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Abstract

The effective reproduction number Rt is an epidemiological quantity that provides an instan-

taneous measure of transmission potential of an infectious disease. While dengue is an

increasingly important vector-borne disease, few have used Rt as a measure to inform pub-

lic health operations and policy for dengue. This study demonstrates the utility of Rt for real

time dengue surveillance. Using nationally representative, geo-located dengue case data

from Singapore over 2010–2020, we estimated Rt by modifying methods from Bayesian

(EpiEstim) and filtering (EpiFilter) approaches, at both the national and local levels. We con-

ducted model assessment of Rt from each proposed method and determined exogenous

temporal and spatial drivers for Rt in relation to a wide range of environmental and anthropo-

genic factors. At the national level, both methods achieved satisfactory model performance

(R2
EpiEstim = 0.95, R2

EpiFilter = 0.97), but disparities in performance were large at finer spatial

scales when case counts are low (MASE EpiEstim = 1.23, MASEEpiFilter = 0.59). Impervious

surfaces and vegetation with structure dominated by human management (without tree can-

opy) were positively associated with increased transmission intensity. Vegetation with struc-

ture dominated by human management (with tree canopy), on the other hand, was

associated with lower dengue transmission intensity. We showed that dengue outbreaks

were preceded by sustained periods of high transmissibility, demonstrating the potential of

Rt as a dengue surveillance tool for detecting large rises in dengue cases. Real time estima-

tion of Rt at the fine scale can assist public health agencies in identifying high transmission

risk areas and facilitating localised outbreak preparedness and response.

Author summary

The effective reproduction number Rt is an epidemiological quantity that provides an

instantaneous measure of transmission potential of an infectious disease. While dengue is
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an increasingly important vector-borne disease, few have used Rt as a measure to inform

public health operations and policy for dengue. This study demonstrates the utility of Rt

for real time dengue surveillance. Using nationally representative, geo-located dengue

case data from Singapore over 2010–2020, we estimated Rt by modifying methods from

Bayesian (EpiEstim) and filtering (EpiFilter) approaches, at both the national and local

levels. We conducted model assessment of Rt from each proposed method and deter-

mined exogenous temporal and spatial drivers for Rt in relation to a wide range of envi-

ronmental and anthropogenic factors. At the national level, both methods achieved high

accuracy, but disparities in performance were large at finer spatial scales when case counts

are low. This study demonstrates the potential of Rt as a dengue surveillance tool for

detecting large rises in dengue cases. Real time estimation of Rt at the fine scale can assist

public health agencies in identifying high transmission risk areas and facilitating localised

outbreak preparedness and response.

This is a PLOS Computational Biology Methods paper.

1. Introduction

Dengue is an arboviral disease that imposes significant health and economic burdens across

the globe [1]. It is transmitted by Aedes mosquitoes, primarily the highly urban-adapted vector

Aedes aegypti [2]. Increased levels of urbanization, human population density and climate

change have led to an expanded geographical coverage of the primary vector Ae. aegypti,
resulting in an estimated annual 105 million dengue infections globally [3]. The burden of

dengue is high, particularly in the tropics and subtropics where vector breeding conditions are

favourable, and transmission persists year-round [4–6].

Located within Southeast-Asia, Singapore is a highly urbanised island city-state with a trop-

ical climate conducive for Aedes mosquito breeding and dengue transmission [7]. Singapore

faces regular dengue outbreaks with all four dengue serotypes co-circulating all year round [8].

Although dengue vaccine, Dengvaxia (CYD-TDV), has been made available commercially

since 2017, its efficacy against different serotypes varies and administering it may increase the

risk of severe dengue disease in individuals who have not been previously infected. The vaccine

is thus safe for use only on individuals with previous dengue infections [9]. As a result, com-

munity-based vector control remains the key strategy to mitigate dengue transmission in Sin-

gapore [10]. However, vector control activities are often resource and labour intensive, and

critically require early warning systems for pre-epidemic preparedness and efficient vector

control deployment [11].

