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ARTICLE

Fine-mapping of prostate cancer susceptibility loci
in a large meta-analysis identifies candidate causal
variants
Tokhir Dadaev , Edward J. Saunders et al.#

Prostate cancer is a polygenic disease with a large heritable component. A number of

common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here

we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate

cancer susceptibility loci, using summary data from a large European ancestry meta-analysis.

We observe evidence for multiple independent signals at 12 regions and 99 risk signals

overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants

identified; the remainder are replaced by more likely candidates. Biological annotation of our

credible set of variants indicates significant enrichment within promoter and enhancer ele-

ments, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at

least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of

candidate variants substantially increase the proportion of familial relative risk explained by

these known susceptibility regions, which highlights the importance of fine-mapping studies

and has implications for clinical risk profiling.

DOI: 10.1038/s41467-018-04109-8 OPEN
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P
rostate cancer (PrCa) is the most common cancer among
males in developed countries. As there is evidence for a
large heritable component for PrCa, the identification of

genetic variation that increases susceptibility may help to inform
screening strategies and clinical management of patients in the
future. Currently, only a handful of rare genetic variants with
larger effect sizes have been reported that increase the risk of
PrCa (e.g., BRCA2 and ATM)1,2. By comparison, genome-wide
association studies (GWAS) have reported >100 low-penetrance
PrCa risk signals with small odds ratios (ORs)3. Individually,
these GWAS loci only modestly influence risk. However, because
the risk alleles are relatively common within the general popu-
lation their cumulative impact is substantial.

When an initial GWAS identifies a susceptibility locus, any one
(or more) of a large number of variants within the region may
underlie the molecular mechanism that modulates risk. This
includes correlated variants in linkage disequilibrium (LD) that
may capture the same association signal and additional variants
with independent associations. Genotyping a denser set of var-
iants in the region facilitates characterisation of the underlying
genetic architecture and makes subsequent imputation more
precise and complete. Although forward stepwise selection is
frequently used for fine-mapping, it has severe limitations, par-
ticularly the way LD can lead to misleading results. In this
manuscript, we report the findings of a PrCa fine-mapping study
in a European ancestry meta-analysis sample set that is the largest
to date and utilise the well-established stochastic search and
model selection framework, which more accurately represents the
uncertainty in determining both the number of signals and the set
of single-nucleotide polymorphisms (SNPs) that best describe the
association in each region4–7. To leverage the large sample size
from the overall meta-analysis, we use a novel multivariate
Bayesian variable selection approach, which takes marginal SNP
summary statistics as input and accounts for LD, to jointly ana-
lyse all SNPs in a region. We identify a catalogue of variants and
further prioritise within this set through functional annotation, to
assist identification of putative causal variants. This refined
credible set of variants explains a substantially larger proportion
of the estimated familial relative risk (FRR) of PrCa compared
with the original GWAS tags.

Results
Replication of reported associations prior to fine-mapping. In
this study, we examined 92 PrCa GWAS risk associations within
85 distinct genomic regions reported prior to the recent meta-
analysis using the OncoArray experiment8; due to their com-
plexity, two regions (Chr8q24 and Chr6p21/MHC) were excluded
and are subject to separate studies. Some regions contained more
than one signal due to close proximity between the reported index
SNPs. Summary results from the large European ancestry meta-
analysis comprising 82,591 PrCa cases and 61,213 controls from
eight GWAS sub-cohorts (OncoArray, iCOGS, UK stage 1 and 2,
CaPS 1 and 2, BPC3 and NCI PEGASUS), imputed to the 1000
Genomes phase 3 reference panel, were used for our fine-
mapping analysis.

We first assessed whether all 92 original associations had
replicated with at least one variant in the region at a genome-wide
significant level (marginal P-value <5 × 10−8). Five regions had
not replicated and were excluded from downstream fine-mapping
analyses accordingly (Supplementary Table 1). An additional 3
associations previously reported in different ancestral populations
also had not replicated in our European sample set; however,
these original lead variants were each situated within the region
boundary of another replicated GWAS association and therefore
the expanded region boundary was retained during fine-mapping

for logistical purposes, although only the associations replicated
in Europeans were considered as index variants. Fine-mapping
was therefore conducted for 84 replicated, previously reported
GWAS signals, within 80 distinct regions (Fig. 1). This included
the region encompassing the moderate penetrance risk SNP
rs138213197 in HOXB13, which although originally identified
through sequencing9 was included due to its relatively close
proximity to the GWAS association rs11650494. The HOXB13
region therefore also served as a useful positive control during
mapping, since the known causal variant exerts a relatively large
effect size (OR 3.85) and has low minor allele frequency (MAF),
but the signal is also detectable through a cluster of more
common variants as a ‘synthetic association’10.

The eight signals that did not replicate in our European meta-
analysis may remain risk loci for PrCa in other ancestral
populations or specific disease phenotypes rather than overall
PrCa risk, although we cannot completely exclude the possibility
that some were false positives. Two of these variants were
originally reported in a multi-ethnic meta-analysis (rs7153648
and rs12051443), one failed quality control (QC) due to strongly
discordant MAF between individual sub-studies within the meta-
analysis (rs6625711) and is also reported as having extremely
discordant MAF between 1000 Genomes phase 1 and phase 3
cohorts (MAF in EUR 0.45 vs. 0.16), one was associated with
young-onset disease only (rs636291), one only for aggressive
PrCa (rs1571801) and the final three were reported in popula-
tions of Chinese (rs103294), Japanese (rs2055109) or African
(rs7210100) ancestry and had not been confirmed in Europeans
to date11–15.

Multivariate fine-mapping from univariate summary statistics.
We utilised Joint Analysis of Marginal summary statistics -
(JAM)16, a novel fine-mapping framework that uses summary
statistics and explores multi-SNP models while accounting for
LD. JAM provides inference of two important measures; (1) the
most likely number of independent risk variants in the region and
(2) a 95% credible set of variants that drive these signal(s). This
credible set includes all variants from regression models that
cumulatively reach at least 95% posterior probability in JAM’s
stochastic search. Prior to running JAM, the variants were pruned
to eliminate high LD (initially set at r2 > 0.9, decreased in r2=
0.05 increments if required, Fig. 1). JAM was run twice for each
region using independent seeds of 10 million iterations each.
Final credible sets for each region included the set of tag variants
identified by JAM and the pruned SNPs in high LD with these
tags. Region-wide Bayes factors were used to provide evidence for
the minimum number of independent signals. For 75 regions
JAM successfully inferred credible sets of associated variants from
the meta-analysis summary statistics, with 91% concordance of
variants selected between two independent runs. For the final 5
regions, JAM did not infer a strong posterior probability for any
variant, therefore was unable to select candidate variants.

Overall, we identified 99 independent PrCa risk signals within
the 80 replicated regions (Tables 1–3). In all, 68 regions contained
a single PrCa risk association, whilst we detected evidence for
multiple independent risk signals within 12 regions (15% of
replicated loci). In the initial meta-analysis data set, the 80
replicated regions contained a total of 213,728 SNPs, of which
14,463 were genome-wide significant and 25,186 marginally
associated with PrCa at P < 5 × 10−5. From this variant set, JAM
identified a catalogue of 3700 SNPs as the final 95% credible set of
candidate causal variants for the 75 regions successfully fine-
mapped (Supplementary Data 1), whilst in the 5 regions in which
JAM could not identify candidate variants, a total of 175 variants
had reached genome-wide significance in the univariate meta-
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GWAS results, including a novel more strongly associated lead
variant in 4 of the 5 regions (Supplementary Data 1). The
majority of variants within the JAM credible set were common
(Supplementary Fig. 1a), with only 2 variants having MAF < 1%
and 48 variants MAF < 5%; lower MAF variants do however
represent the most likely candidate causal variants within certain
regions. We also observed a slight increase in the distribution of
univariate ORs for the novel lead variants we have identified in
comparison to the original GWAS tag SNPs (Supplementary
Fig. 1b). Only 15 original GWAS tag SNPs remained within the
catalogue of candidate variants, with all other signals being
replaced by more likely candidates. As expected, fine-mapping

performance varied by region, with 95% credible set sizes ranging
from 1 to 606 variants. We did however observe strong
refinement of variants within the majority of regions (median
24 variants per region overall and 21 for single-signal regions).
Indeed, among the 63 single-signal regions, 30 returned a 95%
credible set containing ≤20 variants, of which 20 comprised ≤10
variants and 4 returned a credible set containing a single variant.
These represent the putative causal PrCa susceptibility variant
within that locus and include the well-established HOXB13 causal
variant rs138213197 at Chr17q219, as well as rs10993994 in the
promoter of MSMB, which modulates gene expression in prostate
tissue17–19. These two regions serve as proof of principle; our

GWAS signal(s)

500 kb flank

80 regions, 84 signals

Imputation and QC

Summary statistics

213,728 variants

Meta-analysis univariate results

5 regions

5 signals

Genome-wide significant SNPs

175 variants

99 independent signals

FRR calculations

Risk prediction models

Functional annotation

Quantile regression

Experimental follow-up

No variants selected at r 2 0.6

95% credible set

3700 variants

343 tags

JAM results

75 regions

94 signals

JAM (2 seeds)

summary statistics data

If no hit lower r 2 
 by 0.05

re-run JAM

Priority Pruner

Starting r 2 = 0.9

38,745 tag variants at final

pruning r 2 thresholds

Variants selected & QC pass

Fig. 1 Overview of the fine-mapping workflow. Flowchart describing the procedure followed during fine-mapping, providing an overview of the outcomes at

each stage and suggesting possible applications for the final catalogue of variants
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methodology selected the presumed causal variants and therefore
the remaining two single candidate variants are very likely to be
causal and are strong candidates to test in functional studies.
These two variants are an intronic SNP in TBX1, and a low MAF
frameshift insertion in the final exon of FAM111A; which
confirms for the first time in Europeans the GWAS hit at this
locus previously reported in Japanese11, although the European
and Japanese variants are not in LD. The 12 regions with multiple
independent risk signals contained 31 independent signals in
total, represented by a 95% credible set of 626 variants (median
33.5 variants per region, average 20.2 variants per association
signal). Prioritisation also performed well in these complex
regions. In the TERT region at Chr5p15 we observed the highest
number of independent signals, 5, and the credible set comprised
only 30 SNPs. Similarly, 3 regions each containing 3 signals
(Chr2q37:FARP2/ANO7, Chr17q12:HNF1B and Chr19q13:KLK3)
returned a combined credible set of 61 variants representing these
9 PrCa associations. Notably, we observed that the regions found
to contain multiple independent signals generally had P-values
and marginal ORs towards the upper end of the distribution of
original GWAS hits in the univariate meta-GWAS (Supplemen-
tary Fig. 2).

