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Summary

Autophagy is a bulk degradation system mediated by biogenesis of autophagosomes under starvation conditions. In Saccharomyces

cerevisiae, a membrane sac called the isolation membrane (IM) is generated from the pre-autophagosomal structure (PAS); ultimately,

the IM expands to become a mature autophagosome. Eighteen autophagy-related (Atg) proteins are engaged in autophagosome

formation at the PAS. However, the cup-shaped IM was visualized just as a dot by fluorescence microscopy, posing a challenge to

further understanding the detailed functions of Atg proteins during IM expansion. In this study, we visualized expanding IMs as cup-

shaped structures using fluorescence microscopy by enlarging a selective cargo of autophagosomes, and finely mapped the localizations

of Atg proteins. The PAS scaffold proteins (Atg13 and Atg17) and phosphatidylinositol 3-kinase complex I were localized to a position

at the junction between the IM and the vacuolar membrane, termed the vacuole–IM contact site (VICS). By contrast, Atg1, Atg8 and the

Atg16–Atg12–Atg5 complex were present at both the VICS and the cup-shaped IM. We designate this localization the ‘IM’ pattern. The

Atg2–Atg18 complex and Atg9 localized to the edge of the IM, appearing as two or three dots, in close proximity to the endoplasmic

reticulum exit sites. Thus, we designate these dots as the ‘IM edge’ pattern. These data suggest that Atg proteins play individual roles at

spatially distinct locations during IM expansion. These findings will facilitate detailed investigations of the function of each Atg protein

during autophagosome formation.
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Introduction

Macroautophagy, hereafter called simply ‘autophagy,’ is a bulk

degradation system widely conserved among eukaryotes from

yeast to mammals. When eukaryotic cells are faced with nutrient

starvation, they degrade cytoplasmic materials to obtain building

blocks that help them adapt to severe environmental conditions.

Currently, over 30 autophagy-related (ATG) genes have been

identified as necessary for various types of autophagy in yeast.

Among them, 18 ATG genes are essential for autophagosome

formation upon starvation (Mizushima et al., 2011; Nakatogawa

et al., 2009). These Atg proteins are involved in autophagosome

formation as components of several discrete functional units, but

their interrelationships are not yet well understood.

Identification of the pre-autophagosomal structure (PAS) was

an important milestone in the identification of the functioning

Atg proteins. Using fluorescence microscopy, the PAS was

initially found as a juxtavacuolar dot of Atg5 and Atg8 (Suzuki

et al., 2001). The PAS was detectable in some atg disruptants,

implying that the PAS can be organized regardless of

autophagosome formation (Suzuki et al., 2001). The PAS is

assembled through hierarchical interactions between Atg

proteins. Early in the pathway, the upstream factors Atg11 and

Atg17 modulate PAS assembly under nutrient-rich and starvation

conditions, respectively (Shintani and Klionsky, 2004; Suzuki

et al., 2007). Atg17 is a component of the Atg1–Atg13–Atg17–

Atg29–Atg31 complex, which is responsible for recruitment of

downstream Atg proteins upon starvation (Kawamata et al.,

2008). Atg9 is one of these downstream Atg proteins (Suzuki

et al., 2007). Atg9 is a membrane protein that is integrated into

Golgi-derived vesicles called Atg9 vesicles (Yamamoto et al.,

2012). A few Atg9 vesicles are targeted to the PAS (Yamamoto

et al., 2012), suggesting that lipids are components of the

PAS. After the PAS is assembled, it acts to generate the

isolation membrane (IM), which ultimately becomes a closed

autophagosome (Baba et al., 1997).

Atg8, one of the most downstream Atg proteins, is localized to

the PAS, the IM and the autophagosome, and is subsequently

delivered to the vacuole (Kirisako et al., 1999; Suzuki et al.,

2001). Thus, Atg8 is used as a marker for all of these autophagic

structures. However, two technical issues have obstructed further

progress: in Saccharomyces cerevisiae, the IM is not
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distinguishable from the PAS because of the resolution limit of

light microscopy; moreover, the PAS has not been detected by

electron microscopy. Therefore, in order to investigate the

function of each Atg protein it was crucial to develop a method

for discriminating the IM and PAS by fluorescence microscopy.

In this study, using Saccharomyces cerevisiae cells, we

visualized the IM as a cup-shaped structure using fluorescence

microscopy by enlarging a selective cargo of autophagosomes.

Using this method, we were able to finely map the localizations

of Atg proteins during IM expansion.

Results

Giant Ape1 complex enables to visualize isolation

membranes

Vacuolar aminopeptidase I (Ape1) is synthesized as a proform

(prApe1), and assembles into the Ape1 complex, in the cytoplasm

(Shintani et al., 2002). The Ape1 complex associates with a-

mannosidase and Ty1 virus–like particles to form the Cvt

(cytoplasm-to-vacuole targeting) complex (Lynch-Day and

Klionsky, 2010; Shintani et al., 2002; Suzuki et al., 2011). The

Cvt complex is selectively enclosed in Cvt vesicles under nutrient-

rich conditions, and in autophagosomes during starvation (Baba

et al., 1997). Core Atg proteins are responsible for the formation of

Cvt vesicles and autophagosomes (Xie and Klionsky, 2007). These

double-membrane-bound structures fuse with the vacuole, in

which prApe1 is processed to mature Ape1 (mApe1) (Klionsky

et al., 1992). When prApe1 is moderately overexpressed, prApe1

accumulates under nutrient-rich conditions, but matures to mApe1

when cells are starved (Geng et al., 2008), probably because

autophagosomes (,500 nm in diameter) have a larger cargo

capacity than Cvt vesicles (,150 nm in diameter).