While forecast models have been developed to pre-empt dengue outbreaks in Singapore

[12], these tools remain a challenge to implement for real-time policy advice as the data needed

to parameterize and feed the model are often difficult or impossible to obtain immediately.

Furthermore, these tools do not provide insights on the current transmissibility of dengue as

well as the efficacy of vector control measures, both of which are important to policymakers.

The effective reproduction number, which is a measure of disease transmission intensity,

requires only the input of case data and an estimate of the generation interval distribution

[13], might therefore serve as an attractive complement to more complicated forecasting

models.
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More formally, the effective reproduction number, Rt, is an important epidemiological

quantity that provides an instantaneous measure of the transmission potential of an infectious

disease [14]. It is defined as the expected number of new infections caused by an infectious

individual over the course of its infectious period, in a population composed of both suscepti-

ble and non-susceptible individuals. Rt is different from the basic reproduction number (R0),

which is the expected number of secondary infections from a primary case in a population

where every individual is susceptible. During the course of an epidemic, individuals become

infected or immune and are no longer susceptible, the estimation of Rt is therefore more

appropriate [15]. When Rt> 1, we can expect an increase in the number of cases and a grow-

ing outbreak, whereas sustained Rt< 1 signifies that the epidemic is waning and likely to enter

a more controlled phase [16]. Rt estimates have been used to nowcast the rates of spread of var-

ious infectious diseases such as yellow fever [17] and severe acute respiratory syndrome

(SARS) [18], as well as to quantify the efficacy of disease control measures [18]. During the

COVID-19 pandemic, Rt estimates were especially valuable in providing up-to-date synopses

of global transmission and evidencing the impact of control actions such as social distancing

and lockdowns [19].

There are three primary approaches for estimating Rt; (1) Forward-looking, (2) Backward-

looking and (3) Backward & Forward looking. Developed by Wallinga and Teunis [20], the

forward-looking method is based on the probabilistic reconstruction of transmission trees and

on counting the number of new cases per infected individual. It computes the case reproduc-

tion number, Rc,t, which is a function of Rt+j for future time j�0. This method requires inci-

dence data beyond time t for its estimate, hence it is suited for retrospective analyses [13]. The

backward-looking method, also known as the Cori et al (EpiEstim) method [14], computes the

instantaneous reproduction numbers by inferring how past infections propagate to form the

observed incidence at time t. This method only requires incidence data prior to time t, hence it

is suited for real-time investigation [21]. EpiNow2, a substantial extension of EpiEstim was

recently introduced [22]. The key advantage of EpiNow2 over EpiEstim is that it accounts for

delays in reporting and estimates Rt even when recent data is incomplete, nonetheless, this

comes at a significant computational cost. However, these methods have several limitations.

Estimates from the forward-looking method are right censored when t is near the last observed

time point [13]. The backward-looking method, on the other hand, suffers from edge effects

when t is close to the first observed time point [14]. Estimates near the start and end of the

incidence time series are therefore not reliable under the backward-looking and forward-look-

ing methods respectively. Furthermore, in period with low incidences, these methods produce

estimates of Rt which are driven by assumptions of the prior distributions of Rt rather than the

likelihood of disease case counts, resulting in unreliable estimates [14]. The backward & for-

ward looking method, also termed as EpiFilter [23], was thus developed to ameliorate some of

these limitations. This method unifies the backward-looking and forward-looking methods,

integrating both forward and backward looking information to compute Rt, nullifying the

edge-effect problems experienced by the former methods. In addition, the method makes min-

imal prior assumptions for Rt, allowing it to handle periods where recorded case counts are

scarce. While these methods provide useful estimators of disease transmissibility, modifica-

tions are necessary for application to vector borne diseases such as dengue, whose transmissi-

bility depends on extrinsic factors such as the vector life cycle, weather variations and vector

control [24,25]. As a result, Codeco et al developed a method for constructing a temperature-

dependent generation interval, which accounts for the influence of temperature on the extrin-

sic incubation of dengue, for estimating the effective reproduction number [26].

