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Abstract

Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions1,2 

(www.T1DBase.org) revealing major pathways contributing to risk3, with some loci shared across 

immune disorders4–6. In order to make genetic comparisons across autoimmune disorders as 

informative as possible a dense genotyping array, the ImmunoChip, was developed, from which 

four novel T1D regions were identified (P < 5 × 10−8). A comparative analysis with 15 immune 

diseases (www.ImmunoBase.org) revealed that T1D is more similar genetically to other 

autoantibody-positive diseases, most significantly to juvenile idiopathic arthritis and least to 

ulcerative colitis, and provided support for three additional novel T1D loci. Using a Bayesian 

approach, we defined credible sets for the T1D SNPs. These T1D SNPs localized to enhancer 

sequences active in thymus, T and B cells, and CD34+ stem cells. Enhancer-promoter interactions 

can now be analyzed in these cell types to identify which particular genes and regulatory 

sequences are causal.

Type 1 diabetes (T1D) results from the autoimmune destruction of the pancreatic β cells, 

leading to absolute dependence on exogenous insulin to regulate blood glucose levels7. In 

the present study we designed and used the ImmunoChip, a custom Illumina Infinium high-

density genotyping array, in order to (i) identify additional risk loci, (ii) refine mapping of 

T1D risk loci to their sets of most-associated credible SNPs in order to (iii) analyze the 

locations of the credible SNPs with respect to regulatory sequences in tissues and cell types, 

and (iv) assemble summary GWAS and ImmunoChip results from multiple immune diseases 

to allow comparisons of their genetic risk profiles.

The T1D single nucleotide polymorphisms (SNPs) and indel content selected for inclusion 

on ImmunoChip was based on the 41 T1D regions known at the time (February, 2010)1 and 

on 3,000 “wildcard” SNPs that tagged candidate genes or other SNPs with suggestive 

evidence (5 × 10−8 < P < 10−5) of association from T1D GWAS. In parallel, we collected 

and curated all available association results for immune diseases for which the ImmunoChip 

was designed. For efficient comparison and downstream analysis by the research 

community, we created a publicly available, integrated, web-based portal (ImmunoBase) 

that contains complete association summary statistics that are available for querying, 

browsing, or bulk download.

Onengut-Gumuscu et al. Page 2

Nat Genet. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



After data cleaning and quality control8,9, a total of 138,229 SNPs were scored in 6,670 T1D 

cases10, 6,523 controls from the British 1958 Birth Cohort11, 2,893 controls from the UK 

National Blood Service12, 2,846 controls from the NIHR Cambridge Biomedical Research 

Centre Cambridge BioResource13, 2,601 Type 1 Diabetes Genetics Consortium (T1DGC) 

affected sib-pair (ASP)14 and 69 T1DGC trio families. Case-control and family data were 

analyzed independently and combined by meta-analysis. We obtained evidence for T1D 

association in 44 regions at P ≤ 3.23 × 10−7 (an ImmunoChip Bonferroni-corrected P < 0.05; 

Table 1). Thirty-eight of these are recognized T1D regions (T1DBase and ImmunoBase) and 

four are newly identified regions (genome-wide P < 5 × 10−8): 1q32.1/index SNP 

rs6691977, 2q13/rs4849135, 4q32.3/rs2611215, and 5p13.2/rs11954020. rs11954020 is 

close to the multiple sclerosis (MS) candidate immune response gene, IL7R15. Two 

remaining loci, 17q21.31 and 21q22.3, were marginally associated (P > 5 × 10−8) and, as we 

describe later, additional support for 17q21.31 comes from genome-wide significant 

association of the same SNP, rs1052553, with primary biliary cirrhosis (PBC)16.

At each of the 44 loci, we investigated whether additional SNPs were independently 

associated with T1D. Logistic regression analyses, conditional on the most associated or 

index SNP in each region, identified five loci with more than one independently associated 

SNP (Table 1). Four were already known to encode for more than one causal variant but the 

fifth region, 11p15.5 (INS, INS-IGF2 candidate genes), was surprising as INS was the first 

non MHC region in T1D to be discovered17, and therefore the region has been examined 

intensively. The likely causal candidates in this region are SNPs rs689/−23HphI, 

rs3842753/+1140A>C, and the 5′ variable number tandem repeat (VNTR) polymorphism. In 

European-ancestry populations, these three sites are in near perfect linkage disequilibrium 

(LD)18. SNPs rs689 and rs3842753 were assayed on the ImmunoChip, but both were 

eliminated following quality control. We integrated pre-existing rs689 data with 

ImmunoChip data in the 6,670 UK GRID cases and 6,304 British 1958 Birth Cohort 

controls, and found rs689 to be the most associated SNP. After conditioning on rs689, SNP 

rs72853903 still exhibited significant evidence for an independent association with T1D (P 

= 5.4 × 10−10; Table 1). We did not have sufficient data to integrate rs3842753 or the INS 

VNTR in these analyses, but rs689 is known to tag the VNTR precisely18. We note 

annotation using VEP19 (Ensembl v75) identifies rs3842753 as an INS non-synonymous 

SNP (His-Pro). However, we found limited evidence for the annotation of the underlying 

transcript isoform and it is more likely to be a non-coding 3′UTR SNP.

