes and related common bean genes was 
carried out using the amino acid sequences of the candi-
date protein kinases. First, the sequences of the candidate 
kinases were used for a protein BLAST against the refer-
ence genome, collecting the first 100 hits of each candidate 
sequence. All sequences were then aligned using Clustal 
Omega (Sievers et al. 2011) and the results analyzed with 
the software package Mega5 for a comparative analysis and 
the construction of a maximum-likelihood tree (Tamura 
et al. 2011).

Statistical analysis

Single and multiple QTL analyses were carried out using 
the R package qtl developed by Broman et al. (2003). 
Single QTL analysis and LOD score calculation were 
done by marker regression and standard interval mapping 
(200,000 bp steps, 1,000 permutations, 0.01 assumed gen-
otyping error rate) in order to analyze the major QTL. p 
values were derived by the analysis of variance (ANOVA) 

http://phaseolusgenes.bioinformatics.ucdavis.edu
http://phaseolusgenes.bioinformatics.ucdavis.edu
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if the residues showed normal distribution and using 
lmPerm R package of Wheeler (2010) if this was not the 
case. A multiple QTL model was built using the func-
tion stepwise with 200,000 bp steps, 1,000 permutations, 
0.01 assumed genotyping error rate and 256 imputations 
in order to calculate a penalized LOD score, followed by 
analyses omitting one QTL at a time to obtain an ANOVA 
table.

Results

Phenotypic evaluation for angular leaf spot (ALS) 
resistance

In order to validate QTL reported in various Andean 
germplasm, 180 F3 (65 families) of the Sprite × G5686 
population were evaluated with the P. griseola pathotype 
31-0. Plants were classified into 119 resistant and 61 sus-
ceptible plants, showing AUDPC resistance values of 
<20 and ≥20, respectively. The ratio between the resist-
ant and the susceptible plants is in accordance with one 
dominant resistance gene segregating in an expected 5:3 
ratio, assuming independent F3 individuals (observed Chi-
squared = 1.001, p = 0.317). HR was observed in 18 out 
of the 180 F3 plants. Hypersensitive plants were healthy 
and vigorous, showing only bright green dots of few mil-
limeters of diameter on the leaf surface without damage to 
the leaf tissue.

Multiple QTL analysis

Genotyping of these 180 F3 plants with 2 SSR and 20 
SNP markers (Table 1) and subsequent multiple QTL 
analyses identified one major and two minor QTL 
explaining in total 80.1 % of the phenotypic variation for 
ALS resistance (Table 2). The major QTL (ALS4.1GS, 

UC), closely linked to Marker50 localized on chromo-
some Pv04 at around 43.7 Mbp, explained 75.3 % of the 
ALS resistance. Two smaller QTL (ALS10.1DG, UC, GS and 
ALS9.1GS) explained 4.9 and 1.7 % of the ALS resistance, 
respectively. Out of three markers genotyped on Pv10, 
Marker17, localized at around 38 Mbp, was best linked to 

Table 2  Multiple QTL analyses resulted in three significant QTL for angular leaf spot (ALS) resistance on chromosomes Pv04, Pv09 and 
Pv010. QTL models were designed using the stepwise function of R package qtl (Broman et al. 2003)

LOD score, percentage of explained variance and p value were derived from F statistics by dropping one QTL at a time resulting in the ANOVA 
table. An additional QTL (ALS5.2UC, GS) was identified by marker regression on Pv05

Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001
a Ferreira da Silva et al.(2003), bLopez et al. (2003), cOblessuc et al. (2012) and dMahuku et al. (2009) reported QTL at the same region in 
referred Andean germplasm

QTL model Closest 
marker

Chromosome Physical 
position (bp)

LOD Explained 
variance (%)

p value (F) Germplasm in which colo-
cating QTL was identified

ALS4.1GS, UC: ALS10.11DG, UC, GS 
+ ALS9.1GS

– 4:10 + 9 – 63.0 80.1 0***

ALS4.1GS, UC Marker50 4 43,773,443 61.1 75.3 <2e−16*** G5686, ESAL 550a, 
G19833b, CAL 143c

ALS10.1DG, UC, GS Marker17 10 38,010,446 8.7 5.0 1.17e−06*** G5686d, G19833b, CAL 143c

