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ARTICLE

Fine Mapping Seronegative and Seropositive
Rheumatoid Arthritis to Shared and Distinct HLA Alleles
by Adjusting for the Effects of Heterogeneity

Buhm Han,1,2,3 Dorothée Diogo,1,2,3,4 Steve Eyre,5,6 Henrik Kallberg,7 Alexandra Zhernakova,8,9

John Bowes,5,6 Leonid Padyukov,7 Yukinori Okada,1,2,3,4 Miguel A. González-Gay,10

Solbritt Rantapää-Dahlqvist,11 Javier Martin,12 Tom W.J. Huizinga,8 Robert M. Plenge,13

Jane Worthington,5,6 Peter K. Gregersen,14 Lars Klareskog,7 Paul I.W. de Bakker,1,2,15

and Soumya Raychaudhuri1,2,3,4,5,*

Despite progress in defining human leukocyte antigen (HLA) alleles for anti-citrullinated-protein-autoantibody-positive (ACPAþ) rheu-

matoid arthritis (RA), identifying HLA alleles for ACPA-negative (ACPA�) RA has been challenging because of clinical heterogeneity

within clinical cohorts. We imputed 8,961 classical HLA alleles, amino acids, and SNPs from Immunochip data in a discovery set

of 2,406 ACPA� RA case and 13,930 control individuals. We developed a statistical approach to identify and adjust for clinical hetero-

geneity within ACPA� RA and observed independent associations for serine and leucine at position 11 in HLA-DRb1 (p ¼ 1.4 3 10�13,

odds ratio [OR] ¼ 1.30) and for aspartate at position 9 in HLA-B (p ¼ 2.7 3 10�12, OR ¼ 1.39) within the peptide binding grooves.

These amino acid positions induced associations at HLA-DRB1*03 (encoding serine at 11) and HLA-B*08 (encoding aspartate at 9).

We validated these findings in an independent set of 427 ACPA� case subjects, carefully phenotyped with a highly sensitive ACPA

assay, and 1,691 control subjects (HLA-DRb1 Ser11þLeu11: p ¼ 5.8 3 10�4, OR ¼ 1.28; HLA-B Asp9: p ¼ 2.6 3 10�3, OR ¼ 1.34).

Although both amino acid sites drove risk of ACPAþ and ACPA� disease, the effects of individual residues at HLA-DRb1 position 11

were distinct (p < 2.9 3 10�107). We also identified an association with ACPAþ RA at HLA-A position 77 (p ¼ 2.7 3 10�8,

OR ¼ 0.85) in 7,279 ACPAþ RA case and 15,870 control subjects. These results contribute to mounting evidence that ACPAþ and

ACPA� RA are genetically distinct and potentially have separate autoantigens contributing to pathogenesis. We expect that our

approach might have broad applications in analyzing clinical conditions with heterogeneity at both major histocompatibility complex

(MHC) and non-MHC regions.

Introduction

Rheumatoid arthritis (RA [MIM 180300]) has two dis-

tinct subtypes—anti-citrullinated-protein-autoantibody-

negative (ACPA� or seronegative) RA and -positive

(ACPAþ or seropositive) RA—with potentially different ge-

netic risk factors, environmental risk factors, and optimal

therapeutic strategies.1,2 Despite constituting about one-

third (~30%) of RA cases,3 ACPA� RA has been relatively

understudied in comparison to ACPAþ RA.4–7 We and

others have demonstrated that the widely established

method for identifying ACPA� RA subjects on the basis

of anticyclic citrullinated peptide (anti-CCP) antibody

testing is imperfect in that the absence of antibody is not

sufficiently specific to ACPA� RA, whereas its presence is

specific to ACPAþ RA.8–10

The lack of a specific test for ACPA� RA can result in het-

erogeneity in clinical cohorts, which can confound genetic

studies for ACPA� disease. For example, ACPA� RA subjects

might include ACPAþ RA subjects whose ACPAs have not

been detected by conventional anti-CCP testing8–11 or sub-

jects who have other autoantibody-negative inflammatory

arthritic conditions, such as ankylosing spondylitis (AS)12

or other HLA-B*27-associated conditions. So, although in-

vestigators have reported associations between classical

HLA alleles and ACPA� RA,13,14 it remains unclear whether

these associations are distinct from those alleles driving

ACPAþ disease risk, recently defined by our group.6 Addi-

tionally, the specific amino acid sites and residues driving

ACPA� RA risk have yet to be defined.

To define HLA alleles driving ACPA� RA risk, we first

obtained dense SNP genotype data within the major
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histocompatibility complex (MHC) region by applying

the Immunochip custom array3 to ACPA� case and con-

trol groups. We then used these data to impute HLA

alleles, amino acids, and SNPs with a highly accurate

imputation approach.15 Recognizing that possible clinical

heterogeneity within genotyped cohorts might confound

associations within the MHC, we developed a statistical

approach to correct for the effects of heterogeneity

within cohorts; it uses genetic risk scores (GRSs) built

from known risk loci for potential confounding diseases

as covariates.

We observed that two amino acid positions, HLA-DRb1

position 11 (in which serine and leucine conferred risk)

and HLA-B position 9 (in which aspartate conferred risk),

were driving ACPA� RA. These two positions are already

known to drive ACPAþ RA as well;6 however, the specific

amino acid residues conferring risk were completely

distinct between the two disease subtypes. We also sepa-

rately tested for associations with ACPAþ disease. In addi-

tion to confirming known associations at positions 11,

71, and 74 in HLA-DRb1, position 9 in HLA-B, and position

9 in HLA-DPb1, we identified an additional association

at amino acid position 77 within the binding groove of

HLA-A. These results contribute to mounting evidence

that ACPAþ and ACPA� RA are distinct diseases with

certain unique genetic factors.

