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Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme
temperatures and humidities across various habitats in a large (200 x 300
km) and diverse region

Abstract
The development of fine-resolution climate grids is an important priority in explaining species' distributions at
the regional scale and predicting how species may respond to variable and changing climates. Recent studies
have demonstrated advantages of producing these grids using large networks of inexpensive climate loggers, as
the resulting grids can capture local climatic variations over a range of environments. In this study we extend
these methods to develop innovative fine-resolution (25 m) climate grids for a large region (∼200 x 300 km)
of New South Wales, Australia. The key aspects of these grids is that they: (1) are based on near-surface (5
cm) observations to better reflect where many species live; (2) cover a wide variety of habitats including
forests, woodlands and grasslands so that they are broadly applicable; (3) include both temperature and
humidity, the latter of which has often been neglected in similar studies; (4) are developed using a variety of
climate-forcing factors rather than relying only on elevation and geographic location; and (5) they focus on
the extreme temperatures and humidities regardless of when these occur. Analyses showed that elevation was
the dominant factor explaining mild temperatures (low maximums, high minimums), but cold air drainage,
distance from coast, canopy cover and topographic exposure had more effect on the extreme maximum and
minimum temperatures. Humidities were predominately determined by distance to coast, elevation, canopy
cover and topography; however, the relationships were nonlinear and varied in both shape and effect size
between dry and moist extremes. Extreme climates occur under specific weather conditions, and our results
highlight how averaging climates over seasons or periods of consecutive days will include different weather
patterns and obscure important trends. Regional-scale climate grids can potentially be further improved
through a better understanding of how the effects of different climate-forcing factors vary under different
weather conditions.
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ABSTRACT 

The development of fine-resolution climate grids is an important priority to explain 

species’ distributions at the regional scale and predict how species may respond to 

variable and changing climates. Recent studies have demonstrated advantages of 

producing these grids using large networks of inexpensive climate loggers, as the 

resulting grids can capture local climatic variations over a range of environments. In this 

study we extend these methods to develop innovative fine-resolution (25m) climate 

grids for a large region (~200km by 300km) of New South Wales, Australia. The key 

aspects of these grids is that they: 1) are based on near-surface (5cm) observations to 

better reflect where many species live; 2) cover a wide variety of habitats including 

forests, woodlands and grasslands so that they are broadly applicable; 3) include both 

temperature and humidity, the latter of which has often been neglected in similar 

studies; 4) are developed using a variety of climate-forcing factors rather than relying 

only on elevation and geographic location; and, 5) they focus on the extreme 

temperatures and humidities regardless of when these occur. Analyses showed that 

elevation was the dominant factor explaining mild temperatures (low maximums, high 

minimums), but cold air drainage, distance from coast, canopy cover and topographic 

exposure had more effect on the extreme maximum and minimum temperatures. 

Humidities were predominately determined by distance to coast, elevation, canopy 

cover and topography, however the relationships were non-linear and varied in both 

shape and effect size between dry and moist extremes. Extreme climates occur under 

specific weather conditions, and our results highlight how averaging climates over 

seasons or periods of consecutive days will include different weather patterns and 

obscure important trends. Regional scale climate grids can potentially be further 
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improved through a better understanding of how the effects of different climate-forcing 

factors vary under different weather conditions. 

 

KEY WORDS  canopy cover; climate variability; coastal influence; cold air 

drainage; microclimate; regional climate; synoptic patterns; topoclimate
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1. Introduction 

Climate change in the 21st century is expected to lead to dramatic shifts in species’ 

distributions and increased extinction risks (Thomas et al., 2004; IPCC, 2007; Thuiller 

et al., 2008). However, these risks may currently be overestimated, as predictions are 

typically based on coarse-scale climate grids that ignore microrefugia where species can 

persist despite unfavourable regional conditions (Pearson, 2006; Ashcroft, 2010; Austin 

and Van Niel 2011). A growing number of studies are therefore developing fine-

resolution climate grids that are more suitable for landscape and regional scale climate 

change analysis (e.g. Fridley, 2009; Bennie et al., 2010; Shoo et al., 2010), and are at a 

more appropriate scale for environmental planning and management (Ferrier et al., 

2002). 

 A number of studies have downscaled coarse-scale climate grids based only on 

elevation and geographic location (e.g. Trivedi et al., 2008; VanDerWal et al., 2009), 

however temperatures are also affected by other climate-forcing factors that become 

increasingly important at finer resolutions (Daly, 2006). Cold air drainage, topographic 

exposure, canopy cover and coastal influences are four examples of factors that can 

dramatically affect climate at fine scales, and indeed, a number recent studies have 

found that the effects of these factors can dramatically reduce correlations between 

temperature and elevation (Ashcroft et al., 2008; Fridley et al., 2009; Suggitt et al., 

2011). The quality of climate data is often overlooked as a source of error in studies that 

explain or predict species distributions (Soria-Auza et al., 2010), and as the quality of 

fine-resolution climate grids cannot be assessed by resolution alone, more attention 

needs to be given to climate-forcing factors other than elevation (Daly, 2006). 
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1.1 Issues of instrumentation and recording 

The first problem that arises when catering for a wider variety of climate forcing factors 

is that standardised weather station networks (i.e. sparsely distributed Stevenson screens 

placed ~1.5–2 m above the surface of flat, cleared areas) are designed to reduce the 

effects of many of these factors, and are therefore unsuitable (Geiger, 1971; Daly, 

2006). For example, weather stations are biased against areas of high topographic 

shelter (i.e. shading from winds or radiation) and canopy cover, and therefore 

standardised weather stations cannot be used to determine the effects of these factors or 

predict the climate in environments such as sheltered gullies or forests. While habitat 

variables such as these have been considered separately to climatic factors when 

predicting species distributions, this is insufficient when there are complex interactions 

between habitat preferences and climate. For example, Suggitt et al. (2011) provide 

numerous examples of species that occupy different habitats within their range to 

maintain a suitable climate, and differences in climatic variability between different 

habitats can also affect community structure (Retana and Cerdá, 2000). It is therefore 

more appropriate to deal with interactions between topography, habitat and climate 

when the climate grids are produced, rather than treat climate and habitat independently 

(Gutiérrez Illán et al., 2010; Suggitt et al., 2011). 

The second issue with standardised weather stations is that the number of 

stations needed to establish relationships increases sharply as the number of climate-

forcing factors considered increases (Vanwalleghem and Meentemeyer, 2009). While a 

low density of standardised weather stations may be sufficient to produce coarse-scale 

climate grids based only on elevation and geographic location, they are insufficient to 

determine the effects of many factors at fine-resolutions. Standardised weather stations 
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are also typically expensive, and therefore cost hinders the deployment of large 

networks of standardised weather stations covering a broad range of habitats. 

 These problems with standardised weather stations have been partially addressed 

by the recent availability of relatively inexpensive temperature loggers (e.g. Lookingbill 

and Urban, 2003; Ashcroft, 2006). The small size of these sensors allows them to be 

placed in a variety of environments, and the lower cost allows scientists to increase 

sample size and determine the effects of a wider variety of climate forcing factors. 