ALS4.1GS, UC: ALS10.1DG, UC, GS – 4:10 – 5.8 3.2 4.31e−05*** –

ALS9.1GS Marker33 9 17,264,951 3.2 1.7 0.00106** G5686d

ALS5.2UC, GS Marker31 5 38,198,674 1.5 3.7 <0.05 
(permutation)*

G5686, CAL 143c
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Fig. 1  One major QTL controls angular leaf spot (ALS) resistance 
in the G5686 × Sprite population in an evaluation of 180 F3 plants 
infected with Pseudocercospora griseola (Sacc.) Crous and U. 
Braun pathotype (race 31-0). a Box plot sorted by the genotypes at 
Marker50 shows significant correlation (permutation p < 2e−16, 
161 observations) to ALS disease scores, explaining 70.4 % of the 
phenotypic variation for ALS resistance. The horizontal bar (bold) 
indicates the median, the box represents inter-quartile range, dis-
continuous lines represent the upper and lower quartile, and outlier 
samples (>1.5 × inter-quartile range) are depicted by a circle. Let-
ters indicate significant differences between genotypes using permu-
tation tests. b LOD curve with Marker8, 50 and 9 revealed Marker50 
at 43,773,443 bp as closest linked with ALS resistance gene. Dashed 
line represents LOD score threshold for the 5 % significance level
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ALS10.1. As for ALS9.1, evaluated with two markers, it 
was most closely linked to Marker33 localized on Pv09 at 
around 17.2 Mbp.

Single QTL analysis

Four markers (Marker7, 8, 50 and 9) were analyzed in the 
region of ALS4.1. Single QTL analysis by interval map-
ping showed that Marker50 had the most significant effect 
on ALS resistance (LOD score of 45.9, Fig. 1a), mask-
ing all other QTL effects in the single QTL analysis. In 
accordance with the reported dominant inheritance of ALS 
resistance, the Marker50 genotypes GG and GS resulted 
in resistant phenotypes and SS in susceptible phenotypes 
(permutation p < 2e−16 including 172 observations, 
Fig. 1a). However, heterozygous GS genotypes had lower 
resistance levels indicating some codominance effect. 
Marker50 showed complete linkage with ALS resistance 
in the sense of all homozygous plants with genotype GG 
being resistant. Only three plants with a Sprite SS genotype 
on this locus (according to all four markers in the region) 
were evaluated as resistant, suggesting phenotypic escapes 
or involvement of other loci.

Marker17, linked to ALS10.1 localized on chromosome 
Pv010 at around 38.01 Mbp, showed weak linkage with 
ALS resistance (permutation p < 0.1, 169 observations). 
Considering only plants with homozygous SS genotypes 
at Marker50, correlation of Marker17 with ALS resist-
ance was significant (p = 0.003 including 52 observations, 
Fig. 2a). Marker17 explained 18.2 % of phenotypic varia-
tion in those selected plants. Analysis of further markers at 
the beginning of Pv010, MarkerA1 (p = 0.010, 40 observa-
tions) and MarkerA4 (p = 0.044, 40 observations) at 7.15 
and 9.73 Mbp, respectively, also resulted in a weak but sig-
nificant correlation with ALS resistance considering only 
susceptible SS genotypes at Marker50.

Marker33 (permutation p < 0.1, 153 observations), 
linked to ALS9.1 on Pv09, only had a significant effect 
on ALS resistance in multiple QTL analysis together with 
Marker32 (permutation p < 0.2, 148 observations), posi-
tioned 2.5 Mbp upstream. In the subpopulation considering 
only plants with SS genotype of Marker50, Marker33 con-
tributed weakly to ALS resistance (p = 0.062, 47 observa-
tions, Fig. 2b).

Marker31 (QTL ALS5.2UC, GS) on Pv05 explained 
3.7 % of ALS resistance (permutation p < 0.05, 130 
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Fig. 2  Effects of QTLs ALS10.1DG, UC, GS, ALS9.1GS and ALS5.2UC, GS  
on angular leaf spot (ALS) resistance in the G5686 × Sprite popula-
tion infected with Pseudocercospora griseola (Sacc.) Crous and U. 
Braun pathotype (race 31-0). a Marker17 (ALS10.1) localized on 
chromosome Pv010 showed significant correlation with ALS resist-
ance (p = 0.003, 52 observations) within the subpopulation of the 
F3 G5686 × Sprite population with homozygous SS genotypes at 
Marker50 (ALS4.1GS, UC). b In the same subpopulation, Marker33 
(ALS9.1) on Pv09 showed a weak correlation with ALS resistance 