Material and Methods

Samples

Case-Control Sample Collections

We used data from six case-control collections (UK, US, Dutch,

Spanish, Swedish Umeå, and Swedish Epidemiological Investiga-

tion of Rheumatoid Arthritis [EIRA], Table S1, available online).3

All individuals provided informed consent and were recruited

through protocols approved by institutional review boards. Each

collection consisted of individuals who were self-described as

white and of European descent, and all cases either met the

1987 American College of Rheumatology diagnostic criteria or

were diagnosed by board-certified rheumatologists. We previously

genotyped all samples with the Immunochip custom array, which

densely covered the MHC region (7,563 SNPs), in accordance with

Illumina protocols.

Classifying ACPA� RA in Discovery Samples

From these samples, we defined a total of 2,406 ACPA� RA case

and 13,930 control subjects for discovery from five collections

(excluding the Swedish EIRA). To do this, we followed standard

clinical practice to identify ACPA� RA subjects as those who

were not reactive to anti-CCP antibody by using reference

cutoff levels defined at local clinical labs. In the UK cohort, we

used the commercially available DiastatTM ACPA Kit (Axis-

Shield Diagnostics Limited). In the US samples, we used a sec-

ond-generation commercial anti-CCP enzyme immunoassay

(Inova Diagnostics).16 For Spanish samples, we used the Immuno-

scan ELISA test (Euro Diagnostica). For the Swedish Umeå and

Dutch collections, we used the Immunoscan-RA Mark2 ELISA

test (Euro Diagnostica).17 These assays are the standard commer-

cially available assays that are currently being widely used in

clinical practice.

Clinically Homogeneous ACPA� Samples for Replication

To replicate ACPA� results, we sought to define an independent

replication data set that was as clinically homogeneous as possible.

To this end, we used genotype data on 987 case and 1,940 control

subjects who were from the Swedish EIRA cohort and who were

identified as anti-CCP antibody negative with the Immunoscan-

RAMark2 ELISA test (Euro-Diagnostica). In addition, to stringently

ensure clinical homogeneity, we applied a highly sensitive ACPA

typing method developed at the Karolinska Institutet8 to test sera

for reactivity to four specific citrullinated peptides (a-enolase, vi-

mentin, fibrinogen, collagen type II). We considered samples

ACPA� only if they were negative for all four of these tests. After

applyingthisassay,we removed106case individualswhowere reac-

tive to the sensitive assay, as well as 381 case individuals to whom

wedidnotapply theassay.Wealsoexcluded73caseand249control

subjects who were positive for HLA-B*27. Because HLA-B*27 is

highly sensitive for AS (>90%), excluding HLA-B*27-positive indi-

viduals effectively removed the effect of possible confounding

fromASor related spondyloarthropathies. The resulting replication

collection consisted of 427 case and 1,691 control subjects.

Sample Collections for ACPAþ RA

For ACPAþ RA, we used 7,279 anti-CCP-positive individuals from

all six cohorts (UK, US, Swedish Umeå, Dutch, Spanish, and

Swedish EIRA; Table S1). We used all 15,870 control subjects for

ACPAþ RA analyses.

Statistical Analyses

HLA Imputation

We imputed case and control groups together for 8,961 binary

markers representing classical HLA alleles, amino acids, and

SNPs by using SNP2HLA,15 which utilizes the Beagle imputation

method.18 The binary markers included every possible grouping

of amino acid residues given a multiallelic amino acid position.

We used reference data collected by the Type 1 Diabetes Genetics

Consortium;19 these data consisted of genotypes for 5,863

SNPs tagging the MHC and classical alleles for HLA-A, HLA-B,

HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and

HLA-DPB1 at four-digit resolution in 5,225 individuals of Euro-

pean descent.19

Quantifying Imputation Accuracy

To assess accuracy, we took advantage of typed HLA-A, HLA-B,

HLA-C, HLA-DQB1, and HLA-DRB1 alleles for 918 individuals in

the UK cohort. We calculated imputation accuracy as the propor-

tion of correctly imputed classical alleles:

P
imax

�
d
�
gi;1 ¼ xi;1

�
þ d

�
gi;2 ¼ xi;2

�
; d
�
gi;1 ¼ xi;2

�
þ d

�
gi;2 ¼ xi;1

��

2n
;

where gi;1 and gi;2 are genotyped alleles of individual i and xi,1 and

xi,2 are imputed alleles. For each gene, we used individuals success-

fully typed for four-digit alleles. The d function is 1 if the geno-

typed allele is the imputed allele and 0 otherwise. The term n is

the number of samples.

Statistical Framework for Association Testing

We tested associations at all 8,961 binary markers by using proba-

bilistic genotypic dosages that take uncertainty in imputation into

account. We used logistic regression under the assumption that

each marker conferred a fixed log additive effect across each

case-control collection. To account for population stratification,

we included ten principal components (PCs) as covariates for

each collection. We calculated PCs by using EIGENSOFT v.4.220

with HapMap Phase 2 samples as reference populations on a
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subset of SNPs (minor allele frequency > 0.05) filtered for mini-

mizing intermarker linkage disequilibrium (LD).3 This resulted in

the following logistic regression model:

logðoddsiÞ ¼ qþ baga;i þ
X

j˛collections
di;j

�
gj þ

X
k¼1:::10

pj;k pi;k

�
;

(Equation 1)

where a indicates the marker being tested, ga;i is the dosage of a in

individual i, and ba is the additive effect of a. In the collection-spe-

cific term, di,j is an indicator variable that is 1 only if individual i is

in collection j. The gj parameter is the collection-specific effect due

to the differences in case-control proportions; it is set to 0 for one

arbitrarily selected reference collection. The pj,k parameter is the

effect of the kth PC, and pi,k is the kth PC value for individual i.