Historical studies of microclimate were often non-spatial, focusing on statistical 

summaries in a limited number of locations or environments (Geiger, 1971; Chen et al., 

1999). However, the low cost of these microclimatic sensors have more recently 

allowed spatial grids of topoclimate to be produced (e.g. Lookingbill and Urban, 2003; 

Ashcroft, 2006). 

One issue that remains to be resolved is the method of protecting these devices 

from direct solar radiation. For example, while some have used the shade of trees to 

provide shelter (e.g. Lookingbill and Urban, 2003; Lundquist and Huggett, 2008), this 

also limits the environments where temperatures can be recorded. In the same way that 

standardised weather stations in flat, cleared areas cannot predict the climate in forests, 

sensors placed exclusively under forests cannot predict the climate in open areas. The 

goal of developing climate surfaces that consider interactions between climate, habitat 

and topography requires sensors in a variety of environments, and therefore sensors 

must be sheltered in a way that is not specific to any environment. Recently, sensors 

have been wrapped in foil (Suggitt et al., 2011), although it is not clear how much 

protection this offers, or how it affects observations. 
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The second issue with low-cost loggers concerns the variables that should be 

recorded to accurately capture the climate of a location. Inexpensive loggers have 

generally only been used to record temperature, while standardised weather stations also 

capture other factors that are relevant for species, such as rainfall, humidity and wind. 

Moisture availability is a particularly important aspect of climate, and given that 

inexpensive humidity loggers are also available, including humidity in studies is an 

important priority. Humidity also has some advantages over the rainfall predictors 

frequently used in ecological studies, as rainfall only acts indirectly to determine the 

moisture available to species. Moisture availability is also influenced by factors such as 

topographic run-on and run-off, soil texture and drainage, and variations in 

evapotranspiration due to temperature and canopy cover. 

A final instrumental issue that warrants discussion is the height at which 

observations are made. While atmospheric meteorologists sometimes refer to the 

standardised height of 1.5–2 m as ‘near-surface’ (e.g. Dobrowski et al., 2009), it is well 

known that the climate at this height can differ substantially from the actual ground 

surface (Wolfe, 1945; Geiger, 1971). Indeed, the standardised height for Stevenson 

screens was deliberately chosen to minimise the effects of many climate-forcing factors 

that act nearer the surface (Geiger, 1971), yet these factors still influence species 

distributions. Obtaining climate observations nearer the surface is obviously important 

for ground dwelling plants and animals, but is also of interest for trees or arboreal 

species that may occur there while they are immature and therefore more susceptible to 

climate extremes (Kennedy, 1997). 

Geiger (1971) referred to the standardised climate at 1.5 m as ‘human climate’ 

and the near-surface climate as ‘habitat climate’, however habitat will inevitably vary 
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from species to species. Determining the climate in specific habitats such as under 

rocks, inside tree hollows etc is largely a species-specific issue. For climate grids to be 

broadly applicable over a range of species, the climate in any particular grid cell should 

be based on the general environment, topography and habitat, not a specific 

microclimate within that cell. Throughout this article we therefore use ‘macroclimate’ to 

refer to the general trend in climate based only on elevation and geographic location, 

‘microclimate’ to refer to the climate in a specific microhabitat (e.g. under a rock), and 

‘topoclimate’ to refer to the intermediate climate grids that are not specific in 

microhabitat, but which consider a broad range of climate forcing factors. Note that 

none of these definitions is based on scale. This is because increased computing power 

increasingly allows finer resolution grids to be produced over larger areas, however a 

fine-resolution climate grid based only on elevation and geographic location still 

reflects macroclimate rather than topoclimate or microclimate. 

 

1.2 Describing climatic patterns 

Climate can be represented spatially as raster grids of factors such as mean annual 

temperature and precipitation, or average summer maximum and winter minimum 

temperatures. However, the climate of an area is not simply its long term average, but 

rather the array of conditions that are possible and how often those conditions occur 

(McGregor, 2006). For example, two locations with the same long-term average 

summer maximum temperature and rainfall may vary according to how frequently 

extremely hot or dry conditions occur, and extreme conditions can have an important 

influence on species distributions (Mitikka et al., 2008; Adler et al., 2009; Beever et al., 

2010; Giesecke et al., 2010). 



Ashcroft and Gollan  Fine resolution topoclimatic grids  9 

 

One method to cater for this variability is to use bioclimatic predictors such as 

BioClim (Houlder et al., 2003) and WorldClim (Hijmans et al., 2005), which include 

some additional grids that estimate daily and seasonal variability. However, there are 

still limitations on how well these can predict inter-annual changes in climate. For 

example, a static map of summer maximum temperature that is produced based on an 

elevation sensitive interpolation does not provide any information on which climate 

forcing factors influenced that distribution. It is therefore impossible to predict how the 

pattern would change in future years if the frequencies of cloudy days, wet weather, 

westerly winds, etc varied. 

Recently, studies have differentiated between climatic patterns under different 

weather conditions, as determined using synoptic patterns, or wind speed and direction 

(Lundquist and Cayan, 2007; Milionis and Davies, 2008; Ashcroft et al., 2009). If we 

know the frequency of different weather conditions and the spatial distribution of 

climate under each, then these can be combined to produce seasonal averages and 

spatially variable estimates of change. In contrast, seasonal averages cannot be 

separated into individual weather patterns, and therefore spatial variations in climate 

change due to changing weather patterns are uncertain and often idealised as uniform 

warming across a landscape (e.g. see examples in Beaumont et al., 2007). 

While climatic grids based on weather patterns therefore have some advantages, 

it is difficult to describe these patterns in large regions where different conditions may 

be present in different locations. An alternative we explore in this article is to focus on 

the extreme conditions at each location, that is, the hottest, coldest, driest and moistest. 

These are the conditions that are most likely to be physiologically limiting for species, 

so they are of great ecological interest. By focusing on the extreme observations at each 
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site, we are indirectly focusing on the weather conditions that drive those observations, 

even though these conditions may occur on different days at different locations. In 

contrast, focusing on a predefined season or group of consecutive days will inevitably 

include different weather patterns (they typically only last a few days; Stahl et al., 

2006a) and confound which climate-forcing factors are most important for extreme 

conditions. 

It is worth stressing that describing climate patterns is not an exercise in 

determining which factors significantly affect climate. The climate-forcing factors are 

already generally well known. Indeed, the main problem addressed when producing 

climate grids is quantifying the magnitude of the effect each factor has, and these effects 

typically vary both spatially and temporally. For example, temperature generally 

decreases at approximately 6oC/1000m, however it may be as low as 3–4oC/1000m in 

winter and for minimum temperatures, and up to 10oC/1000m in summer and for 

maximum temperatures (Lookingbill and Urban, 2003; Stahl et al., 2006b; Ashcroft et 

al., 2008). Temperature inversions are even possible under still, anti-cyclonic conditions 

(Milionis and Davies, 2008; Dobrowski et al., 2009; Daly et al., 2010). Similarly, the 

effects of radiation and canopy cover are lower during cloudy conditions (Bennie et al., 

2008; Suggitt et al., 2011), and the effect of exposure varies according to wind speed 

and direction (Lundquist and Cayan, 2007; Ashcroft et al., 2009). Demonstrating 

differences in climate between different environments is rather trivial. It is more 

relevant and challenging to quantify how those differences vary in space and time, and 

this is crucial to understanding climate variability and change. 