When prApe1 was highly overexpressed from a multicopy

plasmid (supplementary material Fig. S1A), the majority of

Ape1 was detected as prApe1 even under autophagy-inducing

conditions (supplementary material Fig. S1B). Thus, overexpression

of prApe1 exceeds the capacity of autophagy, causing prApe1 to

accumulate in the cytoplasm. We examined the localization of

overexpressed prApe1 in RFP–prApe1-expressing cells, and found

that prApe1 formed a large spherical structure in the cytoplasm that

was detectable even by bright-field microscopy (arrows in Fig. 1A).

The diameter of these structures was,1.7 mmon average (Fig. 1B).

In these cells, vacuolar lumens were hardly stained with RFP

(asterisks in Fig. 1A). Presumably, once the Ape1 complex exceeds

a critical size, it becomes too large to be enclosed in an

autophagosome, and instead forms a large structure that remains

in the cytoplasm. We call the enlarged Ape1 complex the ‘giant

Ape1 complex’ (GAC), hereafter.

In cells containing a GAC (hereafter, GAC cells), membranous

structures were frequently associated with the GAC and the

vacuolar membrane (arrowheads in Fig. 1C,D). This localization

prompted us to hypothesize that these membranous structures are

related to the IM. Therefore, we examined the localization of

GFP–Atg8 in GAC cells. By fluorescence microscopy, we found

that a cup-shaped structure between the GAC and the vacuole is

indeed labeled with GFP–Atg8 (Fig. 1E). We measured the

fluorescence intensity across the GAC, and confirmed that GFP–

Atg8 is localized along the surface of the GAC (Fig. 1F). These

results show that the IM can be visualized in GAC cells by

fluorescence microscopy.

We examined the dynamics of IMs by time-lapse fluorescence

microscopy. In the cell shown in Fig. 1G, a dot of GFP–Atg8

emerged between the GAC and the vacuole (40-seconds panel),

then elongated along the surface of the GAC. Eventually, the IM

ceased to elongate at the maximum size persistently (320–440-

seconds; supplementary material Movie 1). To determine

whether such a paused IM was a dead-end structure or not, a

cup-shaped IM was examined by time-lapse fluorescence

microscopy (Fig. 1H). The IM (arrowhead) disappeared from

the surface of a GAC, and a new dot emerged at another site

between the vacuole and another GAC (double arrowhead). The

GAC still remained outside the vacuole (arrow). These results

indicate that the cup-shaped IM is long-lasting at the maximum

size but can be broken down physiologically.

In wild-type cells, the dynamics of GFP–Atg8 are difficult to

follow by fluorescence microscopy, because the PAS moves on

the surface of the vacuolar membrane, and autophagosome

formation is completed within 10 minutes (Geng et al., 2008). In

GAC cells, the dynamics of IM expansion can be followed

because the GAC is much less mobile because of its larger mass,

and the IM remains for a longer period at its maximum size.

Thus, we have established a method for visualizing the maximum

length stationary IMs in GAC cells.

Lengths of the IMs reflect the magnitude of autophagy

To investigate how Atg proteins are involved in IM expansion,

we measured the maximum length of GFP–Atg8-labeled

structures, which are localized between the GAC and the

vacuole, under the fluorescence microscope. In wild-type cells,

the maximum length of the cup-shaped IMs was ,1.21 mm

(Fig. 2A,B). GFP–Atg8 accumulated at the PAS in atg1D, atg2D

and atg18D cells (Suzuki et al., 2007). In these cells, GFP–Atg8

was localized at the PAS as an elliptical spot (Fig. 2A). The

major axis of this elliptical spot was much shorter than the IM

length observed in wild-type cells (Fig. 2B), suggesting that the

IM does not expand in these gene disruptants. We conclude that

Atg1, Atg2 and Atg18 are required for IM expansion.

Atg1 is a protein kinase and its kinase activity is essential for

autophagy (Kamada et al., 2000;Matsuura et al., 1997).We examined

whether the kinase activity of Atg1 was crucial for IM expansion. We

used atg1K54A and atg1D211A mutants, which are defective in

autophagy due to decreased kinase activity (Kamada et al., 2000;

Matsuura et al., 1997). The kinase activity of Atg1 can be estimated

by immunoblot analysis; the slower-migrating band represents

autophosphorylated Atg1 (Stephan et al., 2009). Phosphorylated

Atg1 slightly decreased in atg1K54A cells but was not detected in

atg1D211A cells (Fig. 2C), suggesting that Atg1 kinase activity

remains in atg1K54A cells but not in atg1D211A cells. We measured

the maximum length of the IM in these mutants and found that the

IMs in atg1K54A and atg1D211A cells were shorter than those in wild-

type cells and that those in atg1D211A cells were shorter than those in

atg1K54A cells (Fig. 2B). This result indicates that the length of the IM

correlates with Atg1 kinase activity. Next, we quantified the activity

of bulk autophagy using an alkaline phosphatase assay (Noda et al.,

1995). Autophagic activity partially persisted in atg1K54A cells but

was completely abrogated in atg1D211A cells (Fig. 2D). Taken

together, these results suggest that the magnitude of bulk autophagy

can be estimated from the IM lengths in GAC cells. Probably, the

kinase activity of Atg1 plays a crucial role in IM expansion.