Comorbidity between T1D and other immune-mediated diseases has been reported widely 

through epidemiological and clinical studies, but evidence for shared genetic etiology has 

not been assessed in a uniform manner across multiple diseases. We sought to compare the 

underlying genetic susceptibilities to T1D and each of 15 immune diseases curated in 

ImmunoBase (accessed February 13, 2014). We first divided the densely mapped regions of 

the ImmunoChip into two sets according to whether there was published association with the 

index disease and that region. We then tested whether T1D single SNP P-values differed 

between the two sets of regions using a variant set enrichment method that accounts for LD 

between SNPs20 (Supplementary Information). A difference in P-value distributions 
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indicated that T1D showed stronger (or weaker) association with regions according to their 

association with the index disease.

This comparison clearly delineated diseases with characteristic autoantibodies (e.g., juvenile 

idiopathic arthritis (JIA), rheumatoid arthritis (RA) and T1D) compared to auto-

inflammatory disorders (e.g., ulcerative colitis (UC) and Crohn’s disease (CD); Table 2; Fig. 

1A). The strongest positive and negative enrichments were observed with JIA (Fig. 1B; P = 

2 × 10−13) and UC (Fig. 1C; P = 5.4 × 10−5), respectively. It should be noted that the 

susceptibility loci for each disease remain incomplete and the extent of the incompleteness 

varies between diseases. This limitation prevents us from drawing any conclusion that ‘T1D 

is more like RA than ATD’; however, individually significant results are likely valid 

representations of disease overlap. The overlap between T1D and JIA was driven, in part, by 

sharing (P < 10−20) at 1p13.2/PTPN22, 12q24.11/SH2B3, and 10p15.1/IL2RA (Fig. 1B and 

Fig. 1C) whereas, for UC, no shared loci reached this level of significance.

We exploited this pleiotropy to identify additional T1D associations. Previously, T1D was 

compared with celiac disease and SNPs robustly associated (P < 5 × 10−8) with celiac 

disease and lesser associated (5 × 10−8 < P < 10−4) with T1D were considered T1D 

associated, and vice versa5. Here, we demonstrate (Supplementary Information) that a SNP 

with P < 5 × 10−8 in any ImmunoChip disease study requires P < 10−5 for T1D to obtain a 

Bayesian posterior probability of T1D association > 0.9, given that different ImmunoChip 

disease studies shared many control samples. Using this analysis, we identified three 

additional T1D regions, bringing the number of known T1D regions to 57: 14q24.1/

rs911263, 17q21.31/rs17564829 (that achieved Bonferroni correction, but not genome-wide 

significance in the primary analysis), and 6q23.3/rs17264332/rs6920220 (Table 3).

The 6q23.3 region contains the well-recognized candidate gene TNFAIP3, linking T1D 

susceptibility with the proinflammatory tumour necrosis factor (TNF) pathway. The three 

genes most proximal to the index SNP in the 14q24.1 region (RAD51B, ZFP36L1 and 

ACTN1) do not provide obvious insights into the biology of T1D nor do genes near the 

index SNPs in the three other regions (1q32.1/CAMSAP2/GPR25/C1orf106, 2q13/ACOXL 

and 4q32.3/LINC01179/CPE/TLL1). CPE encodes Carboxypeptidase E, a protease active in 

the neuroendocrine system and, therefore, could be considered a candidate T1D gene. The 

gene content of the 17q21.31/rs17564829 region, containing a megabase-long inversion 

polymorphism with several copy number variants21, is also not informative although 

SPPL2C, encoding signal peptide peptidase like 2C, could be considered a candidate gene. 

Antigen presentation and associated proteolysis is important in the autoimmune process in 

T1D, including the processing of the major autoantigen, preproinsulin, into peptide epitopes 

some of which contain signal peptide amino acids22.

We surveyed the NHGRI GWAS catalogue23 to determine overlap between diseases and 

traits with the seven novel loci. After removing diseases curated in ImmunoBase, we found 

that 17q21.31/rs17564829, in intron 1 of the MAPT (microtubule-associated protein tau) 

gene, is in strong LD (r2>0.9) with the index SNP for several neurodegenerative diseases, 

including Parkinson’s disease. We also examined two eQTL datasets in relevant tissues24,25 

for overlap with our seven newly identified T1D associations. rs17564829 in the 17q21.31 
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region associated with expression of NSF, KANSL1, ARHGAP27 and MGC5736. This 

region overlaps a set of haplotypes in high LD that incorporate duplication and inversion 

events21, complicating further interpretation. No other identified genes have strong 

functional candidacy.