 

1.3 Objectives of this study 
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The main objective of this study was to develop innovative fine-resolution (25m) 

climate grids for a large region of New South Wales (~200km by 300km) that were 

suitable for explaining and predicting species’ distributions. The key aspects of these 

climate grids is that they: are 1) based on near-surface (5cm) observations to better 

reflect where many species live (Kennedy, 1997); 2) cover a wide variety of habitats 

including cleared pastures, rainforests, eucalypt forests, woodlands, coastal dune 

communities and upland swamps so that they are broadly applicable; 3) include both 

temperature and humidity, the latter of which has often been neglected in similar 

studies; 4) are developed using a variety of climate-forcing factors rather than relying 

only on elevation and geographic location; and, 5) they focus on the extreme 

temperatures and humidities regardless of when these occur. We did however examine 

the timing of extreme conditions to assess how well they could be captured by seasonal 

averages. 

While inexpensive climate loggers have already been used to produce climate 

grids in other studies, we are not aware of any publications that have used these grids to 

comprehensively predict current or future distributions for a wide range of species. We 

suggest that this is because they have focused on too narrow a range of environments, 

been at too small an extent to be broadly applicable, or have neglected moisture. We 

hope that by overcoming these limitations we will encourage ecologists to use climate 

grids that are potentially more biologically meaningful than simplistic interpolations 

from standardised weather stations. While it is sometimes assumed that climate is 

unimportant to species distribution at fine scales (Pearson and Dawson, 2003), this is 

not the case when accurate topoclimatic grids are used (Gutiérrez Illán et al., 2010). 
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2. Material and methods 

2.1 Study area and observation locations 

The study was centred on a large coastal catchment (~60,000km2) of New South Wales 

(NSW; 31.4–33.4oS, 149.4–152.6oE; Fig. 1) known as the Hunter Valley. The eastern 

boundary was the coastline of mainland Australia, while the northern, southern and 

western boundaries were selected to ensure the quality of the climate data gathered. 

That is, to accurately capture the effect of each climate forcing factor it is crucial that 

the survey locations are chosen to minimise correlations between predictors, ensure that 

the full range of each factor is sampled, and to ensure that samples are not spatially 

auto-correlated (e.g. by having all high elevation sites on the same mountain). In our 

case, we chose the study area to ensure there were four distinct areas where elevation 

exceeded 1000m, low-elevation sites were not clustered in the central valley of the 

study area, and the correlation between elevation and distance from coast was 

minimised as much as possible. 

 The mean annual temperatures of the study area range from 10oC atop the 

highest mountains, to 18oC on the coastal plains, while average annual precipitation 

varies from 650mm on the inland plains to 1300mm on the coast (Hijmans et al., 2005). 

Rainfall is higher during the summer months, and although snow occasionally occurs at 

inland and high elevation sites, to our knowledge there was no snow during the duration 

of this study.  

The study area was diverse in terms of topography and land use. Much of the 

study area had been cleared for agriculture and open-cut mining, but there were also 

many national parks and managed forests. Common land uses included cattle grazing 

and vineyards. Vegetation was diverse, including coastal dune shrublands, grasslands, 
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upland swamps, eucalypt forests and woodlands, with rainforests in coastal, high 

elevation and sheltered topographic locations. 

 

2.2 Environmental data 

The fourteen potential climate-forcing factors considered as part of this study were: 

latitude; distance to coast; elevation; two estimates of canopy cover; exposure to the 

northwest, northeast and south; distance to water body; locally averaged flow 

accumulation; the relative elevation within a 500m radius; and the percentage of ground 

surface within 1m of the sensors that was bare soil, rock or live vegetation. 

Longitude was not considered as it was correlated with distance from coast, with 

the latter considered to be a more direct predictor of climate (continentality effects; 

Daly, 2006). A topographic estimate of incoming solar radiation was not considered 

directly, despite the fact that radiation is a key driver of climate (Geiger, 1971). We 

omitted it because the radiation reaching the ground is influenced by cloud cover, 

canopy cover, topography and latitude, and we could not adequately estimate and 

validate the spatial and seasonal variations in radiation over such a large area 

considering all these factors. In addition, while clear sky radiation typically displays a 

north-south trend, trends in vegetation and climate are typically northwest-southeast 

(southern hemisphere) or southwest-northeast (northern hemisphere) due interactions 

between time-of-day and radiation, or exposure to winds (Ashcroft et al., 2008; Bennie 

et al., 2008). Indeed, in cloudy or windy locations the east-west effect of winds can be 

greater than the north-south effect of radiation (Pepin and Lundquist, 2008). Finally, it 

is not universally true that temperatures increase with radiation, as for example, 

radiation increases with elevation while temperatures decrease (Körner, 2007). Due to 
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these factors, similar studies have found that topographically derived estimates of clear-

sky radiation often have a limited effect on the distribution of climate (e.g. Lookingbill 

and Urban, 2003; Ashcroft et al., 2008; Vanwalleghem and Meentemeyer, 2009). 

Therefore, the exclusion of a radiation predictor is probably of little consequence given 

that latitude and canopy cover were included directly as predictors, cloud cover was 

assumed to be a function of elevation and distance to coast, and topography was 

considered by the exposure predictors. 

Latitude was taken directly from a GPS where our sensors were placed. 

Elevation was obtained from a 25m-resolution drainage-enforced digital elevation 

model (DEM) derived from 10m contours by the NSW Dept. of Lands. Canopy cover at 

a 25m resolution was taken from the interim foliage projected cover (FPC) data for 

NSW prepared using remote sensing (DECC, 2008). 

Exposure to the northeast, south and northwest (azimuths of 30o, 180o and 300o 

respectively) were derived from the DEM using the methods of Ashcroft et al. (2008). 

This method estimates the exposure to wind using the hillshade command of ArcGIS at 

different altitudes. Higher values indicate a more sheltered location. Azimuths were 

selected based on the most influential wind directions in an adjacent study area in New 

South Wales (Ashcroft et al., 2008). Note that while aspect and slope are more 

commonly used in ecological studies, these are inadequate because they fail to consider 

topographic shading (Pierce Jr. et al., 2005) and are sensitive to DEM errors (Van Niel 

et al., 2004). For example, a flat area may be exposed to many directions if it is on a 

hilltop, but sheltered if it is in a gully. While it has been suggested that exposure 

predictors may be unnecessary (Shoo et al., 2010), this recommendation was based on 

air temperatures at a height 1.5m, an 80m resolution DEM, and only a 10o range of 
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altitude. Exposure is expected to have more effect nearer the surface, at finer resolutions 

and over a larger range of altitudes, and has been shown to be a dominant predictor of 

summer maximum soil surface temperatures under these circumstances (Ashcroft et al., 

2008). 