Adjusting for Clinical Heterogeneity in ACPA� Discovery

In the discovery analysis for ACPA� disease, we adjusted for

possible clinical heterogeneity within the collections. Our

approach was to extend Equation 1 to include GRSs of potentially

confounding diseases as covariates:

logðoddsiÞ ¼ qþ baga;i þ
X

j˛Collections
di;j

�
gi þ

X
k¼1:::10

pj;k pi;k

þ
X

h¼1:::H
aj;h si;h

�
;

(Equation 2)

where h indicates a confounding disease we want to adjust for and

H is the total number of confounding diseases. si,h is the GRS of in-

dividual i for disease h and is defined as the sum of risk-allele dos-

ages weighted by effect sizes:

si;h ¼
X

l
bl;hgl;i; (Equation 3)

where l iterates over known risk alleles for h, bl;h is the effect size of

l for h, and gl;i is the dosage of l in individual i. aj,h is the effect of

si,h, which approximates the sample proportion of confounding

disease in the collection. For a detailed description of the method,

see Appendix A.

For our analysis, we adjusted for both ACPAþ RA and AS. For the

ACPAþ RA GRS, l iterated over 47 independent SNPs associated

with ACPAþ RA (Table S2),3 all four-digit HLA-DRB1 alleles,

HLA-B Asp9, HLA-DPb1 Phe9, and HLA-A Asn77. We estimated

bl from our ACPAþ RA case-control data set presented in this paper.

To estimate bl for all four-digit HLA-DRB1 alleles in a multivariate

model, we included in the logistic regression all four-digit alleles

with allele frequency > 0.1%, except for the reference allele we

chose (HLA-DRB1*15:01). To avoid reusing the same controls

both to estimate bl and to map ACPA� RA, which could result in

bias as a result of overfitting, we estimated bl for each collection

by using the other five collections. Similarly, for the AS GRS, l iter-

ated over HLA-B*27 and 19 AS-associated SNPs that passed our

quality control (QC) (Table S2).12 We used reported effect sizes bl
in Cortes et al.12

Two-Step Approach for Adjusting for Heterogeneity

Using GRSs as covariates in regression might be overly conserva-

tive and could remove true associations if the causal loci are shared

between the disease of interest and the confounding disease. To

account for the shared genetic structure between the two RA sub-

types, we employed an alternative two-step approach: (1) we esti-

mated the confounding proportions aj,h in Equation 2 by using

GRSs based on nonshared loci first, which gave us an unbiased

estimate of aj,h, and then (2) we used this aj,h as a fixed value in

the regression framework presented above. Because we did not

definitively know which loci were shared, we used a heuristic to

choose nonshared loci by using 38 non-MHC SNPs not associated

with ACPA� RA at a nominal significance threshold (p > 0.01)3

(Table S2).

Genomic-Control Inflation Factor

We assessed the genomic-control inflation factor, lGC, by testing

associations at ‘‘reading-writing-ability SNPs’’ included on the

Immunochip platform. Out of 1,469 SNPs, we used 1,250 that

passed QC in all six collections. We obtained chi-square statistics

at these SNPs by using logistic regression as described above to

assess lGC.

Forward Conditional Search

Once we identified an associated marker, we forward searched

further associations by including the identified marker as a covar-

iate in the logistic regression.

Exhaustive Search

To find the best pair of associations in HLA-DRB1 and HLA-B for

ACPA� disease, we examined every possible combination of 495

binary markers within HLA-DRB1 and 774 binary markers within

HLA-B (383,130 tests). We extend the single-marker model in

Equation 2 to the following two-marker model:

logðoddsiÞ ¼ qþ baga;i þ bbgb;i

þ
X

j˛collections
di;j

�
gi þ

X
k¼1.10

pj;k pi;k

þ
X

h¼1.H
aj;h si;h

�
;

(Equation 4)

where a and b are the pair of binary markers being tested.

We calculated the log-likelihood difference (DLL) in model fit

due to this pair and assessed significance by comparing the devi-

ance (�2 3 DLL) to a chi-square distribution with 2 degrees of

freedom.

Joint Analysis of Discovery and Replication Data

In order to jointly analyze five discovery collections and a replica-

tion cohort for ACPA� disease, we combined them into one logis-

tic regression framework, including GRSs as covariates for five

discovery cohorts to adjust for heterogeneity.

Forward Search outside of HLA-DRB1 for ACPAþ RA

Because HLA-DRB1 has a very strong effect in ACPAþ disease,

to examine the associations beyond HLA-DRB1, we conditioned

on the HLA-DRB1 effects by including binary variables as

covariates corresponding to all four-digit HLA-DRB1 alleles,

excluding one allele as a reference (HLA-DRB1*15:01). If we for-

ward searched by conditioning on an amino acid position with

m residues, such as position 9 of HLA-B, we included binary vari-

ables corresponding to the m � 1 residues, excluding the most

frequent one.