It is well established that SNPs showing the strongest association with disease in any region 

are not necessarily the causal variants, owing to a combination of sampling variation and 

LD. Nevertheless, the dense coverage of the ImmunoChip increases the likelihood that 

causal variants are among the SNPs genotyped in the T1D loci. Although putative causal 

variants cannot be identified without further experimentation, identification of the most 

associated SNPs in each region allowed us to integrate the location of these SNPs and their 

flanking sequences with emerging knowledge of the regulatory sequences of the genome. 

Focusing on primary and conditional signals in each associated region to define, for each of 

the 44 loci listed in Table 1, we used a Bayesian approach similar to that described 

previously6 to define the 99% credible set of SNPs within which the causal variants are most 

likely to be present (Supplementary Table 1).

We used the set of credible SNPs to interrogate 15 chromatin states across 127 tissues 

derived from the Epigenomics RoadMap and ENCODE projects26. We observed a strong 

enrichment of SNPs in enhancer chromatin states in immunologically relevant tissues (Fig. 

2). Thymus, CD4+ and CD8+ T cells, B cells, and CD34+ stem cells exhibited the strongest 

enrichment in more than one sample of each tissue or cell type. There was less evidence of 

enrichment in promoter sequences (Fig. 2), suggesting that variation of enhancer sequences 

is more relevant to T1D. Our Bayesian approach is more informative in selecting the 

relevant SNPs than the conventional r2-based approach that focuses on SNPs with r2>0.8 

with index SNPs – the r2-based approach only identified enhancer enrichment in one 

subtype of CD4 T cells (data not shown). Recently, an analysis of active gene enhancers 

across multiple tissues reported enrichment of T1D GWAS SNPs in promoters, not 

enhancers27. This difference could be attributable to the empirical technique in defining 

enhancers or their focus on enhancers generally, rather than tissue-specific enhancers, a 

failure to adjust for potential confounding by minor allele frequency, or reliance on the r2-

approach rather than establishing a credible set of putatively causal SNPs. Our analyses 

found no evidence of enrichment in pancreatic islet enhancers, a result supported by a recent 

detailed analysis of pancreatic islets that found evidence for enrichment of type 2 diabetes 

and fasting glucose GWAS signals in a subset of those enhancers, but not of T1D28.

We also investigated whether analysis of available chromatin state data and its annotation 

could narrow our credible SNP lists and point to certain genes and SNPs. We focused on 

credible SNPs that were either non-synonymous/missense (as annotated by VEP19 Ensembl 

v75) or that overlapped enhancer regions in the tissues that showed an enrichment for T1D-

associated SNPs in Fig. 2 (Supplementary Data Set). While credible SNP sets can be large, 

this filtering reduced their median size from 28 to eight SNPs (Supplementary Figure 1). In 

Supplementary Table 2, we highlight 29 SNPs corresponding to 12 regions for which the 

size of filtered sets is relatively small (< 5). The analyses did not identify any new candidate 

gene, other than the known candidate causal genes containing high confidence missense 

variants: PTPN22, IFIH1, CTSH, TYK2 and FUT2. Nevertheless, this analysis does identify 
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SNPs that overlap potential enhancers near CTSH, TYK2 and UBASH3A that are worthy of 

specific laboratory investigations. In addition, we identified candidate enhancer SNPs in 

four other regions, 6q22.32, 7p12.1, 10q23.31, and 16q23.1, none of which have obvious 

candidate genes (Table 1 and Supplementary Data Set). Chromosome conformational 

capture can be used to directly determine the presence of physical interactions between 

promoters and potential enhancer sequences33 in the most enriched primary cell types using 

our credible SNP positions. There is a discrete cluster of enhancer credible SNPs 5′ of the 

functional candidate gene IL10 (Supplementary Data Set), yet this potential regulatory 

sequence could interact with the promoter of the adjacent candidate gene, IL19 (or both). 

Genome-wide analysis of promoter-enhancer interactions will help identify new candidate 

causal genes34,35 Notwithstanding the current lack of data on promoter-enhancer 

interactions, these analyses identify AFF3 (2q11.2) and BCAR1 (16q23.1) as novel 

candidate genes for T1D.