Distance to coast was calculated as a Euclidean distance in metres using 

ArcGIS. This was obviously sensitive to how the coastline was defined—especially 

considering that climate can change more rapidly nearer the coast (see results). The 

coastline could have been defined in a number of ways by including or excluding 

coastal lakes and estuaries (some of which are intermittently open to the ocean), and by 

how far up the mouths of rivers the coastline was defined. We elected to define the 

coastline as areas where the DEM did not define an elevation. This meant that lakes and 

estuaries were included as part of the coastline, as well as the mouths of large rivers up 

to a maximum distance of ~20km. 

Cold air drainage is a key driver of minimum temperatures, yet it is unclear how 

it should best be captured to produce climate grids. We therefore tested three different 

methods. First, we used the average log flow accumulation (determined using the DEM 

and the hydrology commands of ArcGIS) with a five cell radius (Chung et al., 2006). 

Second, we calculated the distance to water bodies. Distance to streams has been shown 

to be an important predictor of minimum temperatures (Lookingbill and Urban, 2003), 

but we calculated the minimum distance to a lake, stream or the coast, as these also have 

effects (Daly, 2006). Both the flow accumulation and distance to streams predictors try 

to estimate where cold air converges, whereas the amount of pooling is also influenced 

by how well it drains away (Lundquist et al., 2008). We therefore used a third predictor, 

designed to predict how well air would drain away from a location. This ‘relative 
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elevation’ predictor was simply the difference between the elevation of a site and the 

minimum elevation within a 500m radius (Bennie et al., 2010; and see Daly et al., 2007 

for a similar methodology at coarser resolution). A high value indicated a perched 

location where air could drain away. A low value indicated it was either a valley or flat 

area where air could pool. Note that while the former two predictors produced highly 

channelised results, the latter predictor produced both pools and channels in different 

locations. 

In February 2010 we recorded the percentage of the ground surface (within 1m 

of sensors) that was bare soil, rock, live vegetation, or leaf litter. These summed to 

100%, so only the former three were considered (the fourth would not have been 

independent). We also recorded the canopy cover of both trees and shrubs in August 

2009, November 2009 and February 2010. The shrub and canopy layers were estimated 

independently, so they could sum to more than 100%. We summed the shrub cover and 

tree cover and averaged over the three periods to produce an estimate of canopy cover 

that ranged from 0 to 138%. Canopy cover is spatially and temporally variable, and the 

relevance of different canopy and subcanopy layers is unclear. In addition, the effective 

canopy cover would be influenced by seasonality and the path of the sun, and our 

estimate does not consider this. There are important unresolved issues regarding how 

canopy cover should be meaningfully recorded, and we do not imply that our method is 

optimal. 

The first ten factors mentioned (latitude; distance to coast; elevation; remotely 

sensed canopy cover; flow accumulation; distance to water bodies; relative elevation; 

and exposure to northwest, northeast and south) were each available as GIS layers, and 

could therefore be used to extrapolate results spatially to unobserved locations and 
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produce climate grids. By including the amount of soil, rock and vegetation within 1m, 

and replacing the remotely sensed canopy cover with the observed canopy cover, a set 

of 13 factors was available for producing non-spatial models. The non-spatial models 

give an indication of how much the accuracy of climate predictions could be improved 

if better GIS layers or site specific environmental data were available. 

 

2.3 Climate observation 

We placed DS1923 iButton sensors (Maxim) at 150 selected sites (Fig. 1), covering a 

broad range of each environmental factor including distance to coast (ranging between 

200 m and 224 km), elevation (ranging between 2 m and 1428 m) and remotely sensed 

canopy cover (ranging between 0 and 100%). Sites were selected to minimise 

correlations between the 10 spatial predictors. Only 6 of the 45 combinations had 

correlations (r2) greater than 0.1, and only 1 greater than 0.3. The highest correlation 

was between distance to water bodies and flow accumulation (r2 = 0.41), although these 

factors were seldom selected in our models and this correlation is unlikely to have 

impacted results. The second highest correlation was between elevation and distance 

from coast (r2 = 0.28), which we minimised but could not avoid completely as elevation 

was generally higher at inland locations. While this correlation was undesirable, it was 

unlikely to be strong enough to have a direct detrimental effect on results. However, it 

was strong enough to hinder the use of interaction terms such as elevation × distance to 

coast. For example, although the correlation (r2) between elevation and distance to coast 

was only 0.28, the interaction term had much higher correlations with these two terms 

(r2 = 0.71 and r2 = 0.66 respectively). Therefore, we did not include interaction terms in 

this study, although we acknowledge that interactions may exist. Minimising 
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correlations between predictors and ensuring the full range of conditions is sampled is 

critical to these types of studies, as the representativeness of climate data can be more 

important than the interpolation method employed (Lundquist et al., 2008). 

The DS1923 iButtons were housed inside white PVC jars, approximately 10 cm 

in diameter, 15 cm high, and 1 mm thick. The jars were inverted and secured to the 

ground using tent pegs. Wooden stakes were erected around sensors where it was 

necessary to protect them from cattle or other disturbances. Holes (9mm diameter) 

drilled in the side of the jars allowed free passage of air, water was free to drain out the 

bottom as the lids were removed, and the containers provided some protection against 

direct sunlight and rainfall. The DS1923 iButtons were suspended in netting inside the 

containers such that they were approximately 5cm above the ground and not in contact 

with the container. Photos and further usage information are included in section S1 in 

Supporting Information. 

As the protection from radiation would obviously differ from more expensive 

radiation screens, such as Gill-type shields, we wanted to validate that the observations 

were reliable. This was not straight forward as we were making observations at a 

different height to standardised weather stations and therefore expected to record higher 

maxima and lower minima. Indeed, we wanted and expected our stations to give 

different readings to standardised weather stations because we were recording climate in 

different environments. To address this issue we placed DS1921G (temperature only) 

iButtons 1cm below the soil surface at 34 selected sites and recorded hourly temperature 

over the summer months (December to February; see section S2 in Supporting 

Information for detailed results). Results were consistent with theory (Campbell and 

Norman, 1998) and previous studies (Likso, 2006; Bennie et al., 2008) in that the 5cm 
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maximum air temperatures at open sites (up to 55.7oC) were ~10oC higher than nearby 

Bureau of Meteorology observations at ~1.5m (up to 43.2oC), but ~10oC lower than the 

soil surface temperatures (up to 68.5oC). There was no evidence that the plastic 

containers were causing maximum temperatures at exposed locations to be markedly 

higher than observed soil surface temperatures or expected 5cm air temperatures, and 

other studies have reported that the bias between Gill shields and PVC shields can be as 

little as 1oC (Daly et al., 2007). Therefore, the 5 cm sensors gave a plausible 

approximation of near-surface air temperatures, and provided a standardised 

environment that could be deployed in a wide range of environments. Our observations 

of maximum temperatures would be cooler than the conditions that exposed grasses and 

ground surface dwelling fauna experience, but warmer than the conditions experienced 

by organisms that take refuge under rocks or deep beneath the soil surface. These 

potential errors are discussed further in section 3.9. 