Testing for Discordant Effect Sizes

Given a multiallelic amino acid position with m residues, we

wanted to test whether the effect sizes of m residues were con-

cordant between two different conditions (e.g., ACPA� versus

ACPAþ). To this end, we calculated multivariate odds ratios

(ORs) of residues by including in the logistic regression m � 1

binary markers corresponding to m � 1 residues, excluding one

residue as the reference. Let a1, ., am � 1 and b1, ., bm � 1 be

the multivariate log ORs in two different conditions. Let v1, .,

vm � 1 and u1, .,um � 1 be their variances. To test discordance of

effect sizes between two conditions, we used the statistic

X
i¼1.m

ðai � biÞ
2

vi þ ui

; (Equation 5)

which is chi-square distributed with m � 1 degrees of freedom

under the null.
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Assessing Accuracy of Fine Mapping with Simulations

To test the accuracy of our approach to adjust for clinical heteroge-

neity in fine mapping, we simulated an ACPA� RA case-control

study confounded by ACPAþ RA. We simulated a large study

(50,000 case and 50,000 control subjects) to assess the asymptotic

results. We first simulated control subjects by sampling with

replacement from the UK control subjects. Then we assumed

that specific amino acid positions were conferring risk to ACPA�

RA with predefined ORs, and we sampled ACPA� RA subjects

from the UK control subjects on the basis of the ORs. Finally, we

replaced 26.3% of the case group with individuals randomly

sampled from the UK ACPAþ RA case group. We performed an

association test with and without adjusting for heterogeneity to

examine whether we could fine map the risk-conferring amino

acid positions correctly. To adjust for heterogeneity, we used

GRSs built from the effect sizes estimated from the other five

cohorts, excluding the UK cohort.

Results

ACPA� RA Discovery Collection and HLA Imputation

To define HLA alleles driving ACPA� RA risk, we analyzed a

discovery data set of 2,406 ACPA� RA case and 13,930 con-

trol subjects (from the UK, the US, Spain, Sweden, and the

Netherlands, see Table S1) genotyped on the Immunochip

custom array with 7,563 SNPs across the MHC region.3

This platform represents greater SNP density than most

standard genome-wide-association-study arrays and offers

the potential for higher HLA imputation accuracy. Indeed,

applying SNP2HLA,15 we observed an overall imputation

accuracy of 96.9% for four-digit HLA alleles in a subset of

UK control subjects separately typed for HLA alleles (Table

S3).We classified RA samples as ACPA� on the basis of anti-

CCP antibody amounts according to standard clinical

practice (see Material and Methods). After adjusting for

ten PCs, we observed little evidence of population stratifi-

cation (lGC ¼ 0.98, see Material and Methods).

Correcting for Clinical Heterogeneity in ACPA� RA

Collections

We considered that other syndromes clinically indistin-

guishable from ACPA� RA might be embedded within

ACPA� RA and thus confound associations. Indeed, in an

analysis unadjusted for clinical heterogeneity, we observed

that as we defined ACPA� samples by increasing the level

of stringency of the anti-CCP cutoff, the frequency of

HLA-DRb1 Val11 (the strongest risk factor for ACPAþ dis-

ease) decreased in our ACPA� cohort (p ¼ 6.93 10�5), sug-

gesting confounding from ACPAþ RA (Figure S1). We also

noticed significant association at HLA-B*27 (p ¼ 2.8 3

10�9), a well-known risk factor for AS,12,21,22 but not at

HLA-C*06:02 (p > 0.001), a risk factor for psoriatic

arthritis.23–25 However, as in most clinical settings, the

phenotypic information that would be essential for identi-

fying and excluding the specific individuals with condi-

tions other than ACPA� RA was not available.

To correct for the effects of heterogeneous samples within

ourACPA� cohort,weapplieda statistical approach toadjust

for confounding diseases (ACPAþ RA and AS, Material and

Methods). We constructed GRSs representing the log OR

for an individual for the confounding disease on the basis

of the known-risk-allele dosages weighted by effect

sizes.26–28 Then, adjusting association statistics in a logistic

regression model for GRSs could successfully control for

the effects of confounding diseases (see Appendix A).

ACPA� RA Is Associated with Ser11 and Leu11 in

HLA-DRb1 and Asp9 in HLA-B

After correcting forclinicalheterogeneityasdescribedabove,

we tested for allelic associations inACPA�RA. Taking intoac-

count multiple hypothesis testing, we considered p < 5.63

10�6 (0.05/8,961binaryMHC-marker association tests) tobe

significant. After testing all amino acids and classical and

SNP alleles, we observed that the strongest association was

at amino acid residues at position 11 inHLA-DRb1 (presence

of Ser or Leu, OR¼ 1.30, p¼ 1.43 10�13), encoded byHLA-

DRB1 (see Figure 1A, Table 1, and Figure S2). This allele ex-

ceeded the significance of all other SNPs and classical alleles

that we tested. The variation of amino acid residues at this

position was attributable to a triallelic SNP (rs9269955,

G/C/A) and a quadallelic SNP (rs17878703) at the first and

second base positions of the codon, respectively. The associ-

ation at position 11 was statistically indistinguishable (p >

0.09) from the association at position 13 (presence of

Ser, Gly, or Phe, OR ¼ 1.29, p ¼ 4.7 3 10�13). The most

strongly associated classical allele was HLA-DRB1*03 (p ¼

6.7 3 10�10).13,14 After conditioning on HLA-DRB1*03, we

observed that Ser11þLeu11 remained highly significant

(p ¼ 2.4 3 10�8), suggesting that HLA-DRB1*03 does not

fully explain HLA-DRB1 associations. We also observed a

separate, strong association 23 kb away from HLA-B at SNP

rs9266669 (OR ¼ 1.38, p ¼ 4.0 3 10�13; Figure 1A). This

SNP was statistically indistinguishable (p > 0.01) from the

presence of Asp9 in HLA-B (OR ¼ 1.39, p ¼ 2.7 3 10�12);

these two alleles were in tight LD (r2 ¼ 0.8). HLA-B Asp9

was almost perfectly correlated with HLA-B*08 in our data

set (r2 ¼ 0.997). The HLA-B*08 classical allele, Asp9, and

SNP rs9266669 thus could not be distinguished on the basis

of genetics alone. Both of these amino acid sites mapped to

the binding grooves of their respective HLA receptors

(Figure 2).