(p = 0.062, 47 observations). c Marker31 (ALS5.2) localized on 
Pv05 showed significant influence on ALS resistance (permutation 
p < 0.05, 130 observations) evaluating the whole F3 population. For 
each genotype, the horizontal bar (bold) indicates the median, the 
box represents inter-quartile range, discontinuous lines represent the 
upper and lower quartile, and outlier samples (>1.5 × inter-quartile 
range) are depicted by a circle. Letters indicate significant differences 
between genotypes using TukeyHSD (Marker17) and permutation 
tests (Marker31)
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observations, Fig. 2c). However, QTL analysis resulted 
in a LOD score (1.5) below the calculated significance 
threshold requiring a LOD score above 14.5 according to 
a 5 % significance level. It was the only marker on Pv05 
and could therefore not be included in multiple QTL 
analysis.

Fine-mapping of the major QTL for ALS resistance

Fine-mapping of the ALS4.1 region was conducted on 47 
recombinants out of 561 screened plants (selected from 180 
F3, 153 F4, 89 BC1F2 and 139 F4/F5/BC1F3 descendants that 
were investigated for recombination events in the genomic 
region of ALS4.1) using seven polymorphic markers: four 
SNP markers (Marker8, Marker63, Marker50 and Marker9) 
and three HRM markers (4M437, 4M439 and 4M442). 
Homozygous plants at 4M437 showed no recombination 
between the marker and the resistance gene, whereas the 
flanking Marker63 identified four and 4M439 two recom-
binant plants (Fig. 3). Hence, the region of ALS4.1 was 
delimited by the markers Marker63 and 4M439, extending 
from 43,497,706 to 43,915,434 bp.

Toward marker-assisted selection

To make this resistance locus available for marker-
assisted selection (MAS) to breeding programs, which 
do not have SNP genotyping facilities, we set up 

two assays at this locus for outsourcing at the com-
mercial provider LGC genomics (Hertfordshire, UK, 
http://www.lgcgenomics.com). Assay MAS_ALS4a is 
based on the polymorphism from Marker50 (Chr04, 
pos_43,773,443_T/G) and assay MAS_ALS4b (Chr04, 
pos_43,794,830_T/C) may have a higher specificity, 
as it was identified based on the recent whole-genome 
resequencing of genotype G5686 as a unique polymor-
phism compared with eight other resequenced geno-
types (AFR298, G10474, SEA5, MDE23-24, AND696, 
G40001, G35346 and VAX1, unpublished data). Geno-
typic data in Table 3 suggest using MAS_ALS4b for 
marker-assisted selection.

Identification of putative resistance genes  
within ALS4.1GS, UC

According to the reference sequence of the Andean com-
mon bean accession G19833, 36 genes are predicted in the 
region of the ALS4.1. Resequencing data did not reveal 
any polymorphisms in the coding sequences of the can-
didate genes (unpublished data), pointing toward unde-
tected insertions. Among the 36 genes, 11 very closely 
related to serine/threonine protein kinases (STPK) are 
annotated (Fig. 3). BLAST searches revealed two Arabi-
dopsis thaliana (At)-like STPKs described as putative 
resistance genes: Probable LRR receptor-like At1g07560 
and At1g18390 involved in response to chitin and 

Fig. 3  Fine-mapping of QTL 
ALS4.1GS, UC for angular leaf 
spot (ALS) resistance in the 
G5686 × Sprite mapping 
population points to a locus 
harboring repetitive serine/thre-
onine protein kinases (STPK). 
Correlations of Sprite genotypes 
(SS) and G5686 genotypes 
(GG) with the susceptible (sus) 
and resistant (res) pheno-
types of selected informative 
recombinant plants. Analysis of 
recombinants between flanking 
Marker63 and 4M439 mapped 
ALS4.1 to a 417,728-bp region. 
Shown below, 36 genes within 
the delimited ALS4.1 region 
that are annotated in the refer-
ence sequence. The delimited 
ALS4.1 region harbors 11 
STPKs containing leucine-rich 
repeats (Schmutz et al. 2014)