In this paper, we explored the utility of effective reproduction numbers for real-time den-

gue surveillance nationally and on the local level. First, we nested estimation of dengue
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generation intervals comprising both the intrinsic and extrinsic stages of infection together

with effective reproduction number estimation under two methods, EpiEstim and EpiFilter.

This was done at both the national and local level, using spatially resolved daily dengue case

data in Singapore. Next, we evaluated and compared the estimated Rt and model fit produced

from both methods at both temporal resolutions. Lastly, we determined the temporal and spa-

tial drivers for the estimated national and local level effective reproduction numbers.

2. Materials and methods

Data

Dengue is a notifiable disease under the Infectious Diseases Act in Singapore, where all notifi-

cations of laboratory-confirmed cases to the Ministry of Health are legally mandated. We

obtained daily reports of all dengue infections aggregated by date of onset of illness from 2010

to 2020 from the Ministry of Health, Singapore. All laboratory-confirmed dengue cases were

anonymized, that is removal of sensitive patient information, prior to analysis. We divided the

residential area of Singapore into small spatial units (n = 1242), each with an average area of

0.09827 km2 and containing a cluster of residential blocks bounded by roads, and obtained the

daily reports of dengue cases for each spatial unit.

Using spatial data mainly from 2018, we obtained the percentage cover of each land cover

type from the WorldView and QuickBird satellites [27] and aggregated them according to the

respective spatial unit. The land cover types included (i) freshwater, (ii) impervious, (iii) non-

vegetated pervious surfaces, (iv) vegetation with structure dominated by human management

(with tree canopy), (v) vegetation with structure dominated by human management (without

tree canopy), (vi) vegetation with limited human management (with tree canopy) and (vii)

vegetation with limited human management (without tree canopy). Population-based statistics

were provided by the Urban Redevelopment Authority, Singapore.

We obtained local climate data from 11 mainland weather stations located across the study

area from the Meteorological Services Singapore (MSS) from 2009 to 2020. We used the arith-

metic mean of climate data across all stations to derive daily measures of mean, maximum and

minimum ambient temperature, relative humidity and rainfall. We derived daily measures of

absolute humidity from measures of mean temperature and relative humidity [28].

Modelling overview

Below, we describe modifying the EpiEstim [14] and EpiFilter [23] approaches for estimating

effective reproduction numbers for dengue while simultaneously nesting uncertainty in the

dengue generation intervals. This was conducted by (A) estimating effective reproduction

numbers nationally using an aggregated time series of dengue case counts and (B) on the local

level, comprising spatial units as described in the preceding section. We compared the esti-

mated effective reproduction numbers between each method and examined whether they can

perform well in providing realistic estimates at both spatial resolutions. Model fit was also

assessed under three model assessment criteria at both scales. Lastly, we determined the tem-

poral and spatial drivers for the estimated national and local level effective reproduction num-

bers by posthoc looking at relevant associations between the effective reproduction numbers

and temporal/spatial covariates using a regression approach.

Estimation of effective reproduction numbers

Define Is as the daily number of newly reported dengue cases at time s and a Poisson distribu-

tion is used to characterize the reproductive dynamics of infectious disease transmission with
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Is~Po(Rs−1Λs). Where Rs is defined as the average number of secondary cases at time s+1 that

one primary case at s infects (i.e, the effective reproduction number), while Ls ¼
Ps

u¼1
Is� uwu

is the infection potential of the disease up to time s−1 and summarizes how previous cases con-

tribute to upcoming cases at time s. wu is the probability that it takes u time units for a primary

case to infect a secondary case. As the time of infection is difficult to recover, we follow [14] by

approximating wu with the serial interval, i.e the corresponding times of symptom onset. Both

the infection dynamics of human and mosquito populations affect the infection potential of

dengue. Following [29], we denote:

sme!mi
¼ ym þ mm þ cm ð1Þ

smi!md
¼ mm þ cm ð2Þ

shd!hi
¼ yh þ mh ð3Þ

shi!hr
¼ ah þ mh ð4Þ

as the rates for an exposed mosquito to transition into an infective state Sme!mi
followed by

removal in the population Smi!md
and the rate for an exposed individual human to transition

into an infective state She!hi
followed by recovery Shi!hr

. θm, θh refer to the extrinsic and intrin-

sic incubation rates respectively. cm the control effort rates, μm, μh the mortality rates for mos-

quitoes and hosts respectively, and αh the recovery rate for hosts. Table 1 shows the range of

values used for each of the parameters. These range of estimates were obtained from literature.

Furthermore, due to the limited geographic range and weather variability in Singapore, we did

not assume these estimates to vary spatially/based on climate.

We can approximate the generation interval distribution as the combination of four expo-

nential distributions [34] as parameterized by the above

fsme!m1
exp� t�sme!mi ; smi!md

exp� t�smi!md ; she!hi
exp� t�she!hi ; shi!hr

exp� t�shi!hr g and can be given

by:

wu ¼
X

j¼fme!mi ;mi!md ;he!hi ;hi!hrg

Q
i6¼jsiexpð� sjtÞ

Q
j¼1;j6¼iðsj � siÞ

ð5Þ

The effective reproduction number Rs is important for nowcasting and forecasting the over-

all epidemic trajectory of an infectious disease and yields convenient interpretations. If Rs> 1

then we can expect the epidemic trajectory to grow, as the number of infections increase

monotonically with time, whereas if Rs< 1 is sustained, we can consider the epidemic as being

controlled and will eventually be eliminated [16]. Following [14], to enhance the reliability of

Rs estimates, we assume stable epidemic transmission properties over a sliding window of size

Table 1. Parameters used in estimating the generation interval distribution.

Parameter Biological meaning Range of values

μm Average mosquito mortality rate 0.000–0.200 day-1 [30]

θm Extrinsic incubation rate 0.067–0.500 day-1 [31]

μh Human mortality rate 0.000033–0.000034 day-1 [32]

θh Intrinsic incubation rate 0.100–0.330 day-1 [31]

αh Recovering rate 0.143–0.500 day-1 [33]

cm Control effort rates 0–1 [29]

https://doi.org/10.1371/journal.pcbi.1009791.t001
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k, defined at the time s as t(s) � {s, s−1,. . .,s−k+1}. Let the effective reproduction number over

this window be Rτ(s) and we apply the conjugate gamma prior distribution for this parameter

following [14]:

RtðsÞ � Gamma a;
1

c

� �

ð6Þ

with a = 1 and c = 2 as the shape and scale hyperparameters respectively. We yield the follow-

ing gamma posterior distribution for Rτ(s) which can easily be sampled from, given the relevant

window of past incidence curve data

RtðsÞjltðsÞ � Gamma atðsÞ ¼ aþ ItðsÞ; btðsÞ ¼
1

cþ ltðsÞ

 !

ð7Þ

where lτ(s) = ∑u2τ(s)Iu and λτ(s) = ∑u2τ(s)Λu. We then yield the posterior mean estimate of the

effective reproduction number E½R̂tðsÞjltðsÞ� ¼ atðsÞbtðsÞ by taking the mean of the gamma distri-

bution (7).

Given the serial interval distribution ws, past data on the total number of incident cases I0:t

−1 and the reproduction number Rt at time t, we have the expected number of incident autoch-

thonous cases by definition:

EðItjI0:t� 1; ws; Rt; XtÞ ¼ RtLt ð8Þ

A Poisson generative distribution for the number of local cases at time step t is assumed,

with the probability of observing Ilocalt cases at t being:

PðItjI0:t� 1; ws; Rt; XtÞ � PoðRtLtðwsÞÞ ð9Þ

The baseline reproduction number is assumed to be constant [following 14] over the time

period [t−τ,t] where Rt is estimated. The probability of observing the local incidence I[t−τ,t]

given Rt and lagged incidence data I[0:t−τ−1] is given by:

P It� t:tjI0:t� t� 1; ws; Rt; Xtð Þ ¼
Qt

k¼t� t
ðRtLtðwsÞÞ

IkexpðRtLtðwsÞÞ

Ik!
ð10Þ

Effective reproduction numbers under low case counts

The above method can be used for endemic diseases such as dengue, where cases counts are

consistently above zero at the national scale. Subdivision of case counts to the local level,

where interventions are more likely to take place, means that there will be periods where case

counts are likely to be near zero. Consider the case where Iτ(s) = λτ(s) = 0, then following (7),

the posterior mean estimate for the effective reproduction number is the prior: RtðsÞ ¼ a
c.

Therefore, when there are few/no case counts to constrain the posterior distribution, estimates

of effective reproduction numbers via the method of [14] are driven by prior distributions and

may be unreliable at the local level.

We therefore follow [23] by adapting the Bayesian recursive filter to estimate Rs. In sum-

mary, the effective reproduction number Rs is taken as a hidden state to be inferred, with the

dynamic evolution characterized by the following state equation:

Rs ¼ Rs� 1 þ ðZ
ffiffiffiffiffiffiffiffi
Rs� 1

p
Þ�s� 1 ð11Þ

Where Rs depends dynamically on the previous state Rs−1, η some free parameter control-

ling the correlation among successive instantaneous reproduction numbers and ensures that
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Rs is non-negative, and �s−1~N(0,1) is the white noise term, characterized by a standard normal

distribution. Estimation of Rs then proceeds by recursive filtering, which consists of two sepa-

rate prediction and filtering steps.

First, the prediction step constructs a sequential prior predictive distribution prediction.

This allows estimation of the effective reproduction number at the current time point s given

past data Is� 1
1

and the previous state Rs:

pprediction ¼ PðRsjIs� 1
1
Þ

¼
R
PðRsjRs� 1; Is� 1

1
Þps� 1dRs� 1

ps / PðIsjRs; Is� 1
1
Þ

ð12Þ

where PðRsjIs� 1
1
Þ � NðRs� 1;Z

2Rs� 1;Þ following the state equation in (11), PðIsjRs; Is� 1
1
Þ the obser-

vation Eq (8), and ps ¼ PðRsjIs1Þ the posterior filtering distribution. Note here that we modify

the prediction step to incorporate uncertainty in the generation interval of dengue through

(8). Approximation of pprediction follows the EpiFilter procedure as detailed in [23].

Next, the recursive smoothing step is conducted to update past estimates of Rs as new data

accumulates. Specifically, consider the filtering distribution ps and predictive distributions

psþ1 ¼ PðRsþ1jIs1Þ which are obtained from (12) to obtain qs ¼ PðRsjIt1Þ, the smoothing poste-

rior distribution is given by [23]. qs ¼ PðRsjIt1Þ provides the posterior distribution of Rs given

compete information on reported case counts It
1
:

qs ¼ ps

Z

PðRsþ1jRs; I
s
1
Þqsþ1p

� 1

sþ1
dRsþ1qs / rspsPðRsÞ

� 1
; if rs � PðRsjI

t
sþ1
Þ ð13Þ

The equation is solved by noting that qt = pt and iterating backwards in time to obtain the

first smoothing distribution q1. The integrals are approximated using sums over the grid R and

distributions are m element vectors. Eq (13) sequentially updates our earlier filtering solutions

to include future data and forms the second half of EpiFilter.