The HLA-DRB1 and HLA-B associations were indepen-

dent of each other and explained most of the MHC associ-

ation with ACPA� RA. After conditioning on Ser11þLeu11

effects in HLA-DRb1, we observed that rs9266669 inHLA-B

(or Asp9 in HLA-B) remained the most significant associa-

tion (p ¼ 2.0 3 10�7, OR ¼ 1.27; Figure 1B). Similarly, we

observed that after conditioning on Asp9 in HLA-B,

Ser11þLeu11 in HLA-DRb1 remained the most significant

association (p ¼ 1.0 3 10�7, OR ¼ 1.22; Figure 1C). When

we conditioned on both Ser11þLeu11 in HLA-DRb1 and

Asp9 in HLA-B, no further significant association was

found (p > 0.0007; Figure 1D).

Because the so-called 8.1 ancestral haplotype29 harbors

both HLA-DRb1 Ser11 and HLA-B Asp9, we considered
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the possibility that these associations were driven by that

haplotype alone and not the individual amino acid sites.

Given that our imputation provided phased haplotypes

spanning the whole MHC region, we inferred the ancestral

haplotype dosage for each individual. Then, using a trivari-

ate logistic regression model including dosages for the 8.1

ancestral haplotype, HLA-DRb1 Ser11þLeu11, and HLA-B

Asp9, we observed that association at the ancestral haplo-

type was not significant (p ¼ 0.21). In contrast, the other

two HLA amino acid variables retained statistical signifi-

cance even after adjustment for the effect of the 8.1 ances-

tral haplotype (p ¼ 1.6 3 10�7 at HLA-DRb1 Ser11þLeu11

and p ¼ 3.4 3 10�3 at HLA-B Asp9). These results suggest

that the association was driven primarily by the amino

acid sites and not by the effect of the 8.1 haplotype alone.

We further considered that our approach to correcting

for heterogeneity might be conservative andmight remove

Figure 1. Association Results within the
MHC to ACPA� RA
(A) We observed the most significant
association at position 11 of HLA-DRb1
(encoded by HLA-DRB1), where Ser and
Leu conferred risk (red diamond). We
also observed an independent associa-
tion at SNP rs9266669, which was statisti-
cally indistinguishable from HLA-B Asp9
(green diamond). The dark-red and dark-
green squares denote the statistical signifi-
cance of the two positions in a joint
analysis including both discovery and
replication data.
(B) Conditioning on HLA-DRb1 Ser11þ
Leu11, we found that the association at
rs9266669 remained the most significant.
(C) Conditioning on HLA-B Asp9, we
found that the association at HLA-
DRb1 Ser11þLeu11 remained the most
significant.
(D) Conditioning on both HLA-DRb1
Ser11þLeu11 and HLA-B Asp9, we did
not observe any more statistically signifi-
cant association withinMHC (p> 0.0007).

shared loci between two subtypes of

RA. To address this concern, we devel-

oped a two-step alternative approach

that estimates the confounding pro-

portion (proportion of misdiagnosed

ACPAþ RA samples within ACPA�

RA cohorts) by using a GRS calculated

on the basis of an approximated set of

nonshared loci (i.e., known loci asso-

ciated with ACPAþ RA but with p >

0.01 association in ACPA� RA) and

then regresses out only this amount

from the model (see Material and

Methods). The confounding propor-

tion estimates by this approach were

comparable to the estimates by the

previous approach with the full GRS

(mean proportion across cohorts was 26.3% with the full

GRS and 28.3% with the nonshared-loci GRS; see Fig-

ure S3). Consistent with the previous approach, this two-

step approach produced the most significant associations

at rs9266669 (p ¼ 1.8 3 10�13, OR ¼ 1.38 at HLA-B

Asp9) and HLA-DRb1 Ser11þLeu11 (p ¼ 2.3 3 10�13,

OR ¼ 1.27). Again, these two associations were indepen-

dent (p ¼ 5.4 3 10�8).

Replicating HLA Associations in a Clinically

Homogeneous ACPA� Collection

We wanted to validate these findings in an independent

cohort without significant clinical heterogeneity. To this

end, we assessed association in an independent data set

of 427 phenotypically homogeneous ACPA� individuals

and 1,691 control subjects (Swedish EIRA). According to

a state-of-the-art commercially unavailable assay,8 these
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ACPA� individuals were negative for not only anti-CCP

antibody but also antibodies for four specific citrullinated

peptide antigens. We also excluded HLA-B*27-positive in-

dividuals (>90% sensitive for AS) from case and control

groups. We tested for association without any adjustment

for heterogeneity. We confirmed associations both at

HLA-DRb1 Ser11þLeu11 (p ¼ 5.8 3 10�4, OR ¼ 1.28)

and at HLA-B Asp9 (p ¼ 2.6 3 10�3, OR ¼ 1.34) with com-

parable effect sizes (Table 1). These associations were again

independent of each other. Conditioning on HLA-DRb1

Ser11þLeu11, we observed an independent effect at HLA-

B Asp9 (p ¼ 0.03, OR ¼ 1.23). Conversely, conditioning

on HLA-B Asp9, we observed an independent effect at

HLA-DRb1 Ser11þLeu11 (p ¼ 0.007, OR ¼ 1.22).

In a joint analysis of the discovery and replication

cohorts, we observed increased significance at both HLA-

DRb1 and HLA-B positions (p ¼ 6.7 3 10�16 and OR ¼

1.30 for HLA-DRb1 Ser11þLeu11; p ¼ 5.3 3 10�14 and

OR ¼ 1.38 for HLA-B Asp9; Figure 1A and Table S4) and

that their effects were independent (p < 2 3 10�8; Figures

1B and 1C and Table S4). Conditioning on both of these

effects, we observed no other independent association

throughout the MHC (p > 0.0002).