http://www.lgcgenomics.com


821Theor Appl Genet (2015) 128:813–826 

1 3

respiratory burst defense, best matching common bean 
genes Phvul.004G154600 and Phvul.004G154800, 
respectively (Phytozome.net 2014). To further charac-
terize the candidate kinases, the amino acid sequence of 
Phvul.004G155000 was used for a BLAST search to iden-
tify related genes in the bean genome. The amino acid 
sequences of the first 100 hits were aligned with the can-
didate STPKs, and a maximum-likelihood tree was built. 
Eight of the 11 kinases are part of a subfamily, together 
with other two kinases from Pv02 and 10, and are most 
related to each other, suggesting that they originate from 
recent local duplications. The other three kinases were 
grouped apart and are more closely related to kinases pre-
sent in Pv07, Pv03 and Pv02. (Supplemental Figure S1). 
Predicted functions of homologs in plant defense and the 
repetitive nature make these kinases prime candidates to 
cause the observed resistance ALS.

Discussion

Characterization of a major resistance locus

Phenotypic evaluation of an F3 mapping population 
derived from a resistant Andean common bean genotype 
G5686 and a susceptible cultivar Sprite for ALS resist-
ance demonstrated the presence of one dominant major 
resistance locus on chromosome Pv04 and three minor 
loci. Molecular characterization and multiple QTL analy-
ses confirmed a major resistance source (ALS4.1GS, UC) 
explaining 75.3 % of the phenotypic variation for ALS 
resistance, which was previously tagged with the SSR 
marker Pv-ag004 (Mahuku et al. 2009). In the pre-
sent study, ALS4.1 was delimited to a region between 
43,497,706 and 43,915,434 bp on Pv04 and tagged with 
two markers linked to ALS resistance. The two markers, 
HRM marker 4M437 and Tm shift Marker50, were devel-
oped based on EST sequence alignments (Ramirez et al. 
2005; Lee and Shin 2009) or SNP collections (NCBI 2013; 
Blair et al. 2013), respectively. This approach enabled the 
development of markers at any genomic region, independ-
ent of polymorphic microsatellite motifs as necessary for 
SSR markers. In combination with the HRM technology, 
allowing for fast and accurate closed-tube genotyping 
in any genetic background, the markers presented here 
enable efficient marker-assisted introgression of ALS4.1 
into advanced breeding germplasm of common bean. 
The value of G5686 as an Andean source of resistance to 
withstand both Andean and Mesoamerican pathotypes of 
P. griseola has been recognized in previous studies (Pas-
tor-Corrales et al. 1998; Mahuku et al. 2009). Ferreira 
da Silva et al. (2003) reported marker PV-atct001 linked 
to a resistant allele in a cross of ESAL 550 and Carioca 
MG. Lopez et al. (2003) reported a QTL near RGA14 in 
DOR364 × G19833. Now available physical marker positions 
suggest these may be the same QTL ALS4.1EC, DG, GS, UC 
which remains to be confirmed. The ALS resistance gene 
in ALS4.1 is likely to be one of the genes Phg-2, Phg-3 or 
Phg-4, reported in AND277 by Caixeta et al. (2005). But 
as these are not mapped and resistance evaluations used 
other isolates, further allelism tests are required to identify 
which gene exactly is underlying ALS4.1

ALS4.1GS, UC embeds a repetitive genome region 
including potential resistance genes

According to the common bean reference sequence, the 
ALS4.1 region harbors among its 36 genes repetitive 
homologs of putative disease resistance genes (Schmutz 
et al. 2014). Similar observations were reported for other 
major resistance loci, as, for example, the Mla locus con-
ferring resistance to powdery mildew in barley (Hordeum 

Table 3  Specificity of markers tagging QTL ALS4.1GS, UC evalu-
ated on a panel of Andean and Mesoamerican genotypes, compar-
ing Marker50 and genotyping data obtained from LGC Genomics 
genotyping facility MAS_ALS4a and MAS_ALS4b. Comparison of 
marker50 and MAS_ALS4a (based on same SNP) shows that MAS_
ALS4a assay design failed, which is moderately unusual. Sprite allele 
is not called, whereas G5686 and heterozygous samples are called as 
G5686 allele. Assay MAS_ALS4b is most specific, distinguishing 
G5686 and AND277 from the other genotypes

Genotype Marker ID

MAS_ALS4a Marker50 MAS_ALS4b

G5686 G:G G:G C:C

SPRITE ? T:T T:T

G10474 ? ? T:T

AND 277 G:G G:G C:C

BAT 93 ? T:T T:T

G855 ? T:T T:T

G1805 ? T:T T:T

G5653 ? T:T T:T

G10909 G:G G:G T:T

G14519 ? T:T T:T

G18970 ? T:T T:T

G40001 ? T:T ?