Integration of annotation. We annotated variants for indicators
of putative biological functionality using data from publically
available databases. Intragenic variants were ascribed to genes
relative to GENCODEv19, miRNA variants using MirBasev20
and variants situated within segments of the genome under
evolutionary conservation were annotated using conserved ele-
ment outputs generated by four algorithms (GERP++, SiPhy
Omega, SiPhy Pi and Phastcons)20–22. For information derived
from tissue-based experimental data sets, we focused primarily on
those conducted in prostate cell lines; specifically DNaseI
hypersensitivity sites in three prostate cell types from seven
experiments in the ENCODE project, chromatin-state char-
acterisations by ChromHMM from Taberlay et al.23, ChIP-seq
peak locations for a variety of transcription factor (AR, CTCF,
ERG, FOXA1, GABPA, GATA2, HOXB13 and NKX3.1) and
histone mark (H3K27Ac, H3K27Me3 and H3K4Me3) data sets
retrieved through the Cistrome Data Browser24, and expression
quantitative trait loci (eQTLs) from a set of 359 PrCa samples in
the Cancer Genome Atlas (TCGA).

To formally incorporate these annotations into the prioritisa-
tion of SNPs, for the 75 regions in which JAM selected candidate
variants, we investigated posterior estimates from JAM for all

Table 1 Overview of fine-mapping results by region for regions 1–27 of the 80 regions fine-mapped

Fine-mapping region

boundary

Original

index SNPs

mapped

Pruning

r
2 threshold

SNPs (tags)

analysed

Number

of signals

Credible

set SNPs

(tags)

Credible set

eQTL

SNPs (tags)

Credible set

SNPs P <

0.05 in AAsa

Region

contribution to

overall FRR of

PrCab

chr1:150158287-151158287 rs17599629 0.9 1841 (199) 2 105 (18) 60 (10) 29 0.16 (0.09, 0.24)

chr1:154334183-155411798 rs1218582 0.9 1600 (309) 1 2 (2) 0 (0) 0 0.12 (0.11, 0.15)

chr1:203991549-205018842 rs4245739 0.9 2543 (668) 1 30 (4) 12 (2) 5 0.17 (0.15, 0.20)

chr1:205257824-206257824 rs1775148 0.6 2237 (325) 1 0 (0) 0 (0) 0 0.07 (0.02, 0.12)

chr2:172809618-173915560 rs12621278 0.9 3793 (833) 1 42 (1) 25 (1) 26 0.27 (0.24, 0.31)

chr2:20388265-21388265 rs13385191 0.9 2740 (716) 1 6 (2) 2 (1) 6 0.13 (0.11, 0.15)

chr2:237940449-238943226 rs7584330 0.9 2938 (554) 1 97 (12) 51 (11) 17 0.08 (0.07, 0.10)

chr2:241657087-242920971 rs3771570 0.9 2830 (479) 3 14 (7) 1 (1) 4 0.65 (0.58, 0.74)

chr2:43053949-44137998 rs1465618 0.9 3446 (815) 1 9 (4) 0 (0) 0 0.16 (0.14, 0.18)

chr2:62263347-63777843 rs721048 0.9 2323 (479) 1 20 (9) 12 (6) 11 0.46 (0.41, 0.53)

chr2:85267735-86294297 rs10187424 0.9 2952 (603) 1 63 (6) 31 (4) 58 0.17 (0.15, 0.19)

chr2:9611973-10600000 rs11902236 0.6 2961 (286) 1 12 (1) 5 (1) 0 0.08 (0.02, 0.17)

chr2:10600001-11210730 rs9287719 0.9 1825 (251) 1 182 (2) 1 (1) 0 0.13 (0.11, 0.15)

chr3:112775624-113782326 rs7611694 0.9 2392 (354) 1 16 (2) 6 (1) 0 0.17 (0.15, 0.19)

chr3:127419046-128752313 rs10934853 0.9 2865 (404) 1 134 (10) 17 (6) 67 0.23 (0.20, 0.26)

chr3:140602833-141610074 rs6763931 0.6 2054 (233) 1 49 (2) 0 (0) 15 0.04 (0.01, 0.09)

chr3:169574517-170630102 rs10936632 0.9 2743 (541) 2 37 (4) 0 (0) 15 0.72 (0.61, 0.86)

chr3:86610674-87967332 rs2660753;

rs2055109c
0.9 4020 (467) 1 124 (12) 31 (7) 32 0.33 (0.29, 0.38)

chr4:105561534-106564626 rs7679673 0.8 2182 (361) 1 23 (2) 0 (0) 12 0.36 (0.32, 0.41)

chr4:73355253-74849158 rs10009409;

rs1894292

0.9 2860 (281) 2 13 (3) 5 (1) 11 0.23 (0.18, 0.30)

chr4:95005592-96062877 rs12500426;

rs17021918

0.9 2920 (399) 2 93 (9) 24 (5) 33 0.36 (0.32, 0.42)

chr5:172439426-173444400 rs6869841 0.65 2407 (249) 1 10 (1) 5 (1) 0 0.07 (0.02, 0.12)

chr5:43865545-44885415 rs2121875 0.9 1853 (212) 1 83 (3) 0 (0) 2 0.02 (0.00, 0.05)

chr5:780028-1600000 rs2242652 0.9 2500 (806) 5 30 (18) 0 (0) 11 2.57 (2.29, 2.93)

chr5:1600001-2395829 rs12653946 0.9 4217 (1164) 1 2 (2) 0 (0) 2 0.27 (0.24, 0.30)

chr6:10719030-11719030 rs4713266 0.9 2500 (335) 1 8 (3) 0 (0) 6 0.08 (0.07, 0.10)

chr6:108779211-109785189 rs2273669 0.65 1871 (115) 1 320 (3) 134 (2) 95 0.06 (0.01, 0.13)

Published GWAS SNPs for which the signal or region replicated in our EUR meta-analysis are indicated, alongside the region co-ordinates assigned for fine-mapping analyses (GRCh37/hg19 assembly).

The final priority pruner thresholds used and numbers of variants and priority pruner tags included in the analysis are shown. Summaries of the fine-mapping analysis results for each region contain the

number of independent PrCa risk signals identified within each region, the size of the credible set of variants identified by JAM and the number of variants within the credible set that were also

significantly associated eQTLs in TCGA PRAD data. As an additional category to assist variant prioritisation, the number of variants in the credible set that achieved a nominally significant P value

threshold (P < 0.05) in an unconnected African Ancestry GWAS is indicated. The estimated contribution of each GWAS region to the overall familial relative risk of PrCa after fine-mapping is also

provided. Results for all additional regions fine-mapped are continued in Tables 2 and 3
a
AAs African Ancestry population PrCa meta-analysis31

b 84 of the 95 original GWAS signals identified in fine-mapping replicated in our EUR meta-analysis and were used when performing calculation of Familial Relative Risk of PrCa. rs2055109, rs7210100

and rs6625711 did not replicate in EUR but are situated within the region boundaries of other replicated signals, so were not excluded prior to fine-mapping. For five previously reported variants

(rs7153648, rs12051443, rs636291, rs1571801 and rs103294), no variant within the region boundary replicated in the meta-analysis, and these regions were excluded prior to Bayesian analysis
c Japanese signal rs2055109 did not replicate in Europeans, but is situated within the region boundary of rs2660753

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04109-8

4 NATURE COMMUNICATIONS |  (2018) 9:2256 |DOI: 10.1038/s41467-018-04109-8 |www.nature.com/naturecommunications



37 863 pruned tags against annotation features using a condi-
tional quantile regression (QR) analysis25,26 at multiple quantiles
(99.2, 99.4, 99.6, 99.8 and 99.95%). These correspond to posterior
probabilities ranging from 0.01 to 0.99, with the exact values
conditional on the linear combination of the annotations. At each
quantile, we used the fitted model to calculate a predicted
posterior probability given the SNP’s annotation features. A
single expected posterior probability was then calculated from a
weighted average of these quantile-specific expected posterior
probabilities with the weight reflecting both the fit (i.e., a function
of the likelihood) and variance of the predicted values from the
quantile-specific model to the data. We selected a single data set
for each annotation category for the QR analysis to minimise
correlation between variables. Whilst the majority of tag
probabilities were not notably adjusted during QR, an appreciable
subset of variants were up- or downgraded based upon their
annotations (ΔPosterior probabilityQR ranged between −0.304
and 0.254; 63 of the 37,863 tags had a ΔPosterior probabilityQR of
magnitude ±0.005 or greater) (Supplementary Fig. 3). The
conditional QR also facilitates identification of the annotations
that demonstrate an association across the extreme quantiles of
the posterior probabilities. Specifically, several annotations
(eQTLs within TCGA PrCa tissue, AR and GATA2 transcription
factor-binding sites, LNCaP DNase1, H3K27Ac and H3K4Me3
histone marks, enhancer and repressed chromatin states by

ChromHMM, conservation according to GERP++, higher
CADD scores and protein altering variants) had statistically
significant associations (P < 1.0 × 10−3) for at least one quantile
(Supplementary Data 2). That is, the upper quantiles of the
posterior probability distribution for variants with any of these
annotations were larger when compared with SNPs without those
annotations.