Sensors were initially deployed in May 2009, and programmed to make hourly 

records at high resolution (0.0625oC, 0.04% Humidity) for 85 days from 1st June 2009 

to 24th August 2009 inclusive. As it took 7 days to drive around the sites to download 

data and reprogramme the devices, subsequent recording was done from 2nd September 

to 25th November 2009, 3rd December 2009 to 25th February 2010, and 5th March 2010 

to 28th May 2010. Both the temperature and humidity observations were manually 

corrected using internal calibration data. Temperature is accurate to 0.5oC. Humidity is 

less accurate, as the devices saturate when humidity is greater than ~70% and give 

artificially high readings. The correction supplied by the manufacturer is insufficient to 

correct this bias (see section S1 in Supporting Information), and therefore the humidities 
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reported in this study can exceed 100%. The humidities reported in this article should be 

interpreted as a relative moisture index rather than a strict percentage.  

For each 85 day period, we successfully obtained data from between 140 and 

147 of the 150 sensors. Data were discarded when plastic containers were dislodged 

from the ground by animals or sensors failed or gave spurious data (e.g. negative 

humidities). Note that this loss rate is much lower than reported in other grazed areas 

(e.g. Suggitt et al., 2011), so the tent pegs and wooden stakes proved effective. 

 

2.4 Analysis of extreme temperatures and humidities 

For each of the 127 sites where we had a complete record of climate, we determined the 

daily minimum and maximum humidity and temperature for each of the 340 days. We 

then calculated the 5th and 95th percentile of each of these four factors at each site to 

create 8 response variables (5th percentile of minimum temperature, 95th percentile of 

maximum humidity, etc). For example, the 5th percentile of minimum temperature 

indicates only 5% of days (17 days) had a lower minimum temperature at that site, and 

this provides an estimate of extreme cold. 

One potential problem with the multiple linear regression technique that we 

applied (see below) is that it is sometimes possible to extrapolate climates well outside 

the observed range if some locations have unique combinations of predictor variables, 

and this can lead to unrealistic climate grids. To avoid this, we transformed each 

response variable using a logit transform (y = -ln((1 – x) / x)). Similarly to how the logit 

transform is commonly used in presence-absence studies (logistic regression) to restrict 

predictions to the range of 0 to 1, it can also be used to, for example, restrict humidities 

to a range of 0 to 100%, or restrict temperatures to the observed range. Therefore, for 
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each of the eight response variables we calculated the range of observations, and 

increased this by 10% to allow predictions slightly outside our observed range. We then 

scaled the observations to between 0 and 1 and used the logit function to calculate the 

transformed response variables. 

We originally produced a Generalised Additive Model (GAM) for each response 

variable using the 13 non-spatial predictors. We used these GAMs to examine the shape 

of each partial response curve and transform the predictors where necessary to achieve 

linearity. Generally, it was only possible to confidently identify transforms for the more 

significant predictors (see results), with linear responses assumed for the less significant 

factors. Once the appropriate transforms were identified, we conducted stepwise linear 

regression using all 13 predictors and the standard parameters in S-Plus v8.0.4 for 

Windows to produce a non-spatial model. We examined the partial response plots of the 

selected model to confirm linearity and normally distributed errors. We then produced a 

spatial model by removing the site variables that could not be used to produce spatial 

maps and substituting the remotely sensed canopy cover for the canopy cover observed 

at the site. This spatial model was used to develop grids of the transformed response 

variables in ArcMap. These were passed through a sigmoid function (y = 1 / (1 + exp(-

x)) to reverse the logit transform performed originally, and scaled back to the original 

range of values. 

Note that these models estimated the climate based only on the conditions at 

each site. In reality, the conditions at neighbouring sites can also have an influence. For 

example, edge effects near forests boundaries can cause gradual transitions in climate 

rather than abrupt boundaries (Chen et al., 1999; Pohlman et al., 2009). To prevent 

unrealistically sharp transitions in climate and cater for edge effects, we followed a 
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similar method to Ashcroft (2006). That is, we performed a neighbourhood average of 

the spatial predictions using radii of 50m, 100m, 200m, 400m, 600m, 800m, 1000m and 

1500m. This created smoother transitions in climate, and simulated edge effects near 

sharp boundaries. We selected the radius that maximised the correlation between the 

predicted climate and actual observations. The final climatic grids we produced are 

therefore a combination of the conditions at the site, as well as the average conditions in 

the surrounding area. 

One downside of the logit transform we used is that model coefficients cannot 

be directly used to estimate lapse rates or the effect size of each predictor (model 

coefficient × range of respective predictor). Therefore, the effect sizes were estimated 

using both the model coefficients as well as the relationships between transformed and 

untransformed response variables. Note that the coefficients of each factor cannot be 

directly compared because they have different units (e.g. 6oC/1000m elevation cannot 

be compared with 1oC/10% canopy cover), and do not give an indication of which 

factors had the strongest influence on results as this also depends on the range of each 

factor (e.g. elevation may have little effect on results in a study area with an elevational 

range of only 200m, but might be dominant in an area with a 3000m range). Therefore, 

we focus only on effect sizes rather than coefficients throughout the remainder of this 

article. 

 

2.5 Timing of extreme conditions 

To examine the timing of extreme events we calculated the number of sites that 

exceeded the 95th percentile or fell below the 5th percentile for each of the 8 response 

variables for each day of observation. Results were related to the average rainfall 
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recorded on each day at the 38 Bureau of Meteorology weather stations in the study 

area. 

 

3. Results and discussion 

3.1 Extreme cold 

The 5th percentile of minimum temperatures was an indication of extreme cold, and the 

observed range varied from -8.6oC to 9.3oC. The best predictor of extreme cold was the 

relative elevation predictor used to reflect cold air drainage. Elevation, distance to coast 

and canopy cover were also influential, while ground vegetation within 1m and latitude 

had minor effects on the non-spatial model. Results were similar in the spatial model 

(Fig. 2), but the correlation was lower (non-spatial model r2 = 0.81; spatial model r2 = 

0.72). The effect size of relative elevation (8.6oC over range of 263 m) was 46% greater 

than the effect size of distance to coast (5.9oC over range of 224 km), 49% greater than 

that the effect size of elevation (5.8oC over range of 1428 m; lapse rate 4.1oC/1000m), 

and 159% greater than the difference between 0% and 100% remotely sensed canopy 

cover (effect size of 3.3oC). 

 Neighbourhood averages suggested the best model was produced using a radius 

of 50 m. The final climate grid produced for the 5th percentile of minimum temperatures 

(Fig. 3a) had a correlation (r2) of 0.74, and an RMS error of 1.67oC (Fig. 4a). The 

coldest locations were generally inland, cleared, low lying areas where cold air could 

pool (blue areas in Fig. 3a). The least cold locations were coastal forests, where high 

humidity and canopy cover will have reduced long-wave radiation losses (Geiger, 

1971). Although temperatures were predicted to decrease with elevation (there was no 

inversion per se), the higher canopy cover and less cold air pooling at most upland sites 
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led to apparent temperature inversions in some locations. Nevertheless, the coldest site 

was an upland swamp at high elevation that had low canopy cover and was subject to 

cold air pooling. 