ONLINE METHODS

Samples

Affected sib-pair families were collected by the T1DGC from five geographic regions 

through four recruitment networks. Recruitment criteria for the families have been discussed 

previously36. A total of 6,808 T1D case samples were ascertained from the UK Genetic 

Resource Investigating Diabetes (UK GRID) cohort10. Control samples were obtained from 

the British 1958 Birth Cohort (N=6,929)11 and the UK National Blood Services collection 

(UK NBS, N=3,060)12, and the NIHR Cambridge Biomedical Research Centre Cambridge 

BioResource (CBR, N=2,846)13. Many of these samples (98% of cases, 59% of controls, 

and 57% of family samples) were also used in an earlier GWAS meta-analysis that initially 

identified many of the T1D regions1. All samples included in this analysis have reported or 

self-declared European ancestry. All DNA samples were collected after approval from 

relevant institutional research ethics committees. Review boards of all contributing 

institutions approved all protocols and informed consent for sharing of data and sample 

collection; appropriate informed consent was obtained from all subjects and families

Genotyping and Quality Control

Genotyping was performed using a custom high-density genotyping array, ImmunoChip 

(Illumina, Inc; CA) according to manufacturer’s protocols. The ImmunoChip, a custom 

Illumina Infinium HD array, was designed to densely genotype, using 1000 Genomes and 

any other available disease specific resequencing data, immune-mediated disease loci 

identified by common variant GWAS. The ImmunoChip Consortium selected 186 distinct 

loci containing markers meeting genome wide significance criteria (P < 5×10−8) from 

twelve such diseases (autoimmune thyroid disease, ankylosing spondylitis, Crohn’s disease, 

celiac disease, IgA deficiency, multiple sclerosis, primary biliary cirrhosis, psoriasis, 

rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, and ulcerative colitis). 

All 1000 Genomes Project pilot phase37 CEU population variants (Sept 2009 release) within 

0.1cM (HapMap3 CEU) recombination blocks around each GWAS region lead marker were 

submitted for array design. No filtering on correlated variants (linkage disequilibrium) was 

applied. Additional content included regional resequencing data (submitted by several 
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groups) as well as a small proportion of investigator-specific undisclosed content including 

intermediate GWAS results.

All individuals from T1DGC affected sib-pair (ASP) and trio families (N=11,584), T1D 

cases (N=6,808) and British 1958 Birth Cohort controls (N=5,452) were genotyped at the 

Genome Sciences Laboratory within the Center for Public Health Genomics at the 

University of Virginia. An additional 1,477 control samples from the British 1958 Birth 

Cohort, 2,846 samples from the NIHR Cambridge Biomedical Research Centre Cambridge 

BioResource and 3,060 UK National Blood Service samples were genotyped at the 

Wellcome Trust Sanger Institute. The Illumina GeneTrain2 algorithm was used to cluster 

genotypes.

Sample and SNP quality control for the family data set and the case, control data set was 

performed separately. Initial sample quality control metrics included sample call rate, 

heterozygosity, and sex concordance check of reported versus genotyped. Relationship and 

population structure inference analyses were performed, and the inferred relationship and 

population membership for each individual determined from the genetic data were compared 

to the self-reported pedigree and ethnicity data (see sections on population inference and 

population structure for more detail). A total of 34 cases, 192 controls, and 20 individuals in 

T1DGC ASP families were removed for missing rate > 5%. Approximately 2,000 SNPs on 

the X chromosome and Y chromosome were used to infer sex based upon the genetic data. 

Individuals with low X chromosome heterozygosity and a large number of Y chromosome 

SNPs were defined as ‘males’; individuals with a high X chromosome heterozygosity and a 

small number of Y chromosome SNPs were defined as ‘females’. Inconsistency between the 

self-reported sex and the genetically determined sex for any individual was considered an 

error in sex. From this analysis, 39 T1D cases, 79 controls, and 59 individuals in T1DGC 

ASP families were removed. Samples with heterozygosity outside the range of 19% – 23.5% 

were removed, including 7 cases and 19 controls. A further 75 cases and 201 controls were 

removed for other reasons, comprising sample duplication, and inability to map sample IDs 

to demographic information, relatedness (see below) and population structure. A total of 

6,683 cases, 12,173 controls, 2,601 ASP families and 69 trio families (10,796 total 

individuals) were used for analysis following quality control.

Monomorphic SNPs (~23,000) were identified and removed. A total of 527 SNPs in cases, 

2,405 SNPs in controls and 1,387 in T1DGC ASP and trio family data were rejected due to 

failure to attain at least 95% genotyping rate. An additional 618 SNPs in the case and control 

data were removed due to low genotyping rate at less-frequent and rare variants (genotyping 

rate < 99% for SNPs with MAF < 1%, or genotyping rate less than (1−MAF) for SNPs with 

MAF < 5%. In the case and control collections, 1,432 SNPs failed Hardy-Weinberg 

Equilibrium tests (with HWE P < 10−6) in controls and 527 SNPs failed (with HWE P < 

10−10) in cases. In the ASP families, 2,939 SNPs failed with Mendelian Inconsistency (MI) 

errors (with a standard MI error rate > 0.5% or an adjusted MI error rate > 5% for rare 

variants). A total of 163,924 SNPs passed quality control metrics in the case and control 

collections, and 164,643 SNPs passed quality control metrics in the families. Of these sets of 

SNPs, 154,939 SNPs overlapped and were used for initial analyses. The first iteration of 

identifying the best markers for dense regions produced a large number of markers with 
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visually identified noisy signal clouds. As a result, further SNP-QC was undertaken, 

whereby the call-rate cut off was raised to 99%, the HWE cut off was lowered to P < 10−4. 