Fine mapping of Atg proteins on the IMs

Among vacuolar protein sorting (Vps) proteins, which are

involved in sorting of Prc1 (also known as carboxypeptidase Y;

Fine mapping of Atg proteins during autophagosome formation 2535
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CPY) to the vacuole (Raymond et al., 1992), Vps15, Vps30 and

Vps34 are essential for autophagosome formation as components

of phosphatidylinositol (PtdIns) 3-kinase complex I (Kametaka

et al., 1998; Kihara et al., 2001; Obara et al., 2008a). We

investigated the localization of representative GFP-fused Atg and

Vps proteins in GAC cells expressing 26mCherry–Atg8 (Ch–

Atg8), and finely mapped the localization of Atg/Vps proteins

during IM expansion. PAS scaffold proteins (Atg13 and Atg17)

and PtdIns 3-kinase complex I were localized to a dot at the

junction between the IM and the vacuolar membrane (arrowheads

in Fig. 3), which we termed the vacuole-IM contact site (VICS).

By contrast, Atg1, Atg8 and the Atg16–Atg12–Atg5 complex

labeled the VICS and the IM (Fig. 3). We measured the

fluorescence intensity along the IM and found that the profiles

of these proteins and Ch–Atg8 overlapped extensively (Fig. 3).

Thus, we designate this localization as the ‘IM’ pattern. The

Atg2–Atg18 complex and Atg9 were distributed as two or three

dots associated with the IM; some of these dots were apparently

distinct from the VICS (Fig. 3). Time-lapse microscopy showed

that Atg2–GFP was initially visualized as a dot and subsequently

appeared as multiple dots at the edge of the IM (supplementary

material Fig. S2). Thus, we designate this localization as the ‘IM

edge’ pattern. These patterns correlate with known functional

units, with several exceptions, as detailed in the following

sections.

The localization of Atg1 is distinct from that of its

regulators

Upon starvation, Atg1 and Atg13 interact with the Atg17–Atg29–

Atg31 complex to form the Atg1–Atg13–Atg17–Atg29–Atg31

complex (hereafter, the PAS scaffold complex), in a manner

independent of Atg1 kinase activity (Kabeya et al., 2009;

Kamada et al., 2000; Kawamata et al., 2008). We used Atg13

and Atg17 as representative components of the PAS scaffold

Fig. 1. GAC enables visualization of IMs. (A) Overexpression of

prApe1 enables visualization of the Ape1 complex under a bright-

field microscope with Nomarski optics. Wild-type cells expressing

RFP–Ape1 at the natural expression level (GYS638) carrying pYEX-

BX[prApe1] were grown in SDCA medium containing CuSO4 and

treated with rapamycin for 5 hours. Arrows indicate the GAC.

Asterisks indicate vacuoles. Scale bar: 2 mm. (B) Histogram of the

diameters of GACs outside the vacuole. Diameters were measured for

cells in A using MetaMorph software. Red dotted line indicates the

average diameter. Cells were treated with rapamycin for 5 hours.

(C,D) Electron micrographs of a GAC. Wild-type cells

overexpressing prApe1 were grown in SDCA medium containing

CuSO4 and treated with rapamycin for 5 hours. A, Ape1 complex; V,

vacuole; N, nucleus. Arrowheads indicate membranous structures.

Scale bar: 500 nm. (E) The GAC enables IM identification under the

fluorescence microscope. Wild-type cells expressing RFP–Ape1 at a

natural expression level and harboring pRS314[GFP-Atg8] and

pYEX-BX[prApe1] were grown in SDCA medium containing CuSO4

and treated with rapamycin for 6 hours. An asterisk and an arrow

indicate the vacuole and the GAC, respectively. Scale bar: 2 mm.

(F) Fluorescence profiles of GFP (green) and RFP (red) measured

along the white line in E. (G,H) Time-lapse images of GFP–Atg8.

Cells were treated with rapamycin for 2–3 hours before observation.

Images were taken every 40 seconds. GFP–Atg8 and RFP–prApe1

are colored green and red, respectively. Arrows, GAC; arrowheads

and double arrowhead, GFP–Atg8; asterisks, vacuoles. Scale bar:

2 mm.

Journal of Cell Science 126 (11)2536
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complex; both proteins were localized to the VICS (Fig. 3),

suggesting that Atg13 and Atg17 stay at the VICS during IM

expansion. In contrast, Atg1 exhibited the IM pattern (Fig. 3),

indicating that a substantial proportion of Atg1 dissociates from

the PAS scaffold complex. Atg1 is, at least in part, localized to

the inner surface of the IM, because Atg1 is enclosed in

autophagosomes and subsequently delivered to the vacuole

(Nakatogawa et al., 2012b).

Phosphatidylinositol 3-kinase complex I stays at the VICS

In S. cerevisiae, two distinct PtdIns 3-kinase complexes have

been identified: PtdIns 3-kinase complex I, which is required for

autophagy and consists of Vps15, Vps34, Vps30 and Atg14; and

PtdIns 3-kinase complex II, which is required for the VPS

pathway and contains Vps38 instead of Atg14 (Kihara et al.,

2001). We visualized Vps15–GFP, Vps30–GFP and Atg14–GFP

and showed that PtdIns 3-kinase complex I was localized to the

VICS during IM expansion (Fig. 3). In addition, we showed that

dots labeled with Vps38–GFP did not associate with the IM

(supplementary material Fig. S3), further indicating that PtdIns

complex II is dispensable for autophagosome formation.