The estimated number of case counts was obtained using the conditional mean function as

follows:

Î s ¼ EðItjI0:t� 1; ws; Rt; XtÞ ¼ R̂tLt ð14Þ

and was assessed for model fit under the coefficient of determination, mean squared error

(MSE) and mean absolute scaled error (MASE). The coefficient of determination is a good-

ness-of-fit measure that quantifies the proportion of variation in the observed case counts that

is explained by the estimated case counts. It is represented as a value between 0.0 and 1.0, with

1.0 indicating a perfect fit and 0.0 indicating that the estimated case counts fail to accurately

model the observed case counts. MSE, on the other hand, is an accuracy metric that measures

how close the estimated case counts are to the observed case counts. It is defined as the average

squared difference between the estimated and observed case counts. MSE is always a positive

value, with lower MSE indicating higher accuracy. Lastly, MASE compares the one-step ahead

predicted cases counts using the Rt framework to the output of a one-step naïve forecasting

approach, which equates the one-step ahead forecast for time t+1 to the observed case count at

time t (i.e. ŷtþ1 ¼ yt). MASE provides an indication of forecast accuracy for the Rt framework,

with values greater than 1.0 indicating that forecasts from the one-step naïve forecast outper-

forms forecasted case counts derived from the Rt framework, and vice versa.
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Determining temporal and spatial drivers for effective reproduction numbers

Denote R̂t�1 as the estimated reproduction number over all timepoints under either method

described in the preceding two sections. We determined post-hoc whether there are any addi-

tional associations between p ecologically relevant factors Xt×p and estimated effective repro-

duction numbers on the national and local level by estimating the following regression:

R̂ ¼ Xbþ ε ð15Þ

where βp×1 refers to the vector of regression coefficients of interest as estimated using the LASSO

framework. The LASSO framework was used due to the large number of potentially relevant tem-

poral covariates with a large number of lags (p = 120). Briefly, Xt×p consists of factors such as cli-

mate and dengue case counts of up to two weeks lags so that possibly long term associations can

be detected. Dengue case counts were included to control for the impact of case numbers on esti-

mated reproduction numbers, so that the residual impact of other covariates on Rt may be delin-

eated. LASSO was used to account for possible multicollinearity and allow for variable selection

of important factors. Ten-fold cross validation was first conducted to yield test error rates which

do not suffer from unreasonably high bias or variance [35]. The cross-validation step optimizes

the regularization parameter λ using deviance as the tuning criterion. We then refitted our data

using the optimal regularization parameter λ� to obtain the optimal β. Uncertainty in R̂ was

accounted for by taking each drawn sample of R̂ under their respective estimation procedure as a

separate dataset for which β was estimated. 95% uncertainty intervals for the regression coeffi-

cients were obtained by taking the 2.5% and 97.5% quantiles of the nested group of regression

coefficients as obtained from each sample under their respective estimation procedure.

Spatial covariates considered were population density, premise type and the percentage cover

of the various land cover types described in the data subsection. These spatial covariates did not

vary substantially across timepoints (See S1 Fig). We aggregated the effective reproduction num-

ber as features such that ξ1xj = f(rt×j), where we denote the effective reproduction number as esti-

mated in each locale as rt×j. Where f is a function aggregating the estimated reproduction number

at any locale to some summary statistic for the location, which does not vary with time. We tried

two aggregation functions, the mean rt×j at a location and the percentage of time rt×j>1.0. Mor-

an’s I was first used to test for spatial autocorrelation in the aggregated summary statistics of the

effective reproduction number [36]. We next examined the association between the spatial covar-

iates and these aggregated summary statistics using generalized linear models, taking the aggre-

gates as the dependent variable and independent variables being the spatial covariates. Backward

elimination was used to obtain the most parsimonious final model.