For comparison to the conditional QR approach, we also used
Fisher’s exact test to examine the representation of individual
annotation features across variants included in the 95% credible
set of prospective PrCa causal variants relative to variants not
selected. Independent tests were conducted for each annotation
upon the set of 37,863 tag variants analysed by JAM, of which 343
tags represented the 95% credible set of 3700 SNPs and
annotations for all proxy SNPs were inherited by the tag variant.
We observed significant enrichment of a number of annotations
among variants in the credible set (Fig. 2, Supplementary Data 2).
In particular, enrichment was found for eQTLs in the TCGA data
set (P= 1.15 × 10−23); intragenic variants within protein-coding
genes (P= 8.15 × 10−11; P= 6.03 × 10−5 for protein altering
variants exclusively) but not non-coding transcripts (P= 0.29);
promoter (P= 1.66 × 10−8), enhancer (P= 3.42 × 10−6) and
transcribed (P= 3.07 × 10−7) ChromHMM states in prostate
epithelial cells; DNaseI hypersensitivity sites from all seven
ENCODE prostate data sets (P= 1.28 × 10−7 to 7.61 × 10−17); for

Table 2 Overview of fine-mapping results by region for regions 28–54 of the 80 regions fine-mapped

Fine-mapping region

boundary

Original

index SNPs

mapped

Pruning

r
2 threshold

SNPs (tags)

analysed

Number

of signals

Credible

set SNPs

(tags)

Credible set

eQTL SNPs

(tags)

Credible set

SNPs P <

0.05 in AAsa

Region

contribution to

overall FRR of

PrCab

chr6:116666036-117710052 rs339331 0.9 2981 (433) 1 102 (3) 0 (0) 101 0.18 (0.16, 0.20)

chr6:152932566-153941079 rs1933488 0.9 3636 (599) 1 86 (6) 45 (6) 20 0.12 (0.10, 0.14)

chr6:160081543-161382029 rs9364554 0.9 4101 (737) 3 151 (15) 65 (10) 7 1.03 (0.91, 1.19)

chr6:29573776-30573776 rs7767188 0.75 7085 (464) 1 606 (22) 372 (16) 13 0.07 (0.03, 0.11)

chr6:41036427-42043793 rs1983891 0.9 2840 (779) 1 33 (2) 9 (2) 33 0.18 (0.16, 0.21)

chr6:75995882-76995882 rs9443189 0.6 1966 (72) 1 0 (0) 0 (0) 0 0.06 (0.05, 0.07)

chr7:20494491-21496953 rs12155172 0.9 3170 (782) 1 4 (1) 0 (0) 2 0.16 (0.15, 0.19)

chr7:27091215-28476563 rs10486567 0.9 3372 (691) 1 11 (2) 1 (1) 3 0.34 (0.31, 0.39)

chr7:46937244-47937244 rs56232506 0.9 2803 (473) 1 53 (6) 0 (0) 34 0.08 (0.04, 0.13)

chr7:97307882-98316327 rs6465657 0.9 2892 (411) 1 31 (1) 11 (1) 0 0.27 (0.24, 0.31)

chr8:22938975-24028511 rs1512268;

rs2928679

0.9 3507 (755) 2 74 (3) 1 (1) 16 0.77 (0.68, 0.87)

chr8:25392142-26410156 rs11135910 0.9 2836 (558) 1 4 (2) 0 (0) 0 0.07 (0.06, 0.09)

chr9:109651379-110656300 rs817826 0.75 2817 (547) 1 55 (1) 0 (0) 54 0.07 (0.04, 0.12)

chr9:21541998-22541998 rs17694493 0.9 2727 (615) 1 9 (3) 0 (0) 0 0.04 (0.02, 0.07)

chr10:103914221-104915094 rs3850699 0.75 1802 (154) 1 40 (2) 18 (2) 9 0.07 (0.03, 0.11)

chr10:122283141-123344709 rs2252004 0.9 3584 (928) 1 60 (7) 0 (0) 5 0.08 (0.04, 0.14)

chr10:126140936-127196872 rs4962416 0.6 3150 (324) 1 0 (0) 0 (0) 0 0.06 (0.02, 0.11)

chr10:45582985-46582985 rs76934034 0.9 1778 (124) 1 6 (2) 2 (1) 0 0.09 (0.04, 0.14)

chr10:51049496-52049496 rs10993994 0.9 741 (98) 1 1 (1) 0 (0) 1 1.44 (1.29, 1.64)

chr11:101901661-102901661 rs11568818 0.9 2368 (453) 1 2 (1) 0 (0) 2 0.17 (0.15, 0.19)

chr11:113307181-114307181 rs11214775 0.9 2197 (378) 1 2 (2) 1 (1) 1 0.10 (0.09, 0.12)

chr11:1733574-2734093 rs7127900 0.9 2808 (781) 1 40 (1) 17 (1) 40 0.66 (0.59, 0.75)

chr11:58415110-59610571 rs1938781 0.8 2506 (158) 1 1 (1) 0 (0) 0 0.13 (0.08, 0.18)

chr11:68484602-69953985 rs7931342 0.9 4274 (990) 2 44 (3) 0 (0) 44 0.85 (0.76, 0.97)

chr12:114185571-115584059 rs1270884 0.9 4980 (1309) 1 8 (3) 0 (0) 5 0.16 (0.14, 0.18)

chr12:47919618-48919618 rs80130819 0.6 2987 (187) 1 21 (2) 0 (0) 0 0.04 (0.01, 0.08)

chr12:49176010-50176010 rs10875943 0.9 1641 (319) 1 7 (3) 2 (2) 6 0.11 (0.09, 0.13)

Published GWAS SNPs for which the signal or region replicated in our EUR meta-analysis are indicated, alongside the region co-ordinates assigned for fine-mapping analyses (GRCh37/hg19 assembly).

The final priority pruner thresholds used and numbers of variants and priority pruner tags included in the analysis are shown. Summaries of the fine-mapping analysis results for each region contain the

number of independent PrCa risk signals identified within each region, the size of the credible set of variants identified by JAM and the number of variants within the credible set that were also

significantly associated eQTLs in TCGA PRAD data. As an additional category to assist variant prioritisation, the number of variants in the credible set that achieved a nominally significant P value

threshold (P < 0.05) in an unconnected African Ancestry GWAS is indicated. The estimated contribution of each GWAS region to the overall familial relative risk of PrCa after fine-mapping is also

provided. These results are a continuation from the regions displayed in Table 1 and results for all remaining regions fine-mapped are provided in Table 3
a
AAs African Ancestry population PrCa meta-analysis31

b 84 of the 95 original GWAS signals identified in fine-mapping replicated in our EUR meta-analysis and were used when performing calculation of Familial Relative Risk of PrCa. rs2055109, rs7210100

and rs6625711 did not replicate in EUR but are situated within the region boundaries of other replicated signals, so were not excluded prior to fine-mapping. For five previously reported variants

(rs7153648, rs12051443, rs636291, rs1571801 and rs103294), no variant within the region boundary replicated in the meta-analysis, and these regions were excluded prior to Bayesian analysis
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AR (P= 2.33 × 10−15 to 2.86 × 10−20), ERG (P= 5.33 × 10−12 to
1.00 × 10−20), FOXA1 (P= 9.18 × 10−18 to 1.14 × 10−18),
GABPA (P= 8.53 × 10−12), GATA2 (P= 1.24 × 10−12), HOXB13
(P= 8.25 × 10−9) and NKX3.1 (P= 9.44 × 10−5 to 1.43 × 10−15)
transcription factor-binding sites from one or more experimental
data set; for H3K27Ac (P= 5.34 × 10−19 to 1.39 × 10−21) and
H3K4Me3 (P= 1.30 × 10−9 to 8.27 × 10−14) histone marks; and
conserved elements within the human genome according to all
four algorithms (P= 1.89 × 10−7 to 4.04 × 10−11). Of particular
interest, in over half of the regions fine-mapped, at least one
variant within our credible set intersected a significantly
associated eQTL with a colocalisation score >0.9 (overlap between
eQTL and GWAS signal) in the TCGA PrCa data set. In all, 40 of
the 75 regions contained an eQTL variant among the credible set,
with 91 distinct genes represented (Tables 1–3, Supplementary
Data 3). In total, 127 of the 343 tags representing the credible set

inherited an eQTL annotation (37%), compared with 5711 of the
total 37,863 tags within these regions (17.8%). This corresponds
to 1027 prostate eQTL variants among the 3700 credible set
variants represented by the 343 JAM tags (27.8%), compared with
37,331 eQTLs from the 203,211 total variants within these 75
regions (18.4%).

Intuitively, some degree of correlation between the annotation
features we examined would be expected, since regulatory regions
of DNA may be indicated through various experimental
techniques. Although annotations were jointly modelled in QR,
any partial correlation could potentially inflate the extent of
enrichment observed during independent Fisher’s tests. To
preclude this outcome, we examined the level of correlation
between separate annotations. Correlation between replicate data
sets representing the same annotation category was usually
moderate to high as would be expected, with more modest levels

Table 3 Overview of fine-mapping results by region for regions 55–80 of the 80 regions fine-mapped, and summary results

across all 80 regions

Fine-mapping region

boundary

Original

index SNPs

mapped

Pruning

r
2 threshold

SNPs

(tags)

analysed

Number

of signals

Credible

set SNPs

(tags)

Credible set

eQTL SNPs

(tags)

Credible

set SNPs P <

0.05 in AAsa

Region

contribution to

overall FRR of

PrCab

chr12:52773904-53816821 rs902774 0.9 3182 (553) 1 28 (1) 0 (0) 10 0.32 (0.28, 0.36)

chr13:73228139-74468916 rs9600079 0.9 3995 (888) 1 14 (5) 0 (0) 10 0.13 (0.11, 0.14)

chr14:52872330-53889699 rs8008270 0.9 2588 (410) 1 12 (2) 0 (0) 0 0.11 (0.10, 0.13)

chr14:68502988-69626744 rs7141529 0.9 3015 (822) 1 72 (17) 1 (1) 4 0.07 (0.02, 0.12)

chr14:70592256-71592256 rs8014671 0.6 2671 (139) 1 0 (0) 0 (0) 0 0.05 (0.02, 0.10)

chr17:118965-1119162 rs684232 0.9 3015 (848) 1 11 (4) 5 (3) 11 0.21 (0.19, 0.24)

chr17:35547276-36603565 rs11649743;

rs4430796

0.9 1803 (444) 3 26 (10) 0 (0) 12 1.24 (1.10, 1.42)

chr17:46302314-47211374 rs138213197 0.9 2338 (521) 1 1 (1) 0 (0) 0 6.87 (4.24, 10.41)

chr17:47211375-47952263 rs11650494;

rs7210100c
0.9 1319 (378) 1 83 (3) 0 (0) 24 0.07 (0.02, 0.14)

chr17:68608753-69617214 rs1859962 0.9 3138 (629) 1 24 (1) 0 (0) 20 0.79 (0.70, 0.89)

chr18:76270820-77273973 rs7241993 0.9 3097 (488) 1 3 (1) 0 (0) 0 0.16 (0.15, 0.19)

chr19:38235613-39244733 rs8102476 0.9 2472 (419) 1 18 (3) 9 (2) 16 0.27 (0.24, 0.31)

chr19:41485587-42485931 rs11672691 0.9 2119 (337) 1 4 (1) 0 (0) 1 0.19 (0.17, 0.22)

chr19:50840794-51864623 rs2735839 0.9 2300

(602)