Exhaustive Search Confirms Associations with Ser11

and Leu11 in HLA-DRb1 and Asp9 in HLA-B

Because the conditional forward searchmightmiss the best

explanations, we exhaustively tested every possible pair of

binary markers inHLA-DRB1 andHLA-B in a joint analysis.

Out of 383,130 pairs we tested, HLA-DRb1 Ser11þLeu11

and HLA-B Asp9 in HLA-B (or equivalently HLA-B*08 and

HLA-B*0801) constituted the most significant pair (p ¼

1.13 10�20; Table S5), confirming that our model provides

the most parsimonious explanation of the data.

Associations Are Independent of Rheumatoid Factor

Status

We examined whether the associations we identified were

independent of rheumatoid factor (RF) status. We obtained

RF data for 1,016 affected individuals in the UK cohort; 470

individuals (46%) were RFþ, and 546 individuals (54%)

were RF�. We stratified the samples into two groups on

the basis of RF status. The associations were consistent be-

tween the two groups in that they showed the same direc-

tion of effects at both HLA-DRb1 Ser11þLeu11 and HLA-B

Asp9 (Table S6). We observed that effect sizes tended to be

greater in the RFþ subjects than in the RF� subjects at both

loci (p ¼ 0.02). A thorough investigation of this phenom-

enon will require larger sample sizes.

Asn77 at HLA-A Is Associated with ACPAþ RA

We also mapped associations within the MHC to ACPAþ

RA in 7,279 ACPAþ RA subjects and 15,870 control subjects

(see Table S1 andMaterial andMethods).We observed little

evidence of stratification after adjusting for ten PCs (lGC ¼

1.07). We confirmed previously published associations in

HLA-DRb1 at amino acid positions 11 (p < 10�692), 71

(p < 10�37), and 74 (p < 10�23) (Table S7). Conditioning

on HLA-DRB1 alleles, we confirmed associations at Asp9

in HLA-B (p < 10�36, OR ¼ 1.93) and Phe9 in HLA-DPb1

(p < 10�19, OR ¼ 1.31)6 (Figure S4). Conditioning on all

of these previously known associated positions (the HLA-

DRB1 alleles, position 9 in HLA-B, and position 9 in HLA-

DPb1), we observed an independent association with

ACPAþ RA with the presence of Asn77 in HLA-A (p ¼

2.7 3 10�8, OR ¼ 0.85; Figure S4D and Table 1). Similar

to the other amino acid sites associated with RA,6 position

77 in HLA-A was also located in the binding groove

(Figure 2 and Figure S5). We previously observed that

Ser77 in HLA-A confers protection in HIV controllers.31

After conditioning on this sixth position, we observed no

convincing associations (p > 4 3 10�6).

Discussion

In this study, we observed that associations with ACPA� RA

within the MHC were driven by HLA-DRB1 and HLA-B. In

Table 1. Effect Estimates for Amino Acids Associated with Risk of ACPA
�
and ACPA

þ
RA

RA
Subtypes

HLA
Protein

Amino Acid
Position

Amino Acid
Residue

OR after Adjustment for Known Associated Positions
(95% CI)

Frequency in
Control Group

Frequency in
Case Group Classical AllelesDiscovery Replication Joint

ACPA� HLA-DRb1 11 SerþLeu 1.22 (1.14–1.32) 1.22 (1.04–1.43) 1.22 (1.14–1.31) 0.514 0.548 HLA-*01, HLA-*03,
HLA-*08, HLA-*11,
HLA-*12, HLA-*13,
HLA-*14

HLA-B 9 Asp 1.27 (1.15–1.40) 1.23 (0.99–1.52) 1.26 (1.15–1.38) 0.131 0.161 HLA-*08

ACPAþ HLA-A 77 Asn 0.85 (0.81–0.90) 0.343 0.279 HLA-*01, HLA-*23,
HLA-*24, HLA-*26,
HLA-*29, HLA-*30,
HLA-*36, HLA-*80

For each amino acid identified in this study, we show the OR and 95% confidence interval (95% CI), unadjusted frequencies in the case and control groups, and
corresponding classical HLA alleles. All ORs were conditioned on known associated positions; for ACPA� RA, we estimated ORs of HLA-DRb1 Ser11þLeu11 and
HLA-B Asp9 by conditioning on each other. For ACPAþ RA, we estimated the OR of HLA-A Asn77 by conditioning on all alleles at HLA-DRB1, amino acids at
HLA-B position 9, and amino acids at HLA-DPb1 position 9. See Table S7 for the complete table, including previously identified positions.
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addition, we identified the specific residues and specific

amino acid sites that parsimoniously explained these asso-

ciations. These positions mapped to the peptide binding

grooves of these receptors, pointing to an important role

for antigen recognition. The success of this study was

contingent on our ability to distinguish the effects from

other conditions contributing to heterogeneity within

the case individuals.

Intriguingly, the positions that drove ACPA� risk were

the same positions that drove most risk for ACPAþ RA as

well (Table S8). The risk of Asp9 in HLA-B in ACPA� RA

was shared with ACPAþ disease but had a more modest

effect size (OR ¼ 1.38 in ACPA� versus OR ¼ 1.93 in

ACPAþ). This allele, also associated with myasthenia

gravis,32 might affect nonspecific immune reactivity.