3. Results

Effective reproduction numbers at the national and local level

A total of 137,712 dengue cases were reported over the study period, with an average of 34.3

dengue cases reported per day. Reported case counts by date of onset demonstrate that low lev-

els of dengue cases were found in 2010–12 and 2015–18 at an average of 18.0 dengue cases per

day, while elevated levels of dengue cases are found in 2013–14 and 2019–20 at an average of

62.8 dengue cases per day (Fig 1A). The posterior mean estimates of the effective reproduction

number derived using EpiEstim (Rt,EpiEstim) and EpiFilter (Rt,EpiFilter) methods were presented

in Fig 1B and 1C, along with its 95% credible interval. Rt,EpiEstim estimates ranged between 0.45

and 1.82, with a median value of 1.01 across 2010 to 2020, while Rt,EpiFilter estimates ranged

between 0.54 and 2.91, with a median value of 1.02. These demonstrate that dengue in Singa-

pore hovered between controlled and growing outbreak phases of transmission. By defining
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Fig 1. (A) Daily dengue case counts from 2010 to 2020 (B) Estimated daily effective reproduction number from 2010 to 2020 under EpiEstim method (C)

Estimated daily effective reproduction number from 2010 to 2020 under EpiFilter method. Shades represent the 95% credible intervals. Grey shades represent

sustained periods of high transmissibility (i.e having at least 14 days of Rt,EpiEstim/EpiFilter> 1.0).

https://doi.org/10.1371/journal.pcbi.1009791.g001
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sustained periods of high transmissibility, as having at least 14 days of Rt,EpiEstim/EpiFilter being

greater than 1.0, we note that Rt,EpiEstim/EpiFilter was able to detect large rises in dengue case

counts in the study setting. This was apparent by observing the sustained periods of high trans-

missibility prior to outbreaks in 2013, 2014, 2019 and 2020 (Fig 1B and 1C). The 14-day

threshold was based on the dengue case clustering criteria in Singapore, which is derived by

adding the mean intrinsic and extrinsic incubation period of dengue [37].

The geographic distribution of dengue cases was depicted in Fig 2A. The eastern regions of Sin-

gapore had the cumulative highest case burden. Due to the small size of each spatial unit, case

counts were low. Each spatial unit had zero reported dengue case counts 98.2% of the time on aver-

age, with the average number of reported dengue cases per spatial unit per day being 0.02 (Range:

0–16). However, each spatial unit had on average over 80.1 cases (Fig 2A, Range: 1–966) over the

period of 2010 to 2020 cumulatively. The posterior mean estimates of the effective reproduction

number derived using EpiFilter method (Rt,EpiFilter) were presented in Fig 2B and 2C. Mean Rt,EpiFilter

was on average 0.023, with the mean percentage of time Rt,EpiFilter being above 1.0 at 0.21% across

spatial units across the study period. Both the percentage of time Rt,EpiFilter was above 1.0 and mean

Rt,EpiFilter followed the case burden closely, with higher values concentrated in the eastern regions.

Model assessment at the national and local level

At the national level, we obtained the expected case counts using (14) and assessed model fit

using three metrics, namely, the coefficient of determination, mean square error and mean

absolute scaled error under both proposed methods for estimating effective reproduction

numbers. The model fit is satisfactory, as evidenced by the high adjusted R-squared value

(Table 2: R2
EpiEstim = 0.95, R2

EpiFilter = 0.97), low mean square error (Table 2: MSEEpiEstim = 75.2,

Fig 2. (A) Cumulative reported dengue case counts (B) Percentage of time Rt,EpiFilter> 1.0 (C) Mean Rt,EpiFilter from 2010 to 2020 across spatial units in

Singapore. The figure was created with base layer obtained from https://gadm.org/maps.html.

https://doi.org/10.1371/journal.pcbi.1009791.g002

Table 2. Model assessment and spatial autocorrelation metrics under the EpiFilter and EpiEstim methods. Bolded numbers reflect superior model performance

under the respective model assessment metric.

Metric EpiFilter1 EpiEstim1 EpiFilter2 EpiEstim2

Adjusted R2 0.97 0.95 0.08 0.09

MSE 36.2 75.2 0.02 0.03

MASE 0.53 0.70 0.59 1.23

Moran’s I (Mean Rt)
3

Test Statistic (p-value) 0.46 (0.00) 0.71 (0.00)

Moran’s I (% Rt>1.0)3

Test Statistic (p-value) 0.38 (0.00) 0.58 (0.00)

1Nationally
2Average across spatial units.

https://doi.org/10.1371/journal.pcbi.1009791.t002
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MSEEpiFilter = 36.2) and mean absolute scaled error which are less than 1 (Table 2: MASEEpiEstim

= 0.70, MASEEpiFilter = 0.53). This demonstrates that both methods work well in fitting dengue

case count data over the study period and were outperforming the one-step naive forecasts.