3 21 (9) 3 (1) 8 0.86 (0.76, 0.98)

chr20:49027922-50027922 rs12480328 0.9 1839 (309) 1 44 (2) 0 (0) 37 0.08 (0.03, 0.13)

chr20:60515611-61515611 rs2427345 0.6 2943 (433) 1 17 (2) 8 (2) 0 0.04 (0.01, 0.09)

chr20:61862563-62874389 rs6062509 0.9 3157 (831) 1 21 (11) 6 (2) 2 0.16 (0.14, 0.18)

chr21:42401421-43401421 rs1041449 0.9 2177 (557) 1 31 (8) 20 (6) 7 0.20 (0.18, 0.23)

chr22:19257892-20257892 rs2238776 0.9 2092 (373) 1 1 (1) 0 (0) 0 0.08 (0.04, 0.13)

chr22:39952119-41297933 rs9623117 0.9 1978 (281) 1 55 (3) 0 (0) 6 0.11 (0.09, 0.13)

chr22:43000212-44013156 rs5759167 0.9 3466 (781) 2 18 (4) 6 (2) 5 0.76 (0.67, 0.87)

chrX:50741672-51741672 rs5945619 0.9 1087 (178) 1 94 (2) 1 (1) 93 1.20 (1.07, 1.37)

chrX:52396949-53396949 rs2807031 0.6 493 (22) 1 0 (0) 0 (0) 0 0.27 (0.11, 0.49)

chrX:66521550-67521550 rs5919432 0.75 1235 (111) 1 47 (1) 0 (0) 5 0.16 (0.08, 0.25)

chrX:69639850-70907983 rs4844289;

rs6625711d
0.9 1274 (193) 1 69 (9) 1 (1) 24 0.17 (0.16, 0.20)

chrX:9314135-10314135 rs2405942 0.9 1973 (641) 1 11 (5) 1 (1) 7 0.16 (0.05, 0.32)

80 original GWAS loci 84 EUR

original

GWAS

signalsb

213,728

(38,745)

99 3700

(343)

1027 (127) 1155 30.30

(26.01, 35.89)

Published GWAS SNPs for which the signal or region replicated in our EUR meta-analysis are indicated, alongside the region co-ordinates assigned for fine-mapping analyses (GRCh37/hg19 assembly).

The final priority pruner thresholds used and numbers of variants and priority pruner tags included in the analysis are shown. Summaries of the fine-mapping analysis results for each region contain the

number of independent PrCa risk signals identified within each region, the size of the credible set of variants identified by JAM and the number of variants within the credible set that were also

significantly associated eQTLs in TCGA PRAD data. As an additional category to assist variant prioritisation, the number of variants in the credible set that achieved a nominally significant P value

threshold (P < 0.05) in an unconnected African Ancestry GWAS is indicated. The estimated contribution of each GWAS region to the overall familial relative risk of PrCa after fine-mapping is also

provided. These results are a continuation from the regions displayed in Tables 1 and 2. Aggregated summary results across all of the 80 regions fine-mapped presented across Tables 1–3 are displayed in

the final row of this table (in bold)
a
AAs African Ancestry population PrCa meta-analysis31

b 84 of the 95 original GWAS signals identified in fine-mapping replicated in our EUR meta-analysis and were used when performing calculation of Familial Relative Risk of PrCa. rs2055109, rs7210100

and rs6625711 did not replicate in EUR but are situated within the region boundaries of other replicated signals, so were not excluded prior to fine-mapping. For five previously reported variants

(rs7153648, rs12051443, rs636291, rs1571801 and rs103294), no variant within the region boundary replicated in the meta-analysis, and these regions were excluded prior to Bayesian analysis
c African American signal rs7210100 had MAF=0.0015, P=0.31 in the European meta-analysis, but is situated proximal to rs11650494
d SNP rs6625711 failed QC due to strongly discordant MAF between individual sub-studies within the meta-analysis and also between 1000 Genomes Phase1 and Phase3 cohorts (MAF in EUR 0.45 vs.

0.16) and is situated within the region boundary of rs4844289. Only a single signal within this region replicated in Europeans
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of correlation observed between different markers and informa-
tion types (Supplementary Fig. 4). The level of correlation
increased slightly when individual SNP annotations were
collapsed onto tags, as the tag variants can inherit different
annotations from separate SNPs. We performed logistic regres-
sion of the annotations used in the QR analysis in a single model,
to evaluate their informativeness after adjustment for other
annotation categories. In this regression, the TCGA eQTL, coding
transcript and ERG transcription factor annotations were all
highly significant after adjusting for multiple testing, whilst the
AR transcription factor annotation was also nominally significant
(Supplementary Fig. 5). The remaining annotations were not
significant after adjustment for other annotations; however,
within the range of information types selected, separate data sets
represent broader or greater resolution functional information
relative to one another and therefore may partially overlap with
other markers whilst remaining instructive individually.

Fine-mapping resolution. At several regions our catalogue of
variants highlighted putative biological mechanisms that may be
responsible for the differential risk of PrCa development, as well
as credible sets sufficiently small to enable subsequent laboratory
follow-up. One example is the Chr2q37 region described by
rs3771570 in the original publication27. The original lead variant
is intronic in FARP2, but multiple genes are located within the
region. During fine-mapping, we observed evidence for three
independent signals, one more than we previously detected28.
These signals are represented by a credible set of 14 variants from
7 tags, demonstrating highly successful refinement of the original
signal (Fig. 3a, Tables 1–3, Supplementary Data 1). The majority
of these prospective causal variants are centred on the ANO7
gene, approximately 100 kb centromeric of FARP2. ANO7 is
expressed predominantly in the prostate (http://www.
proteinatlas.org/ENSG00000146205-ANO7/tissue), unlike
FARP2, which is ubiquitously expressed across tissue types.
Within the credible set 3 tags are selected with particularly high
confidence (posterior probabilities 0.72–1); all 3 represent only
themselves with no additional proxy variants to consider, and are
therefore the most likely causal variants underlying the 3 signals
detected. Two of these 3 candidate causal variants (rs77559646
and rs77482050) are non-synonymous SNPs in ANO7 that are
uncommon among European ancestry populations, whilst the
third (rs62187431) is intronic in ANO7. The 11 remaining var-
iants in the credible set include one more missense SNP within
ANO7 (rs76832527), 2 intronic variants in ANO7 (rs111770284
and rs56091437), a synonymous variant in ANO7 (rs2074840)
and 7 variants that are all intronic within other genes (FARP2,
PPP1R7, HDLBP and SEPT2). Our fine-mapping results therefore
strongly implicate the ANO7 gene as a prospective biological
effector modulating susceptibility for PrCa.

The region at Chr6q22 described by rs339331 in the original
publication29 presents a good example of how variant annotations
can assist further prioritisation of the most likely candidate
variants even within regions where the credible set remains
comparatively large after fine-mapping (Fig. 3b, Tables 1–3,
Supplementary Data 1). rs339331 is intronic in RFX6, a member
of the regulatory factor X transcription factor family. We
observed a single signal during fine-mapping, but due to high
LD between variants the credible set comprises 102 variants from
3 tags (the top tag with posterior probability 0.76 tagging 35
proxy SNPs, another with posterior probability 0.15 tagging 40
SNPs and the last with posterior probability 0.08 tagging 27
SNPs). Only 14 of these variants demonstrate any plausible
biological evidence however, therefore the credible set can be
filtered to prioritise this subset of variants. Four of these are

proxies of the tag with the greatest statistical evidence, including
the variant that demonstrates the greatest biological evidence for
functionality; the original index SNP rs339331, which resides
within a DNaseI peak, intersects binding sites for multiple
transcription factors, including AR, FOXA1, GATA2, HOXB13
and NKX3.1, and is situated within a conserved element.
rs339331 would therefore be ranked highest for follow-up based
on combined statistical information and biological annotations,
and has been demonstrated to alter HOXB13 transcription factor
binding and RFX6 transcription during a previous functional
investigation of this region30.

At the TMPRSS2 region on Chr21q22, we detected a single
PrCa risk signal with a credible set of 31 SNPs from 8 tags, all of
which are situated within the promoter region or first intron of
TMPRSS2 (Fig. 3c, Tables 1–3, Supplementary Data 1). In all, 20
of these variants are eQTLs for TMPRSS2 in prostate tissue, whilst
2 variants intersect transcription factor-binding sites in multiple
data sets, including for AR, ERG, FOXA1, GABPA, GATA2,
HOXB13 and NKX3.1. In this region, the tag selected by JAM
with the highest posterior probability is substantially downgraded
after QR (ΔPosterior probabilityQR −0.18) due to lack of overlap
with informative biological annotations, therefore it and its
proxies may not in fact represent the most likely candidate causal
variants. An early and common event in prostate tumour
development involves a translocation that forms a TMPRSS2:
ERG fusion, bringing the ERG transcription factor under
transcriptional control of the more active TMPRSS2 promoter.
Our fine-mapping results and biological annotations therefore
allude to the possibility that subtle, heritable differences in
TMPRSS2 expression could potentially operate in conjunction
with a common somatic alteration to influence development of
PrCa. Intriguingly, we also observed significant enrichment for
variants intersecting ERG transcription factor-binding sites
among our combined credible set of candidate variants across
all regions using Fisher’s exact test (Supplementary Data 2,
Fig. 2).

Comparison with African Ancestry meta-analysis results. Since
LD patterns and allele frequencies of variants frequently differ
among ancestral populations, as an additional prioritisation
strategy we cross-checked meta-analysis results for variants in our
95% credible set against data from a meta-analysis of 10,202 cases
and 10,810 controls with African Ancestry (AA)31. A total of
3633 of the 3700 SNPs in our credible set were available in the AA
cohort, 1155 (31.8%) of which were nominally significant at P <
0.05 in the AA meta-analysis. In addition, of the 175 variants that
reached genome-wide significance within the five regions in
which JAM did not resolve candidate variants, 111 were nom-
inally significant in the AA data. We would hypothesise that
variants demonstrating no evidence of association in the AA data
set would generally represent less likely candidate causal variants
than any nominally significant variants within their region spe-
cific credible set and should be assigned lower priority when
considering variants for functional confirmation studies. This
extra prioritisation step does not enable us to formally exclude
any variants from our credible set however, as the AA analysis
may be underpowered to detect association with PrCa at specific
SNPs, and additional variants within the regions fine-mapped in
Europeans but not included in our credible set were not examined
for association in AA data.