A further 8,349 SNPs were removed for lower call-rate and 10,708 for violation of HWE, 

and 34 for manually identified poor signal clouds. This strategy reduced the total number of 

SNPs analysed to 135,870 and produced top SNPs with much cleaner signal cloud data.

We observed inflation of test statistics across all SNPs that passed quality control, 

lambda_1000 = 1.09, which was expected as the ImmunoChip was designed to target 

robustly defined immune-mediated disease susceptibility loci. Excluding SNPs from regions 

reported in this paper, lambda_1000 was reduced to 1.07; excluding all densely genotyped 

regions reduced lambda_1000 to 1.03.

Relationship Inference

Cryptic relatedness can confound the result of population structure and association analyses 

and lead to inflated type I error rates. We used the relationship inference method that was 

implemented in KING8 to estimate the kinship coefficient between every pair of individuals 

based on their SNP data. Since only SNPs of these two individuals are used when the 

kinship coefficient is estimated for a pair of individuals, the estimation accuracy is 

independent of the population structure in the entire data.

Twenty-two autosomes are well covered on the ImmunoChip array, thus the SNP density 

provides sufficient power to correctly identify close relationships (1st- and 2nd-degree) with 

extremely low false positives (i.e., to separate unrelated pairs from close relatives)7. After 

the cryptic relatedness was identified, pedigree errors were resolved by removing 

problematic individuals (within families) and/or by reconstructing the pedigree (both within 

and across families) incorporating the newly identified 1st and 2nd-degree relationships.

A total of 30 individuals were removed in family data due to the inconsistency between the 

estimated and documented relationships, and ~500 pairs of 1st-degree relatives that were not 

reflected in the documented pedigree have been incorporated in the pedigree data by 

pedigree reconstruction. Supplementary Figure 2 shows all pair-wise relationships in 

families after QC. The estimated kinship coefficient of each pair of relatives is plotted 

against the proportion of zero IBS, with the documented relationships being indicated by 

colour. All 42 pairs of documented identical twins have estimated kinship coefficient > 0.4. 

Among 16,292 documented 1st-degree relative pairs, 16,270 pairs have estimated kinship 

coefficient between 0.177 and 0.36 (criteria to be inferred as 1st-degree relative in KING), 

21 pairs have estimated kinship coefficient between 0.150 and 0.177, and 1 pair has 

estimated kinship coefficient 0.137. After pedigree reconstruction, there was no 1st-degree 

relatedness across any two families, and there were only 3 pairs of documented unrelated 

pairs with estimated kinship coefficient > 0.1 (all 3 kinship coefficients < 0.139). In the 

analysed data, a total of 10,796 individuals from 2,682 nuclear families have genotypes 

available. There were 1,670 families with both parents available, 652 with only one parent 

and 360 with neither parent. The distribution of affected siblings was 69 families with one 

affected, 2490 with two, 104 with three, 5 with four, and 2 with five.
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In the T1D cases and the UK control data, 159 controls and 48 cases were removed for 

being close relatives. After this level of QC, no remaining “unrelated” pairs in the case or 

control data have estimated kinship coefficient > 0.09, indicating all individuals are indeed 

unrelated. We also checked the UK T1D case and UK control for relatedness in the T1DGC 

ASP and trio family data set, since one of the four T1DGC collection sites was in the UK. A 

total of 5 pairs of individuals were identified with a genotype concordance rate > 99.99%; 

the related individuals were selectively removed from the T1DGC family data set.

Population Structure

We applied the principal component analysis (PCA) method that is implemented in KING38 

for the identification of the population structure. We combined HapMap III data (1097 

unrelated individuals were used39, with 215 of European ancestry) with each cohort. We 

kept those SNPs that are present on both HapMap and ImmunoChip panels, and removed 

SNPs with r2 > 0.5 with other SNPs. After applying the QC filters, ~30,000 SNPs were used 

for the structure analysis. PCA was first carried out among the HapMap individuals only, 

and then each ImmunoChip individual was projected to the space that was expanded by the 

principal components of HapMap individuals. The projected principal components for each 

individual represent its ancestry relative to the HapMap populations. Using this algorithm, 

we obtained the principal components for case-control individuals by cohort, projected to 

either the entire HapMap III populations (Supplementary Figure 3), or the European 

ancestry populations only including CEU and TSI (Supplementary Figure 4); we also 

obtained the principal components for individuals in the family data (Supplementary Figure 

5).