Previously, using GFP-26FYVE as a probe, our group showed

that phosphatidylinositol 3-phosphate [PtdIns(3)P], a product of

the PtdIns 3-kinases, is localized to the IM (Obara et al., 2008a).

The fact that the PtdIns 3-kinase complex I is localized to the

VICS during IM expansion suggests that PtdIns(3)P is mainly

produced at the VICS.

Atg16 and the Atg12–Atg5 conjugate exhibit the IM pattern

Localization analysis of Atg5–GFP and Atg16–GFP in GAC cells

revealed that these proteins exhibited the IM pattern (Fig. 3).

Thus, Atg5 and Atg16 are markers for the IM in S. cerevisiae as

well as in mammalian cells (Mizushima et al., 2003; Mizushima

et al., 2001). Association of Atg16 with Atg5 is important for

targeting the Atg12–Atg5 conjugate to the PAS (Matsushita et al.,

2007), suggesting that this interaction is required for their

localization to the IM. Our group has reported that Atg12–Atg5

exerts an E3-like function in the conjugation of Atg8 with

phosphatidylethanolamine (PE) to produce Atg8–PE (Hanada

et al., 2007). IM localization of both the Atg12–Atg5 conjugate

and Atg8 suggests that the Atg12–Atg5 conjugate continuously

generates Atg8–PE on the IM. Because the Atg12–Atg5

conjugate does not label autophagosomes accumulated in the

cytoplasm in ypt7D cells (Suzuki et al., 2001), the conjugate is

not localized to either the outer or the inner membrane of mature

Fig. 2. Lengths of the IMs reflect the magnitude of autophagy. (A) RFP–

prApe1-expressing cells harboring pRS314[GFP-ATG8] and pYEX-

BX[prAPE1] were grown in SDCA medium containing CuSO4 and treated

with rapamycin for 6 hours. Scale bar: 2 mm. (B) Lengths of IMs, estimated

from the images in A. Fluorescence intensities of GFP–Atg8 were measured

using the ‘linescan’ function of the MetaMorph software, and FWHM (full

width at half maximum) was calculated from each graph. Wild-type (n510),

atg1D (n58), atg2D (n517), atg18D (n519), atg1D211A (n512) and atg1K54A

(n513) cells were used. Error bars indicate standard deviations. *P,0.05;

**P,0.001; N.S. (not significant) indicates P.0.05 (two-tailed Student’s t-

test). (C) Autophosphorylation of Atg1. Cells were grown in YEPD medium

and incubated in the presence of rapamycin for 6 hours; cell lysates were

prepared by the alkaline lysis method. Aliquots of cell lysates (0.05 OD600

units) were subjected to immunoblot analysis using an anti-Atg1 antiserum.

The slower-migrating bands represent phosphorylated Atg1 (P-Atg1), and the

faster-migrating bands represent unphosphorylated Atg1 (Atg1). (D) Activity

of bulk autophagy, estimated by the alkaline phosphatase assay. Cells

harboring pTN3 were grown in SDCA medium and transferred to SD(–N)

medium. Collected cells were subjected to the alkaline phosphatase assay

(Noda et al., 1995). **P,0.001; N.S. (not significant) indicates P.0.05 (two-

tailed Student’s t-test).

Fine mapping of Atg proteins during autophagosome formation 2537
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autophagosomes. Instead, the conjugate might be localized

solely to the outer surface of the IM, and dissociate when

autophagosome formation is completed.

Atg2–Atg18 complex and Atg9 are localized to the edge of

the IM

Atg2 and Atg18 form a complex and are localized to the PAS

interdependently (Obara et al., 2008b; Suzuki et al., 2007).

Because both Atg2 and Atg18 exhibited the IM edge pattern in

GAC cells (Fig. 3), we examined the spatial relationship between

Atg2 and Atg18, and confirmed that they were colocalized to

multiple positions along the GAC (arrows in Fig. 4A), suggesting

that they are localized to the IM edge as a complex. Atg18 is a

phosphoinositide binding protein that preferentially binds to

PtdIns(3)P and PtdIns(3,5)P2 (Dove et al., 2004; Strømhaug et al.,

2004). Our hierarchical analysis revealed that the PtdIns 3-kinase

complex I is required for PAS localization of the Atg2–Atg18

complex (Suzuki et al., 2007). The fact that PtdIns 3-kinase

complex I is absent from the IM (Fig. 3) suggests that the IM

edge distribution of the Atg2–Atg18 complex is not dependent on

the PtdIns 3-kinase complex I itself but instead on its product,

PtdIns(3)P. Because PtdIns(3)P is distributed throughout the

entire inner surface of the IM (Obara et al., 2008a), another

mechanism may be required to restrict the localization of the

Atg2–Atg18 complex to the IM edge.

Among the Atg proteins, Atg9 is the sole integral membrane

protein essential for autophagosome formation (Noda et al.,

2000). In GAC cells, Atg9 also exhibited the IM edge pattern

(Fig. 3). Fluorescence microscopy showed that Atg9 was, at least

in part, colocalized with the Atg2–Atg18 complex at the IM edge

(Fig. 4B). Previous studies have shown that Atg2 and Atg18

physically interact with Atg9 (Reggiori et al., 2005; Wang et al.,

2001). Therefore, Atg9 might interact with the Atg2–Atg18

complex at the IM edge. Our recent work has shown that Atg9

Fig. 3. Fine mapping of Atg proteins on the IMs.