Estimating the GWAS loci contribution to FRR of PrCa. The
proportion of FRR of PrCa explained by these risk loci before and
after fine-mapping were calculated using conditional effect esti-
mates and standard errors derived from the OncoArray sample
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sub-cohort. The post fine-mapping calculation was performed
separately for the full set of 99 signals identified and a restricted
subset of 84 variants (matching the number of original associa-
tions), in order to investigate the relative importance between
replacement of GWAS tag SNPs and addition of extra novel
signals. Single lead variants representing the independent signals
were selected for this calculation. In regions containing a single
signal, the JAM tag in the credible set with the highest Bayes
factor was designated as the new lead variant, or for the five
regions in which JAM did not resolve candidates the most
strongly associated SNP in the meta-GWAS was taken instead.
Within regions containing multiple independent hits, signals
were represented by the combination of tags given the greatest
posterior support by JAM. Our FRR calculations use conditional
risk estimates incorporating uncertainty for each variant, plus a
correction for potential bias due to risk estimation in the same
sample as discovery and uncertainty in the specification of the
FRR. This novel but more conservative method of risk calculation
estimated that: (1) inclusion of only single ‘best’ replacement
variants for each tag SNP contributes 26.5% (95% credible
interval, CI, 22.7–31.5) of the known FRR of PrCa compared to
23.2% (95% CI 19.4–27.9) for the 84 previously known GWAS tag
SNPs; and (2) inclusion of lead SNPs representing all of the 99
independent signals contributes 30.3% (95% CI 26.0–35.9)

(Supplementary Data 4). This substantial enhancement demon-
strates that the variant catalogue identified through fine-mapping
explains a greater proportion of the FRR of PrCa compared to the
original GWAS index SNPs, with replacement of the 84 original
GWAS tag SNPs conferring a similar magnitude of increase as
addition of the 15 novel independent signals we identified. We
additionally calculated the contribution to FRR of PrCa for each
region individually, to highlight regions that make the greatest
contributions towards PrCa susceptibility (Tables 1–3). Whilst
the majority of the fine-mapped GWAS loci individually con-
tribute a small proportion towards the FRR, six regions confer in
excess of 1% each. These include the moderate penetrance
HOXB13 rs138213197 variant, which demonstrated the greatest
contribution at 6.87%, and the multi-signal TERT locus, which
explained the next highest level at 2.57%. Each of the remaining
regions of higher FRR contribution contained multiple indepen-
dent signals, with the exception of the single-signal MSMB locus.
The magnitude of increase in proportion of FRR explained by
each locus after fine-mapping was also generally greater for
regions where additional independent signals were identified; for
example, the ANO7 region increased 6.5 fold (from 0.1% for the
original GWAS tag SNP to 0.65% after fine-mapping) and the
KLK region 1.9 fold (from 0.45 to 0.86%), partly due the identi-
fication of 2 novel signals within each.
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Fig. 2 Polar bar plot depicting the proportion of tag variants assigned each functional annotation within the 95% credible set selected by JAM (red bars),

relative to tags that were not selected as candidates during fine-mapping (blue bars). Binary annotations for all respective proxy variants were inherited by

their tag. Annotations are grouped by category and ordered according to the proportion of variants in the credible set that receive each specific annotation.

For greater clarity at lower values the plot axis is capped at 50%, therefore for annotation classes that exceed this limit (Heterochromatin and Coding) the

total percentage of tags receiving the annotation is specified in brackets
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Discussion
Prior to the recent OncoArray study, approximately 100 PrCa
susceptibility loci identified through GWAS had been reported.
Limited information was however known about the precise
identity of the causal variants and functional mechanisms behind
these loci despite several having been fine-mapped individually or
collectively using logistic regression28,32–35. Here we present the
largest genetic fine-mapping study for PrCa to date based on a
meta-analysis of 82,591 cases and 61,213 controls of European
ancestry, and employ a state-of-the-art multivariate Bayesian
variable selection technique to prioritise candidate variants. We
further refined results by incorporating functional annotation
information using a novel QR approach, to assist prioritisation of
candidate causal variants for downstream functional validation.

Since the meta-analysis comprised marginal summary effect
estimates, we applied JAM, a joint Bayesian fine-mapping algo-
rithm that accounts for LD in a multivariate analysis of univariate
summary statistics, to identify credible candidate PrCa suscept-
ibility variants. A stochastic variable selection approach provided
posterior probabilities of association for each variant and com-
binations of variants within each region, as determined by a set of
best models. This framework is preferred over alternative
approaches, such as forward stepwise selection, which tend to
underrepresent the uncertainty in the analysis and yield false
levels of confidence for the final set of SNPs and number of
signals represented by the single ‘best’ model. JAM also has

advantages over similar Bayesian variable selection algorithms as
it incorporates an extremely computationally efficient formal
reversible jump Markov Chain Monte Carlo (MCMC) stochastic
model search, which allows application to very large regions and
does not require a prior assumption on the maximum number of
causal SNPs within each region, making it more applicable to
regions with larger or unknown numbers of causal variants.
Linear model-based summary data methods such as JAM repre-
sent the current state of the art and have demonstrated good
performance when applied to transformed logistic ORs from
binary traits as opposed to linear effects for continuous traits36,37.
The effectiveness of logistic/linear mapping will however vary
between different genomic architectures and is dependent on
factors including the number of variants and correlation structure
between them within each region. In general however, the
approximation should work well provided no individual variants
exert large effects, as expected for GWAS loci. For 5 of the 80
regions that had replicated at genome-wide significance, JAM was
unable to fit a model to the summary data and consequently we
could not resolve candidate variants beyond the catalogue of
genome-wide significant variants within these regions. Four of
these regions were not densely genotyped on the OncoArray
genotyping chip, as their discovery in a multi-ethnic meta-ana-
lysis occurred only late during chip design. In addition, the top hit
within these 5 regions ranked towards the weaker end of the P-
value and effect size distributions in the univariate meta-analysis
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regional association plots for the initial EUR meta-analysis data depicting variant P-values (−log10(P) panel) and fine-mapping results indicating the

posterior probability of association for priority pruner tags (PostProb panel). Triangles and circles on the meta-analysis plot denote variants directly

genotyped in the OncoArray study and imputed variants respectively, with colours used to indicate all variants in linkage disequilibrium (LD) at r2 > 0.5

with those selected in the credible set. Names of the representative variants for each independent signal used in the familial relative risk calculation are

shown in black and the original GWAS tag SNP marked in red. Only variants selected in the credible set are shown on the fine-mapping results plot, with

positions of tags included in the 95% credible set marked as dashed lines and positions of all their respective proxy SNPs indicated as coloured circles.
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prior to fine-mapping. The inability of JAM to resolve candidate
causal variants within these regions therefore most likely results
from mismatch between the reference correlation structure and
meta-GWAS effect patterns, issues with the logistic/linear map-
ping in the presence of complex correlation structure, or possibly
simply low signal to noise ratio within the data.

Use of multivariate models prioritised a 95% credible set of
3700 candidate variants from the 203,211 variants analysed
within the 75 regions in which candidate variants were resolved;
thereby markedly reducing the number of variants for further
consideration. In addition, previous reports of multiple inde-
pendent signals at several PrCa risk loci were confirmed, with
evidence for multiple signals at 12 regions; of which 7 regions
contained 2 signals, 4 demonstrated evidence for 3 signals and
5 signals were observed at the Chr5p15 TERT gene locus, which is
known to contain susceptibility variants for many cancer types38.
We observed no consistent pattern of LD relationship between
the original GWAS tag SNPs and the independent signals iden-
tified through fine-mapping in the regions containing multiple
independent signals (Supplementary Fig. 6). For example, at the
ANO7 locus, the original index SNP (rs3771570) is not selected in
the credible set and correlated with only 1 of the 3 independent
signals detected (rs62187431, r2= 0.61). In contrast, at the TERT
region, the original index SNP (rs2242652) is in moderate or
modest LD (r2 0.08–0.43) with 4 of the variants selected by JAM
as representative of the 5 independent signals. Previous smaller
fine-mapping studies using stepwise selection approaches had
also identified evidence for independent association signals within
several regions. However, these are potentially more sensitive
towards subjective measures such as the P-value threshold chosen
for secondary signal inclusion and LD level used to define the
final list of candidate variants represented by the selected marker
(s). Due to our substantially larger sample size and variant density
available and the well-established superiority of Bayesian search
procedures over stepwise selection in high-dimensional settings,
we therefore consider this the most detailed fine-mapping study
to date for variant prioritisation. Comparing our results to the
previous iCOGS fine-mapping study28, in which refinement of 64
GWAS loci was attempted in a smaller European ancestry cohort
of 25,723 PrCa cases and 26,274 controls, 48 regions corre-
sponding to 52 original index SNPs replicated at genome-wide
significance in both studies, of which only 21 regions had been
densely genotyped on the iCOGS chip (Supplementary Data 5).
Within these comparable regions, 70% of the ‘best candidate
SNPs’ established using the iCOGS sample set were also included
in the credible set we have identified in this study. This indicates
broad stability of the results from fine-mapping studies conducted
in the same ancestral population. The additional power and more
dense genotyping across all regions in this study has however
facilitated further refinement of potential candidate variants,
identification of additional candidate variants within several
regions and refinement for the first time of a number of regions in
which fine-mapping had not previously been performed or had
been unsuccessful. We have confirmed the existence of multiple
independent risk signals at 10 loci previously reported, including
identifying extra signals at the TERT (Chr5p15), ANO7
(Chr2q37) and SLC22A3 (Chr6q25) loci, and identified multiple
independent association signals for the first time at two further
loci, including KLK3 (Chr19q13). Eight regions demonstrating
evidence for multiple independent signals in the iCOGS fine-
mapping study were however not corroborated in this larger
study. Notably, the conditional P-values for these secondary
signals in the iCOGS fine-mapping study were below genome-
wide significance in all but one of these regions. This may suggest
that contrary to general assumptions that a lower burden of
evidence is valid for uncorrelated variants in loci for which a

genome-wide significant association has previously been
observed, instead equally stringent significance thresholds should
be applied for both secondary signals and initial primary signals.
It is also notable that in this well-powered study, the vast majority
of regions containing multiple independent signals were first
reported as associated with PrCa in early GWAS using relatively
modest sample sizes. This may indicate that regions with lower
effect sizes and weaker evidence for association, which require
larger sample sizes for their detection, are less likely to contain
additional independent risk variants. Alternatively however, it
could reflect lower power for the detection of additional inde-
pendently associated variants within the regions that contain
weaker signals, despite the large sample cohort utilised in this
study.