G23823E ? T:T T:T

G4691 ? T:T T:T

JULES ? T:T T:T

MBC 7 G:G G:G T:T

MBC 39 G:G G:G T:T

MEXICO 54 ? T:T T:T

NUA 56 ? T:T T:T

VAX 1 ? T:T T:T

VAX 6 ? T:T T:T

XAN 112 ? T:T T:T
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vulgare L.), where 15 out of 32 annotated protein-coding 
genes can be associated with plant defense responses (Wei 
et al. 2002). In the present study, 11 annotated genes con-
taining STPK domains were identified in the region of 
ALS4.1, eight and three genes, respectively, in two phylo-
genetically closely related groups. This is interesting since 
plant resistance genes are often clustered in the genome 
and evolve rapidly via diverse mechanisms (Smith et al. 
2004; David et al. 2009). For example, resistance against 
soybean cyst nematode is mediated by copy number varia-
tion of a 31-kbp genome segment fortifying the expression 
of several dissimilar genes in a repetitive multigene region 
(Cook et al. 2012). STPKs phosphorylate hydroxyl groups 
of serine or threonine residues which is essential for vari-
ous signaling pathways in eukaryotes including pathogen-
triggered immunity (Park et al. 2011; Zhang et al. 2013). 
For example, the Pto protein in tomato containing a STPK 
domain (Martin et al. 1993; Loh et al. 1998) induces HR by 
recognizing two specific Pseudomonas syringae pathogen 
effectors (Dong et al. 2009). Similar STPK-based defenses 
were reported in Arabidopsis (Warren et al. 1999; Swid-
erski and Innes 2001) and wheat against powdery mildew 
(Cao et al. 2011). The involvement of STPKs in pathogen 
response and the repetitive arrangement also found at other 
previously described resistance loci (e.g., Vallejos et al. 
2006) make this STPK cluster a likely candidate to cause 
the observed ALS resistance. Resequencing data of G5686 
did not reveal any polymorphisms to the reference G19833 
that may cause the resistance. While this may be explained 
with the difficult assembly of this region due to its vari-
ous local duplications, we hypothesize the G5686 likely 
contains additional duplications. To detect new genes, a 
de novo assembly necessitating deeper sequencing data is 
required.

Hypersensitive reaction is probably linked with ALS4.1GS, UC 
and ALS10.1DG, UC, GS

Plants usually respond to biotrophic fungi such as P. gri-
seola at early infection stages with HR (Glazebrook 2005). 
The At1g18390 gene, sharing 54.3 % protein sequence 
homology with STPK Phvul.004G154800 in ALS4.1, is 
likely involved in respiratory burst within the HR (Phy-
tozome.net 2014; TAIR 2013). Indeed, ALS4.1 was 
linked with observed HR as 16 out of 18 plants (observed 
χ2= 5.348, p = 0. 021) showing HR also had GG genotype 
at Marker50 within ALS4.1. Interestingly, Marker17 linked 
to ALS10.1 was also associated with HR as 15 out of 17 
plants (1 missing data, observed χ2 = 4.804, p = 0.028) 
showed both HR and GG genotype at Marker17, possibly 
explaining the small but significant resistance improve-
ment when both QTL present. This is in line with Zhou 
et al. (1995), who observed enhanced HR in the presence 

of additional genes besides resistance genes Pto and Prf. 
The fact that HR was observed only in 18 out of 180 plants 
of the F3 population indicates that HR may require several 
genes (Zhou et al. 1995; Salmeron et al. 1996), a low phe-
notypic penetrance, or that activation of systemic acquired 
resistance (Oh and Martin 2011) prevented the plants from 
visible symptoms.