Cells expressing C-terminally GFP-fused Atg/Vps

proteins were transformed with pRS314[26mCherry-

Atg8] and pYEX-BX[prApe1]. The cells were grown

in SDCA medium containing CuSO4 and treated with

rapamycin. Fluorescence images of mCherry–Atg8

(Ch–Atg8) and GFP-fused Atg/Vps proteins (GFP)

were merged (Merge). Fluorescence profiles along the

IMs from the distal end to the vacuole are shown from

left to right (Fluorescence). Based on these images, the

localization of Atg/Vps proteins on IMs can be

classified into three categories, as indicated.

Arrowheads indicate the VICS. Scale bar: 2 mm.

Journal of Cell Science 126 (11)2538
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stays at the PAS during a cycle of autophagosome formation

(Yamamoto et al., 2012); in conjunction with that data, we

assume that Atg9 stays at the IM edge during one cycle of

autophagosome formation.

Endoplasmic reticulum is localized adjacent to the IM

In mammalian cells, physical connections between IMs and the

endoplasmic reticulum (ER) have been observed by electron

microscopy (Hayashi-Nishino et al., 2009; Ylä-Anttila et al.,

2009). We visualized the ER using Dpm1–GFP and Sec71TMD–

GFP, which are ER transmembrane markers that exhibit a typical

ER pattern, i.e. perinuclear and peripheral-network staining

(Rossanese et al., 2001). We found that the IM was in close

proximity to the ER (Fig. 5A,B). When we labeled the ER lumen

with GFP–HDEL (his-asp-glu-leu) (Okamoto et al., 2006) and

observed cells with three-dimensional fluorescence microscopy,

we found that the IM was associated with the ER at two or three

sites; the IM seemed to be connected with both the perinuclear

and peripheral ER (arrows in Fig. 5C; supplementary material

Fig. S4). Despite close association of IM with the ER, neither ER

transmembrane nor lumenal proteins were ever detected at the IM

(Fig. 5).

The IM is associated with ER exit sites

ER exit sites (ERES), which are subdomains of the ER

specifically responsible for the production of COPII vesicles,

can be labeled by fluorescent-protein-tagged Sec13 or Sec16

(Connerly et al., 2005). We visualized the localization of ERES

in GAC cells by three-dimensional fluorescence microscopy,

using Sec13–GFP as a marker, and found that the IM was located

in close proximity to ERES at two or three sites per cell (Fig. 6A;

supplementary material Fig. S5). The same result was obtained

when Sec16–GFP was used (data not shown). Association of the

IM with ERES labeled with Sec16–GFP was clearly detected in

79% of the cells (38 cells were examined three-dimensionally).

Fig. 5. ER is localized adjacent to the IM. Cells were grown in SDCA

medium containing CuSO4 and treated with rapamycin for the indicated

number of hours. (A) Cells harboring pRS314[26mCherry-Atg8] and pYEX-

BX[prApe1] as well as chromosomally integrated Dpm1-GFP. Asterisks

indicate positions of the GAC. Scale bar: 2 mm. (B) Cells chromosomally

expressing Sec71TMD-GFP harboring pRS314[26mCherry-Atg8] and

pYEX-BX[prApe1]. Asterisks indicate positions of the GAC. Scale bar:

2 mm. (C) Three-dimensional images of cells harboring pMO13 (GFP-HDEL)

and pRS424[PCUP1-prApe1] as well as chromosomally integrated

26mCherry-Atg8 (Ch-Atg8). An asterisk indicates the position of the GAC.

Arrows indicate sites at which the IM and the ER are associated. Scale bar:

1 mm.

Fig. 4. The Atg2–Atg18 complex and Atg9 are colocalized at the edge of

the IM. Cells were grown in SDCA medium containing CuSO4 and treated

with rapamycin for 3 hours. (A) Images of cells harboring pYEX-

BX[prApe1] and chromosomally integrated Atg2-26GFP and Atg18-

36mCherry. Arrows indicate colocalized dots. Asterisks indicate positions of

the GAC. Scale bar: 2 mm. (B) Images of cells harboring pYEX-BX[prApe1]

and chromosomally integrated Atg9-26GFP and Atg18-36mCherry. Arrows

indicate colocalized dots. Asterisks indicate positions of the GAC. Scale bar:

2 mm.
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Sec16, which is essential for ER-to-Golgi transport, is thought to

be involved in organization of ERES as a scaffold (Connerly

et al., 2005). Previously, our group showed that a temperature-

sensitive sec16-2 mutant is defective in autophagy at the non-

permissive temperature (Ishihara et al., 2001). These data suggest

that ERES play important roles in IM expansion.

As mentioned above, IMs are associated with the ER at two or

three sites per cell (Fig. 6A). We also show that the Atg2–Atg18

complex forms dots in two or three places at the edge of the IM

(Fig. 3). These observations prompted us to examine the spatial

relationship between ERES and the Atg2–Atg18 complex. By

three-dimensional fluorescence microscopy, we found that dots

labeled with Atg18 along the GAC were adjacent to ERES

(Fig. 6B; supplementary material Fig. S6). Thus, the Atg2–Atg18

complex (and Atg9) might be involved in IM expansion by

interacting with ERES at the IM edge.