As would be expected, refinement of putative causal risk var-
iants varied between regions, with credible sets ranging from a
single variant or handful of variants to >100 variants for a small
number of regions. The regions retaining large credible set sizes
appear to result primarily from large numbers of variants in high
LD with the actual causal variant as opposed to low power within
the region however, rendering further refinement of these signals
to facilitate functional validation studies more complicated. One
approach to further prioritise candidate variants could be to
leverage the different LD patterns among different ancestral
populations, provided that the underlying casual variants are
shared and present at sufficient frequency between populations.
Cross-referencing the 3700 variants within our 95% credible set
with data for an African American PrCa meta-analysis from the
African Ancestry Prostate Cancer GWAS Consortium highlighted
a subset of 1155 variants with nominal or genome-wide sig-
nificant evidence for association in this additional population. An
alternative prioritisation approach is to consider pre-existing
biological information, as we have described for the RFX6
(Chr6q22) region. We annotated variants against a number of
publically available data sets, observing enrichment of several
plausible markers of biological function active in prostate cell
lines within our credible set, including intersection with pro-
spective promoter and enhancer elements, DNaseI hypersensi-
tivity sites, histone modification or transcription factor-binding
peaks, and variants residing within protein-coding transcripts and
conserved regions of the genome. Of particular interest, more
than a quarter of the variants within our credible set were also
eQTLs within the TCGA prostate adenocarcinoma data set. Given
their statistical selection independent of this annotation and
demonstrated effects upon gene expression, these eQTL variants
should be considered high priority when selecting candidate
causal variants for functional confirmation, alongside variants
that modify the coding sequence of genes, or appear to reside
within reliably annotated promoters or enhancers. Another
important discovery of this study is that an appreciable number of
highly ranked variants within the credible set are non-
synonymous SNPs. This provides evidence that subtle altera-
tions to structure and activity of specific proteins may give rise to
the functional mechanisms behind a proportion of GWAS
associations.

Some alternative fine-mapping algorithms integrate functional
annotations during the statistical analysis when considering evi-
dence for causality for each variant39–42. These methods can
prove useful for enhancing variant prioritisation, provided that
the annotation information is reliably indicative of causal var-
iants. We preferred to perform statistical analysis separately from
annotation and compare statistical and functional evidence for
causality afterwards using conditional QR. We believe this more
clearly allows the most informative annotations, and the variants
that are characterised by those annotations to be highlighted
within the data set, whilst also reducing the potential for

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04109-8

10 NATURE COMMUNICATIONS |  (2018) 9:2256 |DOI: 10.1038/s41467-018-04109-8 |www.nature.com/naturecommunications



penalisation of strong candidate variants due to localised artefacts
or cell line-specific effects within the whole-genome biological
data sets used for annotation. Our conditional QR analysis
resulted in adjustment of posterior probability for a small pro-
portion of variants and may further assist prioritisation of the
most likely functional variants among the credible set selected for
each region.

Fine-mapping studies are important to reveal information on
the biological mechanisms underlying disease predisposition by
pinpointing potential candidate genes, signalling pathways and
networks that account for differences in disease risk between
individuals. In addition, these studies may help to refine the
contribution of GWAS loci to PrCa risk by incorporating more
likely candidate variants. This study evaluated almost all pre-
viously reported PrCa GWAS regions, apart from the highly
complex Chr8q24 and major histocompatibility complex (MHC)
regions and associations that did not replicate in the largest
European meta-analysis to date. We then subsequently re-
evaluated the contribution to FRR of these known PrCa risk
loci using an enhanced method in which the overall FRR of PrCa
was revised upwards from 2.0 to 2.5 to reflect the most recent
estimates and we also accounted for uncertainty of various esti-
mates that can introduce bias in these calculations. Our approach
therefore provides more conservative estimates than in previous
publications. We demonstrated a substantial increase in the
proportion of FRR explained through fine-mapping these GWAS
regions (from 23.2 to 30.3%), with detailed investigation showing
that a similar proportion of this enhancement was conferred by
replacement of the original tag SNPs and discovery of secondary
signals. It is also noteworthy that the 7.1% magnitude of increase
in FRR explained after fine-mapping known loci is substantially
greater than the 4.4% increase achieved through identification of
62 novel PrCa loci8. This highlights the invaluable importance of
fine-mapping studies for risk prediction and their potential utility
in helping to inform clinical screening studies.

Fine-mapping of GWAS loci requires comprehensive exam-
ination of variation within the region. Logistical constraints
generally preclude resequencing of disease-associated loci to
achieve complete variant coverage in large sample cohorts and
instead mandate the use of genotype array data followed by
imputation, in order to achieve sufficient sample sizes. To ensure
the accuracy of downstream fine-mapping analyses, stringent
variant QC must be applied to imputed data, to exclude low-
quality variants that may be indicative of imputation artefacts. In
this study, initial pre-imputation QC of the meta-analysis data set
was first performed to exclude potential genotyping errors, fol-
lowed by post-imputation QC in which variants with low MAF or
imputation information score, or divergent MAF consistency
between dosage and ‘best guess’-derived MAF estimates were
excluded. The MAF estimate consistency check was performed to
highlight additional variants for which reliability of imputation
may be reduced and evaluation of variants excluded in this step
revealed that the majority were situated within segments of the
genome flagged as repetitive or otherwise ambiguous. Whilst we
cannot guarantee that no causal variants at GWAS loci would be
located within repetitive elements, we believe that the high pro-
portion of variants filtered during QC that are located within
potentially difficult to impute segments indicates an appropriate
balance between controlling against both type I and II errors
during the subsequent fine-mapping analyses. The inability to
directly interrogate this category of variants during this study
could however reflect a potential limitation.

The multivariate fine-mapping strategy we employed enabled
identification of small numbers of prospective causal variants
amenable to functional follow-up at many known PrCa sus-
ceptibility regions. Within this credible set of variants, we found

evidence of enrichment for a number of biologically plausible
mechanisms through which PrCa risk could potentially be
modulated. We observed multiple independent PrCa associations
at 15% of the loci fine-mapped, and several candidate genes were
indicated for consideration through functional annotation. As
rare variants with MAF < 0.005 were not included in our analyses,
we cannot exclude a contribution of rare casual variants exerting
a greater effect size giving rise to synthetic associations at any
GWAS loci, although our findings indicate that these are unlikely
to be widespread. Importantly, replacement of the original GWAS
tag SNPs with more likely candidate variants and identification of
additional independent signals resulted in a substantial increase
in the proportion of the FRR of PrCa explained by these loci. This
finding accounts for a portion of the ‘missing heritability’ of PrCa
and has important implications for clinical risk profiling and
management of patients.

Methods
Identification of PrCa risk loci to fine-map. We identified 101 independent PrCa
GWAS risk associations within the literature that had been reported at genome-
wide significance prior to the start of this study, the majority of which had pre-
viously been replicated within a European ancestry population3,12. Six of these lead
variants were located within the Chr8q24 region that is associated with multiple
cancer types in a highly complex manner, and three within the MHC Chr6p21
region. Due to the large numbers of variants, high levels of correlation and greater
complexity within these regions, they are the subject of separate fine-mapping and
risk stratification studies and were excluded from consideration in this analysis; the
remaining 92 previously reported GWAS SNPs were selected for fine-mapping in
this study. For 5 of these originally reported GWAS SNPs, no variant within ±500
kb replicated at genome-wide significance in our larger European meta-analysis
and these loci were subsequently excluded from downstream Bayesian analyses and
FRR calculations. An additional 2 GWAS SNPs originally reported in non-
European ancestral populations and 1 reported in a previous meta-analysis did not
replicate, but were situated <500 kb from an independent, replicated European risk
association and were therefore still considered within the region boundaries of
signals that were fine-mapped.

Selection of SNPs for fine-mapping on the OncoArray. A total of 78 PrCa risk
associations that had been reported prior to the design of the OncoArray geno-
typing platform43 were densely genotyped within the OncoArray sample cohort.
Region boundaries for dense genotyping were defined as the greater of ±500 kb
from the index SNPs or the maximum distance of any variant with r2 > 0.3 to the
index SNP in 1KG (phase 1 version 3, March 2012 release). All SNPs within these
regions with MAF > 0.01 in any ancestral population were extracted and then we
obtained Illumina Design Scores for all variants from the 1000 Genomes Project
(phase I version 3, March 2012 release). From designable variants with a Design
Score ≥ 0.8, we used Snagger44 to select (a) all variants correlated with the known
hits at r2 > 0.6 and P < 0.05 in the iCOGS study, (b) all variants from lists of
potentially functional variants, defined through ENCODE and RegulomeDB and
(c) a set of SNPs to tag all remaining variants at r2 > 0.9. The 23 risk loci reported
in a recent multi-ethnic meta-analysis study12 were not densely genotyped as these
loci were reported after the OncoArray design; however, these regions were also
fine-mapped in this study.

Meta-analysis and imputation. Genotype data for a combined 82,591 PrCa cases
and 61,213 controls of European ancestry from eight GWAS (OncoArray, iCOGS,
UK stage 1 and 2, CaPS 1 and 2, BPC3 and NCI PEGASUS) were used for the
meta-analysis8. Per-allele ORs and standard errors were generated for the
OncoArray and each GWAS, adjusting for principal components (PCs) and study
relevant covariates using logistic regression. The OncoArray and iCOGS analyses
were additionally stratified by country and study, respectively. We used the first
seven PCs for OncoArray and first eight PCs for iCOGS samples, as additional
components did not further reduce inflation in the test statistics. OR estimates were
derived using either SNPTEST (https://mathgen.stats.ox.ac.uk/genetics_software/
snptest/snptest.html) or an in-house software C++ programme. OR estimates and
standard errors were combined by a fixed effects inverse variance meta-analysis
using METAL45. All statistical tests conducted were two-sided.

IMPUTE2 was used to impute non-genotyped SNPs within a boundary flank of
±500 kb or the maximum distance of any variant with r2 > 0.3 to the index SNP in
1KG phase 1 from the originally reported GWAS index SNP in the meta-analysis
cohort. For the OncoArray data, un-phased imputation was carried out for all the
fine-mapping regions. Where the boundaries of adjacent associations to fine-map
overlapped, these were merged for imputation; therefore, imputation was
performed as 82 discrete chunks. Within 3 of these chunks the separate signals to
analyse were sufficiently dispersed to enable clear demarcation of the individual
signals and retention of an appropriate flank distance; these 3 imputation chunks
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were therefore split prior to statistical analysis and the 92 original index SNPs
analysed were fine-mapped as 85 separate regions.