In contrast, at position 11 of HLA-DRb1, different resi-

dues drove risk of the two diseases (discordance p <

2.9 3 10�107; Figure 3). For example, Ser11 conferred risk

of ACPA� disease (OR ¼ 1.31) but was protective against

ACPAþ disease (OR ¼ 0.39). On the other hand, Gly11

and Pro11 showed protective effects for both subsets. We

speculate that citrullinated antigens that drive ACPAþ RA

risk might be biochemically distinct from the antigens

driving ACPA� RA risk, for example, carbamylated anti-

gens.33 The different set of risk and protective residues

for the two disease subsets might be related to differential

binding affinity and reactivity to these autoantigens.

In a multicohort study where allele frequencies can

differ between cohorts, it is crucial to account for popula-

tion stratification. For example, the frequency of ancestral

8.1 haplotype differed from 5% to 17% depending on

cohorts (Table S9). As described in the Material and

Methods, we took two approaches to account for popula-

tion structure: (1) we stratified the data by country of

origin, and (2) we used ten PCs to aggressively adjust for

any residual population effects. The effectiveness of this

standard approach is reflected in the relatively modest

inflation factors for the study (l1,000 ¼ 1.00 for ACPA�

RA and l1,000 ¼ 1.01 for ACPAþ RA).

In this study, we addressed the issue of heterogeneity

within cohorts. Like for population stratification, if the

heterogeneity is present and we fail to adequately adjust

for it, spurious associations can occur. For example,

without adjusting for heterogeneity, the top ACPA� RA

association appeared to be at Leu67 in HLA-DRb1 (p ¼

2.93 10�28). Despite its remarkable significance in our het-

erogeneous discovery sample, Leu67 failed to replicate

when we examined it in our homogenous replication

data set (p¼ 0.26). In contrast, after adjusting for heteroge-

neity in our discovery data set, we observed the strongest

effect at position 11 of HLA-DRb1 (Table 1); not only did

this effect replicate in our homogenous replication data

set, but the effect sizes of each amino acid residue at that

site were also highly concordant between discovery and

replication sets (discordance p > 0.4 after adjustment;

Figure S6).

To further demonstrate the potential for accounting for

heterogeneity in fine mapping, we performed simulations.

We simulated a study under the assumption that HLA-

DRb1 Ser11þLeu11 (OR ¼ 1.30) and HLA-B Asp9 (OR ¼

1.39) confer risk, which is the model that we found in

this study, and included ACPAþ RA subjects in 26.3% of

affected individuals (Material and Methods). Without

adjustment for heterogeneity, the top association was

deceivingly at HLA-DRb1 Leu67 (p < 10�331), which was

exactly what we observed in discovery cohorts without

adjusting for heterogeneity. Using our statistical approach

to adjust for heterogeneity, we were able tomap the correct

positions we simulated; the top associations were HLA-

DRb1 Ser11þLeu11 (p ¼ 1.3 3 10�189), and conditioned

on this, rs2853986 (p ¼ 7.2 3 10�59), which was statisti-

cally indistinguishable (p > 0.05) from HLA-B Asp9. We

also showed that adjusting for heterogeneity not only

removed spurious associations but also provided accurate

estimation of the proportion of confounding samples

under the null model (Figure S7).

We note that we adjusted for possible confounding from

AS by correcting for AS GRSs in discovery cohorts and

removing HLA-B*27-positive individuals in the replication

cohort. This approach effectively adjusted for putative

HLA-B*27 associations with ACPA� RA if there were any.

Currently, it is difficult to distinguish true HLA-B*27 asso-

ciations from confounding fromAS.We expect that we will

be able to accurately distinguish these two situations as we

identify a greater number of non-MHC AS risk loci in the

future.

The concern of clinical heterogeneity extends beyond

RA to a wide range of diseases where clinical classification

might be uncertain because of imperfect diagnostic tests,

for example, (1) subclassification of inflammatory bowel

disease (MIM 266600) into Crohn disease or ulcerative

colitis or (2) distinguishing early bipolar disease (MIM

Figure 2. 3D Models of Amino Acid Posi-
tions Identified in This Study
Key amino acid positions are highlighted
as spheres. We used Protein Data Bank en-
tries 3pdo (HLA-DR), 2bvp (HLA-B), and
1x7q (HLA-A) with UCSF Chimera to pre-
pare the figure.30 See Figure S5 for all
known associated positions.
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125480) from major depressive disorder (MIM 608516).

We expect that our statistical approach might have

application to genetic studies of these conditions as well.

The applicability of our approach is contingent on

adequate power to detect confounding genetic effects;

such power is only possible when sufficient numbers of ge-

netic loci for confounding diseases are known. We also

expect that our approach might have utility in better char-

acterizing non-HLA loci of the conditions with clinical

heterogeneity.

Our results have important implications for the clinical

practice of ACPA� RA. Investigators have long speculated

that individuals diagnosed with ACPA� RA might have

other inflammatory arthritic conditions, such as AS, that

mimic RA and have atypical clinical presentations. Our

analysis supports this; we estimated here that each

ACPA� RA cohort contained 4%–11% of the affected indi-

viduals who most likely had AS and 15%–37% of affected

individuals who most likely had ACPAþ RA (Table S10

and Figure S3). We note the possibility that other condi-

tions that we did not account for, such as Sjögren syn-

drome (MIM 270150),34 might have been included within

the ACPA� RA samples. These subjects were identified

through research protocols, and in clinical practice, these

diagnostic uncertainties can be even more pronounced.

Clinical misclassifications can be particularly concerning

in this setting given that optimal pharmacological treat-

ment and long-term prognosis for these different arthritic

conditions vary. Our data not only underscore the need for

more accurate clinical tests than the conventional anti-

CCP antibody testing but also illuminate the potential

role of genetic data in helping categorize individuals with

ACPA� inflammatory arthritis.