Discussion

We have used the term PAS for a perivacuolar dot that most Atg

proteins are localized to, and have called the dot detected in some

atg disruptants the PAS, implying that the PAS is not

accompanied by the IM. After the PAS is assembled, it acts to

generate the IM. In S. cerevisiae, the IM has not been

distinguishable from the PAS because of the resolution limit of

light microscopy; thus in previous studies using wild-type cells,

the PAS potentially included the IM.

In this study, taking advantage of the GAC cells, we visualized

IMs by fluorescence microscopy and finely mapped the

localizations of Atg proteins. We found that the PAS scaffold

complex and PtdIns 3-kinase complex I were localized to the

VICS. Atg1, Atg8 and the Atg16–Atg12–Atg5 complex labeled

the VICS and the IM. We also found that the Atg2–Atg18

complex and Atg9 were localized to the IM edge but not to the

VICS. Moreover, we showed that the IM is associated with the

ER at the ERES; the Atg2–Atg18 complex and Atg9 may

function at these junctions. Taken together, our data show that

Atg proteins play individual roles at spatially distinct sites during

IM expansion. These results will facilitate investigations of the

function of each Atg protein in the near future.

Expansion of the IM

In wild-type GAC cells, the maximum length of the IM is

1.21 mm (Fig. 2B). From the surface area of the IM, we can

estimate the maximum diameter of an autophagosome composed

of the same amount of lipids as the IM. When the IM is regarded

as a disc, the maximum length of the IM corresponds to the

diameter. In this case, the area of the IM approximately equals

the surface area of a sphere with a diameter of 0.61 mm

(supplementary material Fig. S7). When the IM is regarded as a

hemisphere, the area of the IM approximately equals the surface

area of a sphere with a diameter of 0.86 mm (supplementary

material Fig. S7). The diameter of an autophagic body, the inner

membrane structure of an autophagosome, is ,0.4–0.9 mm

(Takeshige et al., 1992). Therefore, we believe that an amount

of lipid necessary to form a normal-sized autophagosome is

present at the IM in GAC cells. In atg1K54A cells, the IM length is

,0.80 mm (Fig. 2B). When the IM is regarded as a disc, the area

of the IM approximately equals the surface area of a sphere with

Fig. 6. The IM is associated with ERES. Cells were grown in SDCA

medium containing CuSO4 and treated with rapamycin. (A) Three sets of

three-dimensional images of cells harboring pRS314[26mCherry-Atg8]

and pYEX-BX[prApe1] as well as chromosomally integrated Sec13-

26GFP. ERES labeled with Sec13 were localized in close proximity to

the IM (arrows). Asterisks indicate positions of the GAC. Scale bar:

1 mm. (B) The Atg2–Atg18 complex is closely localized to ERES at the

IM edge. Three sets of three-dimensional images of cells harboring

pYEX-BX[prApe1] as well as chromosomally integrated Atg18-26GFP

and Sec13-26mCherry (Sec13-Ch). ERES labeled with Sec13 were

localized in close proximity to Atg18 at two or three sites per cell

(arrows). Asterisks indicate positions of the GAC. Scale bar: 1 mm.
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a diameter of 0.40 mm. When the IM is regarded as a hemisphere,

the area of the IM approximately equals the surface area of a

sphere with a diameter of 0.57 mm. Thus, the volume of an

autophagosome in atg1K54A cells is about 30% of that in wild-

type cells. This value is consistent with the level of bulk

autophagic activity of atg1K54A cells (Fig. 2D).

GFP–Atg8 is targeted to the PAS in atg1D, atg2D and atg18D

cells (Suzuki et al., 2007) but remains as an elliptical spot

(Fig. 2A). This result indicates that both Atg1 and the Atg2–

Atg18 complex are required for expansion of the IM. It has been

reported that the Atg1 kinase activity is not necessary for PAS

scaffold complex organization (Kabeya et al., 2005; Kamada

et al., 2000). In this study, we dissected the contribution of Atg1

kinase activity to autophagosome formation, and found that IM

length correlates with Atg1 kinase activity (Fig. 2). One

explanation for these observations might be that the IM length

is determined by a dynamic equilibrium. It is possible that a

decrease in Atg1 kinase activity would shift this equilibrium

towards a decrease in IM length. Identification of the substrate(s)

of Atg1 will provide the means to definitively test this

hypothesis.

The Atg2–Atg18 complex is the most downstream element in

the hierarchy of PAS assembly (Suzuki et al., 2007); therefore,

we postulated that this complex is involved in a later step of

autophagosome formation, for example, the sealing of the IM.

However, the data presented here clearly show that the Atg2–

Atg18 complex is primarily required for IM expansion

(Fig. 2A,B). It is still possible that the Atg2–Atg18 complex

also functions at a later step of autophagosome formation.

Dynamics of the IM

Under starvation conditions, the fluorescence intensity of the

GFP–Atg8 dot, which includes the PAS and the IM, next to the

vacuole changes periodically. The period of each cycle is about

7–9 minutes; the intensity reaches a plateau within 4–5 minutes

and then gradually decreases (Geng et al., 2008). This suggests

that the formation of one autophagosome takes ,7–9 minutes in

S. cerevisiae. Time-lapse microscopy of GAC cells revealed that

the IM reaches its maximum length 5–6 minutes after its

emergence (Fig. 1G), suggesting that the rate of IM expansion

in GAC cells is comparable to that in wild-type cells.