We conducted a two-stage post-imputation QC process. During basic QC,
imputed genotype data were filtered to retain variants with INFO ≥ 0.4 and MAF ≥
0.005. We subsequently instituted an additional QC measure to remove imputed
variants with greater genotype uncertainty in which separate MAFs were calculated
based on ‘dosage’ and ‘best guess’ genotypes. Large deviations between these MAF
estimates for a variant would indicate unreliable imputation performance; variants
for which these differed by ≥10% were excluded from analysis. An additional
benefit of this methodology is that inherently applies progressively greater
stringency of QC filtering the rarer a variant is within the study population. During
the post-imputation QC process, 288,033 rare variants were excluded, whilst a
further 146,088 variants were removed due to low INFO score or divergent MAF
consistency. This resulted in a final post-QC set for analysis of 213,728 SNPs within
the 80 fine-map regions that had replicated in the initial meta-GWAS, with a
minimum variant INFO score within the final data set of 0.63, and the vast
majority of variants having INFO > 0.9 (Supplementary Fig. 7).

As an additional safeguard, we investigated the proportion of common variants
(MAF ≥ 0.05) in 1000 Genomes European samples that were retained or excluded
during our QC procedure. In total, 186,907 of 227,793 common 1000 Genomes
European variants (82.1%) were included in our final post-QC data set for analysis.
The vast majority of common variants excluded during QC, 37,830, were removed
in the MAF consistency check step. In all, 27,070 (71.5%) of these were situated
within segments of the genome flagged as repetitive or otherwise ambiguous (either
masked as low complexity by RepeatMarker, or excluded by the 1000 Genomes
phase 3 Strict Mask), whilst a further 4460 (11.8%) had intermediate INFO score
values (0.4–0.8).

Multivariate fine-mapping towards putative causal variants. JAM16 is a novel
Bayesian algorithm that searches multi-SNP models in summary data by imputing
the correlation structure according to a reference panel. JAM provides inference on
the number of independent signals, as well as the set of potential SNPs driving
those signals. Under a standard multivariate linear regression, the vector of trait
values y are regressed on a matrix of genotypes, X, under the following model

y � N Xβ; INσ
2

� �
ð1Þ

where σ2 represents the residual variance, β represents a vector of effects, which are
all adjusted for one another, and IN is the N ×N identity matrix. Multiplying the
standard model above through by the transpose of the genotype matrix, JAM
makes inference under the resulting multivariate normal (MVN) model:

X′y � N X′Xβ;X′Xσ2
� �

ð2Þ

The motivation for using the model in (2) rather than (1) is that individual-level
data are no longer required; X′y can be derived from one-at-a-time univariate
effect estimates of each variant46,47 and X′X from an estimate of the genetic
correlation matrix. Note that in the case of the PrCa summary statistics, we derive
X′y after first mapping the univariate log ORs to approximate linear effects via
their z-scores, a strategy adopted for binary traits in other linear model-based
summary statistic frameworks37,48. Consequently, the model residuals have the
same interpretation as in a linear regression of a binary outcome; they cannot
exceed 1 and, under the null model, their variance σ2 equals the trait variance,
p(1− p) where p is the proportion of cases. Since each region is unlikely to explain
much heritability individually, we specify an inverse gamma (Γ−1) prior that
loosely targets the PrCa variance in the meta-GWAS:

σ2 � Γ�1ð2; 0:24Þ

This corresponds to a prior expectation for σ2 equal to the PrCa variance in the
meta-GWAS, 0.24, and 95% weight over the range (0.05, 0.69). The JAM model is
completed by specifying a so-called ‘g-prior’ over the genetic effects, β:

β � MVN 0; τβ X′Xð Þ�1� �

The conjugate g-prior supports effects inversely proportional to the
corresponding genetic co-variances and variances, as estimated from the reference
matrix X′X, and has been shown to help when modelling highly correlated
predictors49. There is a substantial literature on choices for the hyper-parameter, τ;
we follow recommendations to set a value equal to the maximum of N and P2,
where P is the number of variants in the region50,51.

Crucially, both (1) and (2) are parameterised by the same vector of multivariate
(i.e., correlation adjusted) effect estimates, β; JAM is therefore able to approximate
inference from a multivariate analysis of individual-level data. Optimal
performance is achieved when the correlation structure X′X is taken from the
original GWAS population, rather than an external reference population. We
applied JAM to summary statistics from the meta-analysis data set using LD
estimated according to imputed individual-level data from the OncoArray sub-
cohort of 53,449 cases and 36,225 controls in which these regions had been densely
genotyped.

Similar to other Bayesian stochastic variable selection approaches, JAM models
a latent vector of binary indicators, γ, for whether each variant should be included
(γv= 1 if variant v is associated and included in the model, or 0 otherwise). Any
specific configuration of indicators then specifies a specific model, M. Using a
Bayesian stochastic search, specifically a Reversible Jump MCMC (RJMCMC)
algorithm16,52, JAM searches over different possible models. By specifying a prior
on the probability of including any combination of variants, we induce a prior over
the ‘model space’, γ. More formally, JAM’s prior over γ induces sparsity and
accounts for the multiple testing burden through use of a ‘beta-binomial’ prior on
the number of associated variants or variants included in any given model, which
consists of a Beta distribution over the proportion of associated variants in a
particular region, conditional on which prior probabilities for each possible
number of associated variants follow a binomial distribution. All configurations or
combinations, including the same number of variants are given identical prior
probabilities. For each region we used a beta-binomial (1, Pr) prior, where Pr is the
total number of variants in a region r. This places a constant prior probability for
any effect in each region (i.e., one or more causal variants) of 0.5, which is split up
over all possible models according to the beta-binomial distribution. Since these are
previously discovered regions, this is far more generous than our prior belief would
be that a random region of the genome is associated with PrCa but is more
conservative for the regions in this analysis, where we estimate the false discovery
rate is <10%. The marginal prior odds of any particular SNP being selected is 1/Pr,
and decreases with the total number of variants in the region, providing an intrinsic
multiplicity correction as a function of region size53–56. The prior probabilities for
≥2, or ≥3 associated variants and so on are weakly effected by Pr, however, for all
regions in this analysis they are equal to the second decimal place at 0.25 and 0.12,
respectively (Supplementary Table 2). More detail on the JAM model and
RJMCMC algorithm can be found in the original paper16. For this analysis, each
region was analysed independently, and by running two independent JAM seeds
for 10 million iterations each. The JAM output provides posterior probabilities for
each variant, Pr(γv= 1|data), and for each combination of variants, Pr(M= 1|
data). To determine statistical significance for individual variants, combinations of
variants and for the possible number of independent signals we use Bayes factors57,
the ratio of the posterior odds to the prior odds. Specifically, we used the inference
of the minimum number of independent signals in the model at a regional Bayes
factor threshold of 3 to define the evidence for multiple signals.

Before running JAM, Priority Pruner v0.1.3 (http://prioritypruner.sourceforge.net)
was used to LD prune the imputed meta-analysis variant set at a threshold of r2= 0.9
for the 80 regions replicated at genome-wide significance. Pruning was performed
agnostic of additional prioritisation criteria (association or annotation data) to ensure
unbiased Bayesian model selection. Additional pruning at lower LD levels was
performed upon any regions in which the overall Bayes factor for association with
PrCa fell below 1. A regional Bayes factor below 1 directly conflicts with our
knowledge that these regions are robustly associated with PrCa, and was taken as an
indication of collinearity; numerical instability that can occur when fitting
multivariate models to highly correlated variables. Where required, the pruning
threshold was lowered in r2= 0.05 increments, to a cut-off level of r2= 0.6. The
pruned data set used in the final Bayesian analyses comprised a total of
38,745 selected tags.

The pruning thresholds used in the final results are listed in Tables 1–3. For
each independent JAM analysis, the top models or combinations of included SNPs
within each region as determined by the posterior probabilities of the models, Pr
(M= 1|data) that summed to a cumulative posterior probability of 0.95, were used
to define a run specific 95% credible set. To filter out any low confidence variants,
final 95% credible sets for each region were defined according to the intersection
between two independent runs of JAM, with any variants with variant-specific BF
< 1 additionally removed from the amalgamated variant list due to having greater
standalone evidence against association. Overall, 3761 of the 4142 unique SNPs
selected by either JAM run were retained in the combined top models from both
runs (90.8%), with a further 61 variants with BF < 1 removed to achieve the final
95% credible set.

Annotation of variants for functional features. Variants were annotated for a
number of putative indicators of biological functionality or importance, using a
range of publically available data sources. These annotations focussed on either the
likely consequence or relevance of the variant resulting from its primary genomic
context, or the proximity to annotated regulatory features within cell lines derived
from normal prostate or PrCa tissues.

Gene-based annotation of variants was performed using wANNOVAR in
relation to GENCODEv19 transcripts58. Variants residing within miRNA
transcripts were subsequently added in relation to miRBase release 20 (ftp://
mirbase.org/pub/mirbase/20/genomes/hsa.gff3)59. Annotation of variants that
reside within genomic elements demonstrating evidence for evolutionary
constraint was performed against conserved element peak outputs from
comparative genomics analyses by four algorithms; GERP++ (http://mendel.
stanford.edu/SidowLab/downloads/gerp/)20, SiPhy_Omega, SiPhy_Pi (https://
www.broadinstitute.org/scientific-community/science/projects/mammals-models/
29-mammals-project-supplementary-info)21 and PhastCons (ftp://hgdownload.cse.
ucsc.edu/goldenPath/hg19/phastCons100way/)22. Variants were also scored for
likelihood of prospective pathogenicity using CADDv1.3 (http://cadd.gs.
washington.edu/score)60.
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For annotation against prospective regulatory elements within the genome, which
frequently operate in a tissue-specific context, these data sets were primarily retrieved
from experiments using prostate-derived cell lines. We annotated variants that
intersected DNaseI peaks data in seven individual ENCODE prostate data sets from
three cell lines (LNCaP, PrEC and RWPE1; GSM816637, GSM816634, GSM1008595,
GSM736565, GSM736603, GSM4742 and GSM4743)61,62. Peak data from ChIP-seq
experiments for transcription factor-binding sites and histone modifications in the
LNCaP, PC3, PrEC and VCaP cell lines and human prostate tumour tissue was
downloaded from the Cistrome Data Browser (http://cistrome.org/db/); a resource
that accumulates publically available ChIP-seq data sets and re-analyses their raw data
through a standardised pipeline and QC procedure24. Downloaded CistromeDB data
were converted from GRCh38 to GRCh37/hg19 reference assembly co-ordinates for
compatibility with our variant data set using the UCSC Genome Browser LiftOver
tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Transcription factor-binding site
data were obtained for the Androgen Receptor (GSM1236922, GSM1328945 and
GSM1576447), CTCF (GSM1006874 and GSM1383877), ERG (GSM1193657 and
GSM1328978), FOXA1 (GSM1068136, GSM1274873 and GSM1716762), GABPA
(GSM1193660), GATA2 (GSM1600544), HOXB13 (GSM1716763 and GSM1716764)
and NKX3.1 (GSM699633 and GSM989640). Histone modification data were
obtained for H3K27Ac (GSM1249447 and GSM1249448), H3K27me3 (GSM1383866
and GSM1383872) and H3K4me3 (GSM1383874 and GSM945240). Finally, to
facilitate deeper categorisation of the genomic context of variants within prospective
regulatory features, they were annotated with their chromatin state categorisations by
ChromHMM from two prostate cell lines (PrEC and PC3; GSE57498), alongside three
ENCODE tier 1&2 cell lines (GM12878, H1HESC and HUVEC) to enable
comparison of tissue specificity for prospective regulatory elements23,63,64.