In Supplementary Figure 3, population structure of our case-control data was compared with 

all HapMap III populations. A total of 69 individuals were identified to be greater than 3 

standard deviations (SD) from the average of the second principal components in European 

populations, and these outliers were excluded from analysis. The principal components of all 

case-control individuals from four cohorts (GRID and 1958 British Cohort that were 

genotyped at UVA, 1958 British Cohort and National Blood Service that were genotyped at 

Sanger) are in the range of the European ancestry populations, clearly separated from non-

European populations. In Supplementary Figure 4, case-control individuals were compared 

with European populations only, including CEU and TSI. The cluster on the left is for CEU 

that represents the northern European, and the cluster on the right is for TSI which 

represents the southern European. A total of 55 “outliers” were identified in this analysis to 

cluster with the southern European and have been excluded prior to analysis. Supplementary 

Figure 5 suggests that there is no substructure difference between our cases (UVA GRID) 

and controls (UVA 1958 BC, Sanger 1958 BC, and UK NBS). Supplementary Figure 5 

shows the population structure in the family data, compared with the HapMap populations. 

Only individuals of European ancestry were used in the analysis.

SNP Annotation

The chromosomal locations of the ImmunoChip SNPs were standardized to build 37 (hg19) 

coordinates using the UCSC liftover utility. For each variant, the SNP alleles have been 

normalized so the reference and alternate alleles are reported on the reference (top) strand.
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Single SNP Association Analysis

In order to test association between each SNP and T1D, we applied the Generalized 

Disequilibrium Test (GDT) method39 to the T1DGC ASP and trio families, and fit a logistic 

regression to the T1D case and control data. We then combined the family and case-control 

data using meta-analysis.

The GDT method computes the genotype difference between all pairs of phenotypically 

discordant relatives within each family. This method utilizes the information of all 

discordant relative pairs, including those nuclear families that are not efficiently used in 

family-based tests such as Transmission/Disequilibrium Test (TDT) or Family Based 

Association Test (FBAT). To estimate the effect at each variant, we carried out the TDT at 

each region and approximated the odds ratio of a variant by the transmission/non-

transmission ratio at this region observed in parent-affected-offspring trios. In the logistic 

regression model for T1D in the case-control data, association between T1D and an additive 

genotype score at each SNP was performed with adjustment for sex and regions in UK (12 

dummy variables created for the 13 regions)40. The “snp.rhs.estimates” function from 

package snpS in R 3.0.2 was used for analysis41.

Meta-Analysis

A weighted z-score was used to combine results from the case-control and the family data42. 

An overall beta coefficient and standard error were computed as the weighted average of the 

individual beta statistics, and a corresponding P-value for that statistic was computed. The 

weights were proportional to the inverse variance (1 divided by the standard error squared) 

in each study and

scaled by the meta-variance (σ2
meta, equation above) so the weights summed to 1. For the 

family data, instead of using the total number of family members, we used twice of the 

number of parent-affected-offspring trios as the effective sample size for the meta-analysis.

Conditional Analysis to Identify Secondary Signals

To determine if additional SNPs within a region were significantly associated with T1D, 

independent of the most associated SNP identified in the primary analysis, we performed 

conditional analysis using the case-control data. For each T1D region the conditional 

analysis started with the SNP that was the most statistically significant as identified in the 

meta-analysis. A new logistic regression model was fit to the case-control data, adjusting for 

the previously identified SNP as a covariate. We repeated this procedure until no SNPs in 

the region attained our threshold for statistical significance.

Overlap of T1D with Other Autoimmune Diseases

For each disease in ImmunoBase we downloaded the set of curated index SNPs (http://

www.immunobase.org/page/RegionsLanding accessed February 13, 2014). We excluded 
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IBD as this is a combination of UC and Crohn’s which are summarised individually. The 

MHC region(chr6:25Mb..35Mb GRCh37) was excluded from analysis. For each disease in 

turn, we used the index SNPs to label each of densely mapped regions of the ImmunoChip 

as associated with the index disease and that region or not. After LD pruning (r2 <= 0.95) to 

remove excessive correlation, distributions of T1D association meta-analysis P-values for 

SNPs were compared between the two sets or regions using a non-parametric Wilcoxon rank 

score test, as implemented in the R package, wgsea43. LD between SNPs inflates the 

variance of the test statistic, so we estimated this variance empirically under the null 

hypothesis using 10,000 permutations of case vs control status. Given overall significant 

evidence of shared or disparate genetic architecture, we examined which loci were involved 

by summarizing the evidence for T1D association in a region using P = min(−log(p)) over 

all SNPs in a given dense region.