ALS4.1GS, UC is a major QTL suitable for marker-assisted 
introgression of ALS resistance

In a previous study, three dominant and complemen-
tary genes linked with SSR markers Pv-ag004 (ALS4.1 
region), Pv-at007 (ALS10.1 region) and Pv-ctt001 (begin-
ning of Pv04), respectively, were reported to confer ALS 
resistance in an F2 population of the same cross infected 
with the same P. griseola pathotype (Mahuku et al. 2009). 
The authors concluded the involvement of three dominant 
and complementary genes, statistically expecting 56.3 % 
of plants which carry a G allele at Pv-ag004 (ALS4.1) to 
be resistant to ALS, whereas the observed proportion was 
68 %. In contrast, in the current study, 89 % of plants with a 
G allele at Pv-ag004 were resistant to ALS, and even 97 % 
of the plants with the homozygous genotype GG (data not 
shown). These percentages depend on the classification of 
heterozygous plants to be resistant or susceptible, which 
might have been different in Mahuku et al. (2009) and con-
founded the effect of Pv-ag004. Moreover, environmen-
tal conditions might have affected the otherwise identical 
phenotyping procedure. In the current study, ALS4.1 was 
masking the minor effect of Pv-at007 linked to ALS9.1GS 
and an effect of Pv-ctt001 could not be detected (permuta-
tion p > 0.5 including 78 observations). Consistent detec-
tion of ALS4.1 across repeated experiments explaining the 
major proportion of the observed resistance rather indicates 
that ALS resistance in this population is controlled by one 
independent major locus modified by few minor QTL. 
We conclude that ALS4.1 has a high value as a source for 
marker-assisted introgression of ALS resistance, with poly-
morphism T/C on Chr04 at 43,794,830 bp (marker MAS_
ALS4b) showing highest specificity for G5686.

Various QTL control ALS resistance

ALS resistance loci in the region of ALS4.1 were reported 
in different germplasm screened with several pathotypes 
(Faleiro et al. 2003; Lopez et al. 2003; Caixeta et al. 
2005; Mahuku et al. 2011) and in different environments 
(Oblessuc et al. 2012). For example, Ferreira da Silva et al. 
(2003) identified a major ALS resistance locus in the same 
region as ALS4.1 evaluating the ESAL 550 cultivar in a 
field experiment. Lopez et al. (2003) and Oblessuc et al. 
(2012) reported QTL in the same region explaining a 



823Theor Appl Genet (2015) 128:813–826 

1 3

smaller part of the variation using various Andean geno-
types and experimental conditions. Oblessuc et al. (2012) 
named two closely adjacent QTL on Pv04, ALS4.1 and 
ALS4.2, which encase the QTL reported here. Hence, 
we hypothesize that these are actually one QTL named 
ALS4.1GS, UC. AND277, the only genotype to share the 
G5686 allele for the MAS_ALS4b marker in the evaluated 
set (Table 1), is similar but not identical to G5686 (correla-
tion 0.88 based on 650 markers, unpublished data). Also 
available pedigree information does not indicate G5686 
in the ancestry of AND277; hence, there is no clear evi-
dence that G5686 and AND277 carry the same allele. On 
Pv10, Oblessuc et al. (2012) identified the major QTL 
ALS10.1DG, UC, GS (Marker17) explaining over 20 % of 
ALS resistance in the field, in both dry and wet season 
using CAL 143 as a source of resistance (Oblessuc et al. 
2012). ALS9.1GS was previously described by Mahuku 
et al. (2009) but not named. Taken together, the significant 
QTL in this study was also found in other experiments and 
genotypes, supporting the findings in this work.

ALS resistance initially reported to be monogenetic 
evaluating only one pathotype (Ferreira et al. 2000; Cor-
rêa et al. 2001) was shown to be quantitatively inherited 
evaluating different pathotypes (Faleiro et al. 2003; Caix-
eta et al. 2005). Pathotype-specific resistance in common 
bean was also reported considering different pathotypes of 
rust (Park et al. 1999; Faleiro et al. 2003) and anthracnose 
(Faleiro et al. 2003; Rodriguez-Suarez et al. 2007). Since 
G5686 proved resistance against a wide range of patho-
types (Mahuku et al. 2009), it appears likely that minor 
QTL or additional QTL will add specific resistance to other 
pathotypes.

Conclusion

A major QTL explaining 75.3 % of ALS resistance in the 
G5686 × Sprite population was validated, mapped to 418 
kbp on chromosome Pv04 and tagged with two closely 
linked SNP markers (Marker50 and 4M437) allowing 
efficient MAS. ALS4.1GS, UC defines a region of 36 genes 
including 11 STPKs, which are likely candidates for the 
resistance gene. Additionally, three minor QTLs were 
identified. The Andean resistance loci ALS4.1 and Phg-1 
as well as the Mesoamerican Phg-2 can now be combined 
and tested in elite cultivars in order to pyramid resistance 
genes.
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