The flow accumulation and distance to water bodies predictors were not selected 

in models, and were not able to capture cold air drainage as well as the relative 

elevation predictor. This can be attributed to at least three factors. Firstly, both these 

former predictors predict channelised flow of cold air, where cold air drainage can 

actually form non-channelised pools in low lying areas. Secondly, streamlines or valleys 

do not necessarily result in cold air pooling if the valley is steep and wide enough to 

allow the cold air to drain away (Lundquist et al., 2008). Finally, while distance to 

streams has been a successful predictor in small, rugged study areas (e.g. Lookingbill 

and Urban, 2003), it is difficult to scale this to large regions where ‘streams’ can be 

anything from major rivers to intermittent creeks, and valleys can vary dramatically in 

the width of the surrounding flood plain. The dominant performance of the relative 

elevation predictor shows it has great potential to capture cold air drainage, but it may 

still be possible to improve it further. For example, the 500m radius was chosen 

arbitrarily based on the results of Bennie et al. (2010), while larger radii have also 

performed well at coarser resolutions (Daly et al., 2007). 

In terms of current climate change, winter minimum temperatures have been 

found to be increasing faster than maximum or other seasonal temperatures (Hughes, 

2000; Lundquist et al., 2008; Ashcroft et al., 2009). Given that we found extremely low 

temperatures were largely determined by cold air drainage (even when distance to coast, 

elevation and canopy cover varied widely), this reinforces the suggestion that predicting 

the frequency and magnitude of cold air pooling events is crucial to understanding the 
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potential impacts of climate change and identifying potential microrefugia (Dobrowski, 

2011). Cold air pools are decoupled from the free atmosphere, and affected areas will 

not respond to climate change in the same manner as other locations (Daly et al., 2010). 

The errors introduced by not considering cold-air drainage in climate grids has 

previously been reported as between 3oC and 13oC (Daly et al., 2007; Lundquist et al., 

2008), with our effect size of 8.6oC falling near the middle of this range. Any of these 

estimates is larger than many estimates of 21st century climate change (IPCC, 2007), 

once again highlighting the importance of predicting the magnitude and frequency of 

cold air pooling events.  

 

3.2 Mild minimum temperatures 

The 95th percentile of minimum temperatures provided an indication of when overnight 

temperatures remained high, and the observed range varied from 12.4 to 21.7oC. These 

conditions are expected on cloudy nights in late summer, when long wave radiation 

losses are low (Geiger, 1971). The models for mild minimum temperatures were strong 

(non-spatial model r2 = 0.86, spatial model r2 = 0.84; r2 = 0.89 and RMS error of 0.48oC 

after inverting transform and neighbourhood average of 50m), and dominated by 

elevation (effect size 7.5oC; lapse rate 5.3oC/1000m; all other effect sizes < 1.6oC; see 

Fig. S10 in Supporting Information). This is consistent with previous studies showing 

that the effects of factors such as canopy cover and distance to coast are negated to a 

large extent when it is cloudy (e.g. Pepin and Lundquist, 2008; Suggitt et al., 2011). 

 

3.3 Extreme heat 
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The 95th percentile of maximum temperature provided an indication of extreme heat, 

and the observed range varied from 26.6 to 53.2oC. There was a notable difference 

between the non-spatial (r2 = 0.65) and spatial (r2 = 0.53) models due to the difference 

in canopy cover predictors. Canopy cover recorded at the sites was the most influential 

factor in the non-spatial model, while remotely sensed canopy cover was only the third 

most influential predictor in the spatial model behind distance to coast and elevation 

(Fig. S11 in Supporting Information). It is important to note that the canopy cover 

predictor was highly non-linear, with little difference between an observed canopy 

cover of 0 and 90%, and then a sharp drop in temperatures between 90% and 138% 

(Fig. 5). We made it a linear relationship using a canopy cover ^ 3 predictor (Fig. 5), 

although this did not work as well with the remotely sensed canopy cover predictor 

(Fig. S11). Indeed, the remotely sensed canopy cover was less accurate in the upper 

range (DECC, 2008), and did not necessarily reflect both tree and shrub canopy layers. 

This led to overestimation of the maximum temperatures in rainforests in the spatial 

model (low temperatures in Fig. 4b), with similar errors absent from the non-spatial 

model. Given the differences in shading between tree and shrub canopies (Breshears 

and Ludwig, 2010), our results highlight the importance of capturing the complete 

canopy architecture. Improving the accuracy of the canopy cover layer is crucial to 

improving estimates of extreme heat in forests. 

 While canopy cover (effect size 7.8oC), elevation (effect size 13.3oC; lapse rate 

of 9.3oC/1000m) and distance to coast (effect size 13.7oC) were the factors most 

affecting extremely hot temperatures, exposure to northwesterly winds, (effect size 

5.2oC), southerly winds (effect size 2.5oC) and latitude (effect size 5.5oC) were also 

important. As expected, sites exposed to the northwest were warmer than sheltered sites, 
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and sites exposed to the south were cooler (Ashcroft et al., 2008). While the effects of 

exposure predictors were smaller than other factors, they were still comparable to the 

predicted effects of climate change (IPCC, 2007) and are crucial for rainforest species 

that favour topographically sheltered locations where maximum temperatures are low 

(Ashcroft et al., 2008, 2011). The trend in latitude was opposite to expected, with 

warmer temperatures in more poleward locations. This trend is plausible for the 

duration of our study as there were hot, dry conditions and bushfires in the southwest of 

the study area during November and December. However, it is not clear if this trend 

would be repeated every year, and there would obviously be dangers in extrapolating 

this elsewhere. 

 The optimal radius for neighbourhood averages was 100 m, and the resulting 

model had a correlation (r2) of 0.58, and an RMS error of 3.42oC (Fig. 4b). The 

locations with the least exposure to extreme heat were coastal and high elevation 

forests, especially where they had suitable topographic shelter (Fig. 3b). These locations 

were characterised by rainforests and moist eucalypt forests. The warmest locations 

were inland, low elevation pastures, although even inland forests are predicted to be 

warm because the canopy covers observed at our sites rarely exceeded the threshold of 

90%. Our results are consistent with a recent study showing that the typically open 

understoreys beneath eucalypt forests provide little protection from solar radiation 

(Breshears and Ludwig, 2010). 

 

3.4 Mild maximum temperatures 

The 5th percentile of maximum temperatures provided an indication of conditions when 

daytime temperatures remained low, and our observations ranged from 9.3 to 22.0oC. 
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Similarly to mild minimum temperatures, these were determined predominately by 

elevation (effect size 12.1oC; lapse rate 8.5oC/1000m), although canopy cover (effect 

size 4.9oC), distance to coast (effect size 3.6oC), flow accumulation (effect size 2.0oC) 

and exposure to the northwest (effect size 2.1oC), south (effect size 2.3oC) and northeast 

(effect size 0.4oC) winds were also selected in the spatial model (Fig. S12 in Supporting 

Information), in addition to soil within 1m in the non-spatial model. Mild maximum 

temperatures could be estimated more accurately than extremely hot conditions (non-

spatial r2 = 0.77; spatial r2 = 0.73; r2 = 0.77 and RMS error = 1.49oC after inverting 

transform and neighbourhood average over 50m). 