eQTL and GWAS Catalogue overlap in seven novel regions

To define a query SNP set we took a 2Mb window centred on each novel index SNP and 

then filtered overlapping SNPs based on a linkage disequilibrium (LD) threshold of r2 ≥ 0.9 

with the index SNP, using 1000 genomes data. To identify potential cis eQTL overlap we 

downloaded summary statistics from Fairfax et al.44 (their Table S7) and Westra et al.25 

(Blood eQTL browser) and computed overlap with the query SNP set. For each significant 

overlap we computed the LD with the top eQTL SNP for that probe/tissue, again using 1000 

genome data To look for trait/disease overlap outside ImmunoBase scope we used the query 

SNP set to examine overlap between NHGRI GWAS catalogue45.

Credible Sets of Causal Variants

For each index SNP (Table 1) we considered all SNPs within a 50 kb window, and used the 

case control data to compare models containing the index SNP, i, or each alternative SNP, j, 

using approximate Bayes factors, by the relation

where ABFij is the approximate Bayes factor comparing models containing SNPs i and j, 

and BICi is the Bayesian Information Criterion (BIC) calculated from a logistic model of 

case/control status against SNP i. For simplicity, this analysis was performed using only the 

case control cohort. For multiple SNP models we considered the conditional SNPs as fixed; 

e.g., for chromosome 10p15.1, when considering rs10795791 as an index SNP and 

conditioning on rs61839660, we calculated BICs for the index model containing rs61839660 

and rs10795791 and all alternative two SNP models containing rs61839660 and another 

SNP within a 50 kb window of rs10795791.

For any interval, we estimate the probability that any individual SNP j is the causal variant 

responsible for that signal (again, including conditional models where appropriate) by the 

posterior probability,
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and thus we create a 99% credible set of SNPs as the smallest set of SNPs with a total PP ≥ 

99%.

Enrichment Analysis

Epigenomic Roadmap annotations were downloaded from the web portal. These were 

processed using R and Bioconductor packages to annotate those ImmunoChip SNPs 

overlapping tissue specific functional elements. According to the credible sets formed 

above, the ImmunoChip SNPs that passed QC could be divided into two sets:

A. those that are in any credible set, within ImmunoChip densely mapped regions - 

potential causal variants (n=1,256)

B. their complement, within ImmunoChip densely mapped regions - unlikely to be 

causal (n=78,692)

We tested for enrichment of T1D signals in enhancers in each cell type in turn by forming a 

series of 2×2 contingency tables, stratified by a SNP’s MAF in controls (<0.05, <0.1, <0.2, 

<0.3, <0.4, <0.5) showing the overlap of SNPs in A and B with functional elements 

according to physical location. The stratification was important to control for confounding, 

as both enhancer presence/absence and membership of a SNP in a credible set were 

associated with MAF. We used Cochran-Armitage tests, with Mantel extension to test for 

association. The sign of the score statistic determined the direction of association.

Filtering of credible SNPs

To create a filtered set of credible SNPs which could be targeted in future functional studies, 

we first expanded the sets by considering all neighbouring SNPs in 1000 Genomes CEU 

release that were did not pass genotyping on the ImmunoChip. These 1000 Genomes SNPs 

were assigned to credible sets if the ImmunoChip SNP with which they should strongest LD 

according to r2 was in a credible set. For each set, we calculated the size of the expanded 

credible set, the number of SNPs in the credible set that overlap enhancers in tissues which 

showed are presented in Supplementary Table 1.

Evidence for T1D association conditional on genome-wide significant association in 
another autoimmune disease

Loci have previously been assigned as associated with T1D on the basis of p<10−4 for a 

SNP that also shows p<5×10−8 in another autoimmune disease5. Here, we explore the 

strength of evidence these thresholds provide, based on previous work46. For any individual 

SNP and two diseases, there exist four hypotheses:

H0: Not associated with either disease

H1: Associated with only disease 1

H2: Associated with only disease 2
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H12: Associated with both disease 1 and disease 2

Realistic prior probabilities46 are:

that imply we expect about 1 in 1000 SNPs show association to either disease and, of SNPs 

associated to one disease, we expect about 1 in 10 to be associated with both diseases.