Interestingly, paused IMs labeled with GFP–Atg8 disappear

rapidly, within 2 minutes (Fig. 1H). Recently, our group has

reported that Atg4 cleaves Atg8–PE exposed to the cytoplasm,

and serves to provide a reservoir of free Atg8 (Nakatogawa et al.,

2012a). Atg4 might be responsible for disintegrating paused IMs

by cleaving Atg8–PE.

Fine mapping of Atg proteins during autophagosome

formation

Based upon the results in this study, we propose a model for the

mechanism of IM expansion (Fig. 7). Upon induction of

autophagy, Atg1 and Atg13 interact with the Atg17–Atg29–

Atg31 complex to form the PAS scaffold complex; this is a

prerequisite step for assembly of downstream Atg proteins at the

PAS (Kabeya et al., 2005; Kamada et al., 2000; Kawamata et al.,

2008). Atg9 is an immediate downstream protein of Atg17 for

PAS assembly (Suzuki et al., 2007). Since Atg9 exists on Atg9

vesicles (Yamamoto et al., 2012), Atg9 might provide lipids

required for assembly of downstream proteins at the PAS.

Subsequently, PtdIns 3-kinase complex I, which produces

PtdIns(3)P at the PAS, is recruited to the PAS (Suzuki et al.,

2007). Presumably, the primary role of PtdIns(3)P produced by

complex I is recruitment of downstream Atg proteins, e.g. the

Atg2–Atg18 complex and the products of two ubiquitin-like

conjugation systems (the Atg16–Atg5–Atg12 complex and Atg8–

PE) to the PAS.

During IM expansion, Atg proteins recruited to the PAS are

distributed to distinct sites (Fig. 7). We showed that the PAS

scaffold complex and the PtdIns 3-kinase complex I stay at the

VICS (Fig. 3), supporting the notion that these proteins provide a

platform for autophagosome formation. Please note that the

Atg2–Atg18 complex and Atg9 are not localized to the VICS

during IM expansion. Among the proteins in the PAS scaffold

complex, only Atg1 is localized to the IM as well as the VICS.

Atg1 kinase activity is essential for IM expansion (Fig. 2),

suggesting that Atg1 phosphorylates target protein(s) at the VICS

and the IM during IM expansion.

The activity of PtdIns 3-kinase complex I is necessary for

autophagic pathways, possibly due to its role in recruitment of

the Atg16–Atg5–Atg12 and Atg2–Atg18 complexes to the

PAS (Suzuki et al., 2007). During autophagosome formation,

Fig. 7. Model for the mechanism of IM expansion. (1) Upon induction of autophagy, the PAS scaffold complex is assembled in an Atg1-kinase-activity-

independent manner. (2) Subsequently, Atg proteins are assembled at the PAS; Atg9 might recruit lipids to the PAS. (3) IM formation is initiated; association of

the PAS with ERES might trigger IM expansion. (4) The IM expands in an Atg1-kinase-activity-dependent manner. Atg proteins that exhibit the IM pattern transit

to the IM. The Atg2–Atg18 complex and Atg9 might be involved in the association of the IM with ERES at the IM edge.
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PtdIns(3)P is localized preferentially to the inner concave surface

of the IMs, and it is subsequently enclosed in autophagosomes as

a component of their inner membranes (Obara et al., 2008a). We

show here that the PtdIns 3-kinase complex I is not localized to

the IM (Fig. 3), suggesting that PtdIns(3)P is produced mainly at

the VICS. PtdIns(3)P may play an important role by binding to an

effector protein(s) at the inner surface of the IM, or it may be

necessary to generate a negative membrane curvature at the inner

surface of the IM.

The Atg16–Atg5–Atg12 complex, Atg8–PE and the Atg2–Atg18

complex act downstream in the PAS assembly pathway (Kawamata

et al., 2008; Suzuki et al., 2007). All of these proteins are localized to

the IM or the IM edge during autophagosome formation (Fig. 3).

Because the Atg16–Atg5–Atg12 complex acts as an E3 enzyme in

the generation of Atg8–PE (Hanada et al., 2007), its IM localization

suggests that it catalyzes Atg8 lipidation on the IM.

Relationship between the Atg2–Atg18 complex and ERES

The Atg2–Atg18 complex is localized to the IM edge as multiple

dots (Fig. 3; supplementary material Fig. S2). These dots are

adjacent to ERES, which are subdomains specifically involved in

COPII vesicle formation in the ER (Fig. 6B). These results

suggest a tight relationship between the Atg2–Atg18 complex

and ERES. Moreover, Atg9 is colocalized with the Atg2–Atg18

complex at the IM edge (Fig. 4B). Because ERES are involved in

exit from the ER, the Atg2–Atg18 complex and Atg9 might play

roles in entrance to the IM. Further functional analysis of the

Atg2–Atg18 complex and Atg9 will improve our understanding

of the mechanisms underlying IM expansion.

To date, the IM has been considered to be distinct from

the endomembrane systems. In mammalian cells, physical

connections of the IM with the ER have been reported

(Hayashi-Nishino et al., 2009; Ylä-Anttila et al., 2009). Here,

we show that the IM is associated with the ER at ERES. Our

group has shown that the function of Sec16, which acts as a

scaffold for ERES (Connerly et al., 2005; Yorimitsu and Sato,

2012), is important for autophagy (Ishihara et al., 2001). Sec13 is

a coatomer of COPII vesicles, and is also used as a marker for

ERES (Connerly et al., 2005). Recently, we have observed that

knockdown of Sec13 results in a severe defect in autophagy

(unpublished data). These results indicate that ERES play an

important role in IM expansion.