Our results confirm those of Ashcroft et al. (2008), where mild maximum and 

minimum temperatures were well correlated with elevation, but extreme temperatures 

were not. Given that rare, extreme climatic events can have a strong influence on 

species distributions (Mitikka et al., 2008; Adler et al., 2009; Beever et al., 2010; 

Giesecke et al., 2010) more attention should be given to climatic processes and factors 

driving extreme maximum and minimum temperatures. 

 

3.5 Extreme dry 

The 5th percentile of minimum humidity provided an indication of extremely dry 

conditions, and observations varied from 13.7 to 62.2%. Distance from coast had the 

largest effect on results (effect size 38.1%; Fig. S13 in Supporting Information). 

Similarly to extreme heat, canopy cover was non-linear, with increases in humidity only 

noticeable once the observed canopy cover was greater than approximately 90% (Fig. 

5). The effect was even more pronounced than that for extreme heat, and we used a 

transformed canopy cover ^ 5 predictor to ensure linearity. Results in the spatial model 
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also suffered due to the errors in the remotely sensed canopy cover layer (non-spatial r2 

= 0.81; spatial r2 = 0.73). Nevertheless, remotely sensed canopy cover was still the 

second most important factor (effect size 19.7%), with latitude (effect size 14.3%) and 

elevation (effect size 17.4%) having moderate influence, and flow accumulation and 

exposure to the south and northwest having minor effects (Fig. S13). Vegetation within 

1 m was included in the non-spatial model, but had less effect than the spatial factors. 

Similarly to extreme heat, the latitude effect suggested it was drier in the southwest of 

our study area where the bushfires occurred. 

 Our estimates of extreme dry were not improved using neighbourhood averages, 

and the final correlation (r2) and RMS errors of our model were 0.72 and 5.8% 

respectively (Fig. 4c). Note that the r2 between the predicted and actual humidities can 

differ slightly from that in the spatial model itself because of the logit transform we 

used in the models. 

 

3.6 Moist days 

The 95th percentile of minimum humidity provided an indication of when the air 

remained moist during the day, and observations ranged from 78.3 to 108.3%. Both the 

non-spatial (r2 = 0.67) and spatial models (r2 = 0.72) were dominated by distance from 

coast (effect size 33.5%) and elevation (effect size 30.5%), with canopy cover (effect 

size 13.6%), flow accumulation (effect size 14.3%), and exposure to northwesterly 

(effect size 7.5%) and southerly (effect size 3.2%) winds also selected (Fig. S14 in 

Supporting Information). Like the 5th percentile of minimum humidity, neighbourhood 

averages did not improve results, and the final model after inverting the logit transform 

had a correlation (r2) of 0.72 and an RMS error of 4.0%. 
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 Although the factors affecting the 5th (dry) and 95th (moist) percentiles of 

minimum humidities were similar, variations to the effect sizes of each factor and the 

transformations that were applied to cater for non-linear relationships resulted in very 

different spatial patterns. Under dry conditions, most sites had low humidities (Fig. 3c, 

4c), with high humidities only in coastal locations that were high in canopy cover, at 

higher elevation, or in sheltered topographic locations. In contrast, under moist 

conditions most sites had high humidities, with only a few inland, low elevation, cleared 

sites having low humidities (Fig. 3d, 4d). 

 

3.7 Maximum humidities 

Maximum humidities could not be predicted as well as the other response variables, 

probably because maximum humidities frequently approached 100%, and the saturation 

of iButtons introduced noise that obscured the underlying trends. The 95th percentile of 

maximum humidities was observed to range from 104.6 to 112.2%, demonstrating this 

saturation. Indeed, models for the 95th percentile were especially poor (non-spatial r2 = 

0.21, spatial r2 = 0.16), with higher humidities at higher elevation, nearer the coast, 

where there was higher flow accumulation, or higher canopy cover (Fig. S15 in 

Supporting Information). 

 The models for the 5th percentile of maximum humidities were better than those 

for the 95th percentile, but were largely determined by the amount of soil and live 

vegetation within 1m of the sensors. Hence, the spatial model performed noticeably 

worse than the non-spatial model (non-spatial r2 = 0.72; spatial r2 = 0.57). Humidities 

were higher near the coast, where the relative elevation was low (cold air pooling), 
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where the flow accumulation was high, or at higher elevations (Fig. S16 in Supporting 

Information). 

 Neighbourhood averages improved the models for the 5th percentile of 

maximum humidity (RMS error = 5.3%; final r2 = 0.57; radius = 200m) but not those 

for the 95th percentile (final r2 = 0.19; RMS error = 1.2%). 

 

3.8 Timing of extreme events 

The timing of extreme temperatures had a distinct seasonal trend, with highest 

minimum temperatures in the summer months (December–February) and lowest in the 

winter months (June–August; Fig. 6). However, the extreme conditions were clustered 

on discrete days within these seasons and were not evenly distributed. Given that 

synoptic patterns generally only last a day or two (Stahl et al., 2006a), it is the 

conditions on these days that are of interest rather than the average conditions for each 

season. Extreme maximum temperatures preceded the minimum temperatures by 

approximately a month, and generally occurred in November–January and May–July 

respectively. 

 The timing of extreme humidity events was associated more with rainfall events 

than seasons (Fig. 6). While the driest extremes (5th percentiles) occurred mostly in 

spring and summer, these were interspersed with extremely humid conditions (95th 

percentiles). This trend may be common in locations where higher rainfall occurs in the 

warmer months, and highlights the shortcomings of moisture indices built on seasonal 

averages. The average humidity for the summer months would not detect that it is both 

extremely humid and extremely dry during this season. 
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3.9 Errors 

The first source of errors in this study is the observation of climate variables by the 

iButton sensors. Humidity is obviously overestimated in this study due to the saturation 

of the iButtons. Although this results in a bias in the observations, the iButtons should 

still be reliably distinguishing between the least and most humid sites. The biggest 

danger is that the saturation is higher in winter, when humidities are generally higher, 

and this could result in a systematic bias between summer and winter humidities. Given 

that extreme humidities were observed throughout the year, this is unlikely to have a 

large effect, but it is possible. 

 It is also possible that housing the iButtons inside plastic containers close to the 

ground may have added to the saturation by creating an artificially high humidity 

environment for the sensors. Once again, this may have added to the bias in our results, 

but would not prevent the observations being used as a relative moisture index. 

However, it should be stressed that humidities of approximately 100% are not 

unreasonable observations given the frequency of frosts, dews and rainfall in the study 

area, and the fact that the Bureau of Meteorology often reports humidities of more than 

90% at height of 1.5–2m.  