Appendix A

Asymptotic Mean of Effect-Size Estimate in the

Presence of Confounding

We first consider linear regression for quantitative traits.

We assume a single locus, which we will extend tomultiple

loci later. Suppose that two groups of samples are mixed in

a cohort. Let x1 and x2 be the genotype vectors of the two

groups at the locus and y1 and y2 be the phenotype vectors.

Let b1 and b2 be the effect sizes, such that the true model is

y1 ¼ x1b1 þ ε1 and y2 ¼ x2b2 þ ε2, where ε1 and ε2 are error

terms. Without loss of generality, assume that x1, x2, y1,

and y2 have zero mean. Because of sample mixture, what

we observe are x ¼ ðxT1 jx
T
2 Þ

T and y ¼ ðyT1 jy
T
2 Þ

T . The standard

linear regression formula gives us the least-squares esti-

mate of effect size:

bb ¼
�
xTx

��1
xTy

¼
�
xT1 x1 þ xT2x2

��1�
xT1 j x

T
2

��
ðx1b1 þ ε1Þ

T j ðx2b2 þ ε2Þ
T
�T

¼
�
xT1 x1 þ xT2x2

��1��
xT1 x1b1 þ xT1 ε1

�
þ
�
xT2 x2b2 þ xT2 ε2

��

¼
�
xT1 x1 þ xT2x2

��1
��

xT1 x1
��

b1 þ
�
xT1 x1

��1
xT1 ε1

�

þ
�
xT2 x2

��
b2 þ

�
xT2 x2

��1
xT2 ε2

��

Given that E½ðxT1 x1Þ
�1xT1 ε1� ¼ 0 and E½ðxT2 x2Þ

�1xT2 ε2� ¼ 0,

E
h
bb
i
¼

�
xT1 x1 þ xT2 x2

��1�
xT1 x1b1 þ xT2 x2b2

�

If we assume that the minor allele frequency of the

variant is the same for the two groups and the genotypes

follow Hardy-Weinberg equilibrium, ðxT1 x1Þ=ðx
T
2 x2ÞzN1=

N2, whereN1 andN2 are the sample sizes of the two groups.

Thus, the effect-size estimate asymptotically converges to

an average effect size weighted by the sample sizes of two

groups.

This result has the following implication. Suppose that b1
is the true effect size of interest and b2 is the effect size for

confounding samples. Consider the null model (b1 ¼ 0).

What we observe will be E½bb� ¼ ab2, where a is the con-

founding proportion. Thus, we will have spurious associa-

tion ðE½bb�s0Þ. Suppose that we build GRSs with respect to

confoundingdisease as s ¼ xb2. Ifwe regress out s as a covar-

iate, it will remove spurious association. Moreover, the

regression coefficient of swill be an unbiased estimator ofa.

Under the alternative model ðb1s0Þ, using risk score as a

covariate might be conservative and remove true associa-

tion. If we know a a priori, one approach is fixing the coef-

ficient of s to the constant a. That is, we subtract sa ¼ xb2a

from y. This approach will retain true association. The

effect-size estimate can still be conservative, given that

what we would want to subtract is actually xðb2 � b1Þa,

which is unknown.

Figure 3. Distinct Effect Sizes of Amino Acid Residues at HLA-
DRb1 Position 11 for ACPA� and ACPAþ RA
For each residue, we show the univariate OR (OR with respect to
the other residues as a reference) and the 95% confidence interval.
Effect sizes were distinct between the two disease subsets (p <
2.9 3 10�107).
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Logistic Regression

Similar results extend to logistic regression. For simplicity,

we assume the null model (true OR is 1). Suppose that a%

of the case group is confounded by a disease whose OR is

gs1. Let p be the control minor allele frequency. Then,

the asymptotic mean of the observed log OR bb will be

E
h
bb
i
¼ p ¼ log

ðapA þ ð1� aÞpÞð1� pÞ

ðað1� pAÞ þ ð1� aÞð1� pÞÞp
;

where pA ¼ gp=ððg� 1Þpþ 1Þ is the case minor allele fre-

quency of the confounding disease. Thus, we will have

spurious association ðE½bb�s0Þ.

If g is small, we can establish an approximate relation-

ship, pzalogðgÞ, which we show by simulations (Fig-

ure S8). Thus, using risk score s ¼ logðgÞx as a covariate,

we can not only remove spurious association but also

approximate a from the regression coefficient of s.

Generalization to Multiple Loci

We can generalize our approach to multiple loci. Suppose

that we knowm independent loci associated with the con-

founding disease. Let b1;.; bm be their effect sizes. We

build GRSs for each individual locus,

si ¼ xibi i˛f1; :::;mg;

where xi is the genotype vector at locus i. In order to esti-

mate the confounding proportion a, we look at all loci

together by including all si in the regression:

y ¼ as1 þ as2 þ.þ asm þ ε:

Application to logistic regression is also straightforward.

Because a is invariant across loci, this is equivalent to

the model using a combined GRS, y ¼ aSþ ε, where

S ¼
P

si ¼
P

xibi, which results in the approach presented

in theMaterial andMethods. The advantage of a combined

GRS over multiple loci is that it can be less conservative

under the alternative model. For example, if we test locus

i and include si as a covariate, it will remove true associa-

tion. However, if we include S as a covariate, the informa-

tion from other loci ðs1; s2;.; si�1; siþ1;.; smÞ will help in

finding correct a and preventing overly regressing out si.

Another possible way to more strictly prevent overly re-

gressing out GRS can be estimating awith nonoverlapping

loci first, as presented in the Material and Methods.

Supplemental Data

Supplemental Data include eight figures and ten tables and can be

found with this article online at http://www.cell.com/ajhg.
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