Posterior probabilities for independent datasets—We use the approximate Bayes 

Factors presented previously47 to estimate ϕi, the Bayes Factor for association to disease i 

compared to no association to disease i given only single SNP p-values and the minor allele 

frequency (MAF) of the SNP in controls. If we assume the case and control datasets for each 

disease are independent, they can be combined to calculate Bayes Factors for each 

hypothesis

Thus, the posterior probability for each hypothesis is given as

where B = 1 + ϕ1 + ϕ2 + ϕ12. The conditional probability of association to disease 2, given 

we believe there is association to disease 1, is

Effect of shared versus independent controls—The ImmunoChip consortium 

genotyped a large sample of shared UK controls. This induces correlation between the p-

values from different diseases48, so BF12 cannot be expressed as a simple product of 

disease-specific Bayes Factors. Methods to account for this appear conservative48, as they 

do not allow for the reasonable assumption that related diseases share genetic susceptibility 

variants. Instead, we use simulation to explore the effect of non-independence on PP2|1. We 

use multinomial models and the approximate Bayes Factor49 to properly estimate the 

posterior probabilities of each hypothesis.

To explore the effect of shared controls, we considered two general scenarios, relating the 

sample sizes available in the WTCCC and the ImmunoChip papers (Supplementary Table 

3). Using pi to denote the single SNP p-value for disease I, the results (Supplementary 

Figure 6) show that, for independent controls, PP2|1 > 0.9 (median 0.97) whenever p2 < 
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10−4. However, for shared controls, we cannot be as confident of association. PP2|1 is 

independent of p1, given that we believe the association with disease 1 is real. The number 

of cases for each disease has a relatively minor effect on PP2|1, while the MAF and the 

number of shared controls have slightly larger effects. Conditional posterior probabilities 

increase with MAF, but decrease with an increasing number of shared controls. The 

strongest determinant is p2, with PP2|1 in the interval (0.37, 0.61)(median 0.46) at p2 = 10−4 

for all scenarios. When p2= 10−5, PP2|1 is in the interval (0.87,0.90)(median 0.89), 

suggesting that a p2 = 10−5 threshold may be more suitable for convincing evidence of 

association to a second autoimmune disease.

The R code is available at http://dx.doi.org/10.6084/m9.figshare.827246 and is based, in 

part, on functions from the R package colocCommonControl at https://github.com/

mdfortune/colocCommonControl.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
T1D ImmunoChip p-value enrichment analysis. Panel (a) shows Z scores for densely typed 

regions against diseases curated in ImmunoBase. Diseases with positive Z scores indicate 

evidence for overall genetic overlap with T1D, within densely typed regions accessible on 

ImmunoChip. Those with negative scores indicate evidence for negative association. Each 

bar is labelled with the Wilcoxon rank sum test p-value and coloured by disease 

autoantibody positive/negative status. The MHC region (chr6:25Mb..35Mb GRCh37) was 

excluded from analysis. AA- Alopecia Areata, AS - Ankylosing Spondylitis ATD - 

Autoimmune thyroid disease,, CEL- Celiac disease, CD - Crohn’s disease, JIA - Juvenile 

Idiopathic Arthritis, MS - Multiple Sclerosis, NAR – Narcolepsy, PBC - Primary Biliary 

Cirrhosis, PSC- Primary Sclerosing Cholangitis PSO - Psoriasis, RA - Rheumatoid Arthritis, 

SJO – Sjogren’s syndrome, SLE Systemic Lupus Erythematosus, UC - Ulcerative Colitis. 

Panels (b) and (c) show P′ = min(−log(p.t1d.meta)) for each densely typed region accessible 

on the ImmunoChip excluding the MHC and autosomal regions. Regions that overlap 

known T1D susceptibility regions are identified by blue bars, whereas yellow and pink show 

JIA and UC overlap respectively (http://www.ImmunoBase.org – accessed February 13, 

2014). Red bars denote shared overlap between T1D and focal disease. The y-axis is 

truncated for clarity. A fully interactive version of panels (b) and (c), along with further 

supporting resources are available at http://www.immunobase.org/poster/type-1-diabetes-

immunochip-study-onengut-gumuscu/.
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Fig. 2. 
Heat map showing chromatin state enrichment analysis of T1D 99% credible SNP set in 

ImmunoChip densely mapped regions versus the complement set, within Epigenomic 

Roadmap and ENCODE tissues. The top coloured row groups cell-types into 4 anatomical 

categories with relevance to type 1 diabetes, subsequent rows use a red (enrichment) to blue 

(depletion) scale to illustrate enrichment in a particular chromatin state (1_TssA – Active 

Tss, 2_TssAFlnk – Flanking Active TSS, 3_TxFlnk – Transcribed at gene 5′ and 3′, 4_Tx – 

Strong transcription, 5_TxWk – Weak transcription, 6_EnhG – Genic Enhancer, 7_Enh - 

Enhancer, 8_ZNF/Rpts – ZNF genes & repeats, 9_Het - Heterochromatin, 10_TssBiv- 

Bivalent/Poised TSS, 11_BivFlnk – Flanking Bivalent TSS/Enhancer, 12_EnhBiv – 

Bivalent enhancer, 13_RepPC – Repressed PolyComb, 14_RepPCWk – Weak repressed 

polycomb, 15_Quies – Quiescent/Low).
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