Temperatures recorded by iButtons are generally within 0.5oC of more precise 

instruments, but errors in either Stevenson screens or our containers may approach 2oC 

under still conditions when they are not aspirated (Lundquist and Huggett, 2008). A 

qualitative comparison between our observations and other observations at 5cm (Likso, 

2006; Bennie et al., 2008) suggests our instruments are accurate to within a 2–3oC (less 

for minimums), and similar studies have reported errors of only 1oC between PVC 

shelters and Gill screens (Daly et al., 2007). However, the apparent errors will be larger 
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when the climate grids are applied to specific species. For example, both Stevenson 

screens and our containers protect instruments from conditions that many organisms 

face (Wolfe, 1945), while other species may be even more sheltered if they take refuge 

deep in the soil, under rocks, or inside tree hollows. Temperatures at the surface of 

plants may differ from the atmosphere depending on vegetation structure (Grace, 1987), 

and temperatures 1 cm below the ground surface can exceed those we recorded at 5cm 

by more than 10oC on hot days (see section S2 in Supporting Information). The 

relationship between soil and air temperatures at different heights varies according to 

the habitat characteristics and prevailing weather (Geiger, 1971; Ashcroft et al., 2009; 

section S2), so there is no straight forward way to convert temperatures at a given 

height to any other height. Therefore, the difference between the microhabitat of species 

and the housing of sensors is probably the biggest source of error when the climate grids 

are applied to model species’ distributions. For example, butterflies that fly ~1.5m 

above grasslands may be more accurately modelled using climate grids based on 

standardised weather stations, while grids based on our observations may be more 

appropriate for ground cover plants and ground dwelling arthropods. Further research is 

needed to confirm which climate grids are best able to explain species distributions. 

The second major source of error is misspecification of the multiple linear 

regression models used to predict the climate at unobserved locations. The RMS errors 

we reported in this study reflect a combination of instrumentation errors discussed 

above, fine scale variability in climate and model misspecification errors. Climate can 

vary appreciably over short distances, and moving all our sensors a few metres in a 

random direction would probably change results noticeably at some individual sites. 

However, the overall trends between climate-forcing factors and climate variables 
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should be similar, and therefore the resulting grids would be almost identical. The RMS 

errors reported for our models in this article reflect this fine scale variability to some 

extent, and are not totally due to model misspecification. 

Model misspecification errors could result from inappropriate transforms of 

predictor variables, missing climate forcing factors, inaccurate GIS layers of climate 

forcing factors, or errors due to correlated predictors or poorly sampling the range of a 

climate forcing factor. It is difficult to quantify the effect of each of these factors, but 

the large drop in model performance when using remotely sensed canopy cover 

suggests that the accuracy of GIS layers is a crucial factor. We believe that improving 

the accuracy of canopy cover, cold air drainage, distance to coast and topographic 

exposure predictors would be the best way to reduce errors. Including interactions is 

also an important priority, but is difficult when interaction terms are highly correlated 

with individual factors. 

A third potential source of errors is the limited time frame of this study. Indeed 

the dry November/December of 2009 is in stark contrast to the floods the area 

experienced at the same time during 2010, and examining variability over a number of 

years would be beneficial. Factors such as distance from coast and latitude may capture 

geographic differences in where the extremes occurred in any particular year, and 

therefore these factors may change appreciably between years. Factors such as cold air 

drainage, topographic exposure and canopy cover are more important for extreme 

temperatures, and a year with even more extreme conditions may exacerbate the effects 

of these factors even more. Indeed, our definition of extremes based on the 5th and 95th 

percentiles meant that ~17 days had more extreme conditions during our study period, 
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and if we examined the 1st and 99th percentiles the effects of these factors may be even 

higher still. 

 

4. Conclusions 

The development of fine-resolution climate grids is an important priority to explain 

species distributions at the regional scale and predict how they may respond to variable 

and changing climates. There are many advantages to developing these grids using large 

networks of inexpensive climate loggers, as these can be placed over a range of 

environments and record near-surface conditions in habitats where many species live. 

While many studies have focused on 21st century temperature changes, it is also crucial 

to understand moisture availability given its relevance to many species. Temperature 

and moisture are also linked through evaporative cooling and thermal inertia 

(Lookingbill and Urban, 2004; Lu et al., 2009), and moisture may help buffer sites from 

the effects of climate change (Fridley et al., 2009). 

 Our study focused on the extreme conditions that have a strong influence on 

species distributions. These extremes are associated with distinct weather patterns, and 

focusing on individual days with these conditions is potentially more relevant for 

species than the average climate over seasons that may contain many different weather 

patterns. For example, we found that summer months contained both extremely moist 

and extremely dry conditions, and averaging over the season would conceal these 

extremes. Similarly, mild temperatures are determined mainly by elevation, while 

extreme temperatures are determined more by cold air drainage, canopy cover and 

topographic exposure. If we examined temperatures over a predefined period that 
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included a variety of weather conditions, then this would obscure the importance of the 

factors affecting extreme temperatures. 

 We found that maximum temperatures could not be predicted as well as 

minimum temperatures, and was particularly sensitive to canopy cover. We suggest that 

improving the accuracy of the canopy cover predictor, as well as the GIS layers of other 

climate forcing factors, is probably the best way to improve climate predictions, 

although it is also important to refine the non-linear relationships for some factors. For 

example, the distance to coast and canopy cover predictors were highly influential in 

many of our models, yet the results were non-linear and variable in both effect size and 

response shape between models. Regional scale climate grids could be further improved 

through a better understanding of these relationships, and by understanding how the 

effects of different factors are affected by different weather conditions. 
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Fig. 1 The greater Hunter Valley region of New South Wales, Australia, where this 

study was conducted (31.4–33.4oS, 149.4–152.6oE). Black dots indicate the 127 

sites were a complete year of temperature and humidity data were available, 

while grey dots indicate partial data. Circles are around the locations were soil 

sensors were deployed over summer. Canopy cover is taken from DECC (2008). 
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Fig. 2 Partial response graphs for the spatial model of 5th percentile of minimum 

temperature. The effect of each predictor can be gauged by the range of the Y-

axis that each partial response line covers, such that relative elevation had the 

greatest effect and latitude the least. 
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Fig. 3 Climate grids for extreme cold (a), extreme heat (b), extreme dry (c), and humid 

days (d) produced for the study area shown in Fig. 1. In all grids red refers to 

hotter and drier conditions, and blue to cooler and moister. 
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Fig. 4 Relationships between predicted and actual climate extremes, where the 

predicted values are based on the spatial model and neighbourhood averages. 
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Fig. 5 Partial response graphs for generalised additive models for the 95th percentile of 

maximum temperature (top) and the 5th percentile of minimum humidity 

(bottom) in terms of the untransformed (left) and transformed (right) site 

observed canopy cover predictors. 
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Fig. 6 The top four panels illustrate the number of sites that were above the 95th 

percentile or below the 5th percentile of minimum or maximum humidity or 

temperature on each day where we made observations. The bottom panel 

illustrates the average rainfall of the 38 Bureau of Meteorology weather stations 

in the study area. 
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