eQTL analysis. Genotype and gene expression data for 494 samples with PrCa
were downloaded from TCGA (https://gdc-portal.nci.nih.gov). For the genotype
data set, QC was performed according to the protocol suggested by Anderson
et al.65, removing samples with heterozygosity >2 standard deviations from the
mean, individuals with low genotype call rate (<95%), non-male samples and
related or duplicated samples (individuals with identity-by-descent >0.185). Var-
iants with call rate <95% were also excluded from analysis. PC analysis was per-
formed to induce the ancestry of the TCGA samples, using the 494 TCGA samples
plus 2504 samples from the 1000 Genomes Project phase 3, with non-European or
Finnish samples removed from the analysis. In total, 108 samples and 106 SNPs
were removed after performing QC on genotype data. For the expression data set,
we observed that samples from two plates (A31K and A30D) exhibited values
substantially higher than samples on the remainder of plates, therefore samples on
these plates were also excluded (27 additional samples). Out of the 494 samples,
359 therefore passed QC. Genotypes for samples passing QC were subsequently
imputed to the 1000 Genomes Project phase 3 reference panel within the region
boundaries applied to the fine-mapping data set using IMPUTE2. In all, 227,773
variants within the fine-mapping data set passed QC thresholds in the TCGA
imputed data and therefore were available for eQTL analysis. Genes with mean
expression across samples of ≤6 counts or with expression variance= 0 were also
excluded (4123 and 370 genes removed, respectively). Finally, expression values
were quantile-normalised by samples and rank-transformed by genes. In total,
16,038 genes passed QC out of the initial 20,531.

For the eQTL analysis, 35 PEER factors66 for the top 10,000 expressed genes
were used as covariates, plus 3 genotyping PCs. eQTL analysis was performed for
each region individually using FastQTL67 with 1000 permutations and a window of
1 megabase from the transcription start site of each gene. Colocalisation tests
between the eQTLs and GWAS SNPs were then performed following the approach
suggested by Nica et al.68. First, for each significant eQTL, we added the imputed
SNP to the linear regression to assess if the inclusion better explains the change in
expression of the gene.

Expression � genotype eQTLð Þ þ cov þ genotype imp:SNPð Þ

We retrieved the P-value of this new linear regression, assigning P-value of 1 if
the eQTL and imputed SNP are the same variant. Second, we ranked the P-values
in descending order for each eQTL. Finally, we calculated the colocalisation score
for each pair of eQTL and imputed SNPs as:

Colocalisation score ¼ N � rankð Þ=N

where N is the total number of imputed SNPs in that region and rank is the
rank of the imputed SNP we are including. In general, if an eQTL and an
imputed SNP represent the same signal, this will be reflected by the imputed
SNP having a high P-value, a low rank and consequently a high colocalisation
score.

Quantile regression. Conditional QR across variant annotations was performed
for the 75 regions successfully fine-mapped using JAM, with the 5 regions in which
JAM was unable to resolve candidate variants excluded from this analysis. To
minimise correlation between annotations, single data sets for each transcription
factor, histone mark, DNaseI, conserved element and chromatin state by
ChromHMM category were selected for investigation with conditional QR.

Specifically, the GSM736603 DNaseI, GSM1328945 AR, GSM1383877 CTCF,
GSM1193657 ERG, GSM1068136 FOXA1, GSM1193660 GABPA, GSM1600544
GATA2, GSM1716763 HOXB13, GSM989640 NKX3.1, GSM1249447 H3K27Ac,
GSM1383872 H3K27me3, GSM945240 H3K4me3 and GERP++ conserved ele-
ment annotation fields were selected, as these were observed to be most informative
for variants within the 95% credible set, whilst the PrEC cell line ChromHMM
annotation was selected over the PC3 data set due to its origin from normal
prostate rather than cancerous tissue. Similarly, CADD RawScore was selected,
with CADD PHRED score excluded prior to the analysis. Information on
whether variants were an eQTL in the TCGA data set was included. Finally,
new categories were computed to ascertain whether a variant was situated
within a protein-coding transcript (intronic, exonic or untranslated region),
within a non-coding transcript, and whether the variant altered protein structure
(non-synonymous, non-sense, frameshift or non-frameshift insertion/deletion
coding variants).

All annotations were converted to binary format for the QR analysis, with the
exception of CADD RawScore, which was retained as a continuous variable.
Separate variables were created for each possible ChromHMM state during
conversion from categorical to binary format. QR analysis was performed upon the
priority pruner tag variants that were analysed by JAM, using the statistical results
from those analyses. Annotations for all proxy SNPs represented by the tag variant
were therefore subsequently inherited by the priority pruner tag. For the binary
annotation categories, this meant that if one or more proxies had received a given
annotation then the tag would also receive that annotation, whilst for the
continuous CADD RawScore, the tag inherited the highest value from all associated
proxies.

For a specified quantile, τ, we first fit a conditional QR model to the estimated
posterior probabilities from the JAM analysis for each variant. Second, we use the
fitted model to calculate an expected posterior probability for each SNP given the
annotation profile for that SNP. Since there is uncertainty in the choice of τ, we
analyse the data across a range of τ= (99.2, 99.4, 99.6, 99.8 and 99.95%) and
calculate a weighted average of these expected posterior probabilities to yield a final
estimate. Specifically, the posterior probability from JAM, P, is modelled with a
conditional QR with annotation, Z. The model is defined by an asymmetric laplace
distribution (ALD):

P � N v; σ2ð Þ

v �
Q
i

ALD Zθ; λi; τið Þ

Notice v is affected by both P and Zθ, and it suggests a weighted average of P and
fitted regression quantiles can approximate v. The density function of ALD
distribution is

f vjZθ; λ; τð Þ ¼
τ 1� τð Þ

λ
exp �ρτ

v � Zθ

λ

� �� �

For λ, the maximum is achieved at

λ� ¼

P
j ρτ v � Zθð Þ

N

We fix λ to be

λ̂ ¼

P
j ρτ y � Zbθ

� �

N

where bθ is coefficient estimates from classical conditional QR. With λ fixed, only
the exponential parts of the Gaussian distribution and ALD involve v, to which we
assign weight to P and Zbθ. Specifically classical QR yields a prediction for each

SNP, i as bPi ¼ Zθ̂i at τi ; the larger the penalty ρτi Pi � bPi
� �

and Pi � bPi
� �2

, the less

influence bPi should have on Pi. We normalise the weight for Pi to be 1. For bPi we
assign weight

wi ¼ exp �
ρτi Pi � bPi

� �

λ̂i
�

Pi � bPi
� �2

2σ2

0

B@

1

CA=4

0

B@

1

CA

which is approximately the penalty at v ¼ P þ bPi

� �
=2. Our approximate value for

v is then

v̂ ¼
P þ

P
i wiYi

1þ
P

i wi

Proportion of familial risk explained. The contribution and comparison of the
newly identified SNPs and the previously known variants to the familial risk, under
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a multiplicative model, was computed using the formula
X

M
logλmð Þ= logλ0ð Þ

Where λ0 is the observed FRR to first degree relatives of cases and λm is the FRR
due to locus m, calculated assuming a per-allele effect:

λm ¼
pmr

2
m þ qm

pmrm þ qmð Þ2

where pm is the frequency of the risk allele for locus m, qm= 1− pm and rm is the
estimated per-allele OR.

This calculation was performed using a Bayesian framework, which allows us to
attenuate any ‘winners curse’ bias, and incorporates the uncertainty in estimating
the variant-specific per-allele OR, rk, and the value of the observed familial risk, λ0.
To correct for potential bias in effect estimation from using the same sample to
determine the credible set of SNPs (the so-called ‘winner’s curse’), we implemented
a hierarchical model similar in spirit to Zhong and Prentice69 by placing a normal
prior distribution on effect estimates of the form βm � N 0; τ2ð Þ. Here βm is the log
OR from the conditional model within each region, and τ is a pre-specified
variance of the effect distribution reflecting our prior beliefs. For all variants, we
used a conservative value of τ= 0.05, reflecting a 95% prior probability density for
a per-allele OR in the range of [0.91, 1.10]. For the FRR calculation, we specified a
prior distribution as λ0 � N 2:5; 0:142ð Þ, which places a 95% prior density in the
range [2.22, 2.78] on the FRR of PrCa. This calculation was performed using the
JAGS software70.

To collapse our catalogue of credible variants identified through fine-mapping
into a parsimonious set of SNPs matching the observed number of independent
signals, we selected single representative lead variants to represent each signal. For
the 63 regions in which JAM identified only a single signal, these were designated
as the tag with the highest posterior evidence for association, whereas for the 5
regions in which JAM did not resolve candidate variants the variant most strongly
associated with PrCa in the original meta-GWAS was designated as the novel lead
variant. For the 12 regions containing multiple independent risk signals, to
facilitate unbiased selection of variants representing different signals, JAM
exhaustively fitted all possible multi-SNP models for the specified number of
signals, and the combinations of SNPs with the highest posterior probability were
selected to represent the independent signals. Separate models were run to derive
the variant list for the full 99 signals identified and also a reduced set of 84 signals,
matching the number of original index variants fine-mapped, to enable comparison
between the contributions of replacement of the GWAS tag SNPs and addition of
novel signals identified. To yield adjusted effect estimates for each lead variant in
regions containing multiple signals, conditional effect estimates and standard
errors for the selected ‘representative’ variants used for the FRR calculations were
derived from the OncoArray sub-cohort of 53,449 cases and 36,225 controls, for
which individual-level data were available.

Data availability. The meta-analysis summary data used in this fine-mapping
project are available from the PRACTICAL Consortium (http://practical.icr.ac.uk/
blog/?page_id=8164) or GitHub (https://github.com/oncogenetics/LocusExplorer/
tree/master/Data/ProstateData). Results from the fine-mapping analyses may be
explored interactively through Locus Explorer71 (http://www.oncogenetics.icr.ac.
uk/LocusExplorer/).
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