Recently, a novel compartment for unconventional protein

secretion of Acb1 (CUPS) has been reported (Bruns et al., 2011).

Upon starvation, PtdIns(3)P, Grh1, Vps23, Atg8 and Atg9 are

recruited to the one to three CUPS per cell. CUPS is localized near

ERES labeled with Sec13 but separated from the ER. Although

both CUPS and the IM are induced upon starvation, treatment with

rapamycin alone is insufficient to form CUPS (Bruns et al., 2011).

Moreover, Grh1–GFP, a CUPS marker, and Ape1–mCherry do not

colocalize (Bruns et al., 2011). Autophagosome formation is

completely inhibited in atg11Datg17D cells because of a defect in

PAS assembly (Suzuki et al., 2007). In contrast, the relocalization

of Grh1–GFP to CUPS is not impaired in atg11Datg17D cells

(Bruns et al., 2011). These facts suggest that CUPS and the

PAS/IM are distinct structures. Further morphological analysis

by electron microscopy will provide new insights into these

structures.

The absence of ER marker proteins from the IM indicates that

these proteins do not transit to the IM from the ER (Fig. 5). There

are two interpretations of this result. It may be that in yeast, the

ER is associated with the IM in an indirect manner, possibly

mediated by COPII vesicles. Alternatively, the ER and the IM of

yeast might be directly connected, as has been demonstrated in

mammalian cells (Hayashi-Nishino et al., 2009; Ylä-Anttila et al.,

2009), but there are mechanisms that exclude ER proteins from

the IM. Further studies will be required to clarify the role of the

ER in IM expansion.

Materials and Methods
Yeast strains and growth conditions

The yeast strains used in this study are listed in supplementary material Table S1.

Standard protocols were used for yeast manipulation (Adams et al., 1998). The

mRFP–prApe1 strains were constructed as previously described (Strømhaug et al.,

2004). Cells expressing C-terminally (1–26)GFP- or (2–36)mCherry-fused Atg/Vps

proteins were generated using a PCR-based gene-modification method (Longtine

et al., 1998). Cells chromosomally expressing Sec71TMD–GFP (YAM306) were

generated by transforming wild-type cells with AflII-digested fragments of the

plasmid pRS305[SEC71TMD-GFP]. Cells were grown in synthetic defined plus

casamino acid medium (SDCA; 0.17% yeast nitrogen base without amino acids and

ammonium sulfate, 0.5% casamino acid, 0.5% ammonium sulfate and 2% glucose)

with appropriate supplements. To drive the Cu2+-inducible CUP1 promoter, cells

were cultured for 1 day in medium containing 250 mM CuSO4 before use.

Autophagy was induced by addition of 0.4 mg/ml rapamycin (Sigma) or by shifting

to nitrogen starvation medium [SD(–N); 0.17% yeast nitrogen base without amino

acids and ammonium sulfate and 2% glucose].

Plasmids

The plasmids used in this study are listed in supplementary material Table S2.

pYEX-BX[prApe1] was generated by inserting the BglII cassette of APE1 into

pYEX-BX (Clontech) after digesting the plasmid with BamHI. pRS424[PCUP1-

prApe1] was generated by inserting the bluntedHindIII–SalI fragment of APE1with

the CUP1 promoter excised from pYEX-BX[prApe1] into pRS424, after digesting

the plasmid with PvuII. pRS305[SEC71TMD-GFP] was generated by inserting the

BamHI–XhoI fragment of SEC71TMD-GFP from pRS306[SEC71TMD-GFP] (Sato

et al., 2003) into pRS305, after digesting the plasmid with BamHI and XhoI.

Fluorescence microscopy

Fluorescence microscopy was performed using an IX81 TIR-FM system

(Olympus, Japan) equipped with a UPlanSApo 1006 oil objective (NA: 1.40)

and a CoolSNAP HQ CCD camera (Nippon Roper, Japan) as described previously

(Suzuki et al., 2010). Blue (Sapphire 488-20, Coherent, USA) and yellow (85-

YCA-010, Melles Griot, USA) lasers were used for excitation of GFP and mRFP/

mCherry, respectively. Three-dimensional fluorescence images were acquired and

processed using the MetaMorph software (Molecular Devices, USA).

Electron microscopy

Electron microscopy was performed by Tokai-EMA, Inc. (Nagoya, Japan) as

described previously (Suzuki et al., 2011). Briefly, cells were harvested by

centrifugation and media were removed by aspiration. The pellets were

sandwiched with copper grids and rapidly frozen in liquid propane using Leica

EM CPC (Leica, Germany). Cells were freeze-substituted in 2% osmium tetroxide

dissolved in acetone. Samples were embedded in Quetol 651.

Immunoblot analysis

Cell lysates were prepared by the alkaline lysis method or by glass bead disruption

(Horvath and Riezman, 1994; Suzuki et al., 2004). Primary antisera were anti-Atg1

(Matsuura et al., 1997) or anti-Ape1 (Suzuki et al., 2002). Horseradish-peroxidase-

conjugated antibodies (Jackson ImmunoResearch, USA) were used as secondary

antibodies. Chemiluminescence signals produced by an ECL reagent

(PerkinElmer, Western Lightning Plus-ECL, USA; Wako, ImmunoStar LD,

Japan) were detected using a CCD camera system (Fujifilm, LAS4000, Japan).
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