We examined the daily reported case counts and posterior mean estimates of the effective

reproduction number calculated across each spatial unit to compare the EpiFilter and EpiEs-

tim methods. The EpiFilter method yielded an average adjusted R-squared value of 0.08 and

an average mean absolute scaled error of 0.59. In contrast, EpiEstim method had an average

adjusted R-squared value of 0.09 and an average mean absolute scaled error of 1.23. The mean

squared error was also lower for the EpiFilter method but marginally so (Table 2: MSEEpiEstim

= 0.03, MSEEpiFilter = 0.02). Both methods had a low adjusted R-squared value due to the large

number of null reported case counts in each spatial unit over the study period. However, esti-

mation under the EpiFilter method outperforms the EpiEstim method, yielding lower mean

squared error and mean absolute scaled error when averaged across all spatial units (Table 2).

EpiFilter also does not allow prior distribution assumptions to take over under periods of low

case counts for each spatial unit, providing more realistic estimates of effective reproduction

numbers, and thus model fit under this scenario (Fig 3 and S1 Appendix).

Associations between effective reproduction numbers and ecological

confounders

The LASSO framework was used to identify the temporal drivers of the estimated national Rt,

EpiEstim. Among the covariates, lagged reported dengue case counts and sporadic case counts

were associated with the estimated Rt,EpiEstim. Shown in Table 3, increases in dengue cases were

associated with an immediate and delayed rise in Rt,EpiEstim of up to 6 days. However, the asso-

ciation was reversed from the 8th to 14th day, resulting in a reduction in Rt,EpiEstim (Table 3).

Fig 3. (A-D) Daily reported dengue case counts in 4 spatial units (E-H) Estimated effective reproduction numbers under EpiEstim and EpiFilter methods in 4

spatial units.

https://doi.org/10.1371/journal.pcbi.1009791.g003
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Similarly, sporadic cases with lags of 0–6 days were positively associated with Rt,EpiEstim while

sporadic cases with lag of 7–14 days were negatively associated with Rt,EpiEstim (Table 3). Con-

trolling for dengue case counts across time in the same regression, we found that none of the

included climate variables were associated with the estimated Rt,EpiEstim (Table 3).

Estimates for Rt,EpiFilter were aggregated temporally to the mean Rt,EpiFilter and percentage of

time Rt,EpiFilter> 1.0 to allow us to examine the spatial relationships in effective reproduction

numbers themselves and between related confounders. Under the Moran’s I statistic, we

found that the mean Rt,EpiFilter and percentage of time Rt,EpiFilter> 1.0 were highly spatially

autocorrelated (Table 2).

The spatial distribution of the spatial covariates are presented in S1 Fig. Among the spatial

covariates, impervious surfaces, vegetation with structure dominated by human management

(without tree canopy) and premise type were found to be spatially associated with the mean Rt,

EpiFilter estimates. A 1% increase in impervious surfaces and vegetation with structure domi-

nated by human management were associated with a 0.04 (Table 4: 95% CI: 0.03–0.05) and

0.03 (Table 4: 95% CI: 0.01–0.04) increase in the mean Rt,EpiFilter respectively. Among the

premise type, landed homes were associated with higher mean Rt,EpiFilter (Table 4: β = 0.01,

95% CI: 0.01–0.01). When using the percentage of time Rt,EpiFilter> 1.0 as the dependent vari-

able, the landed homes were associated with an increased percentage while the vegetation with

structure dominated by human management (with tree canopy) was associated with a reduc-

tion in percentage (Table 4: β = -0.61%, 95% CI: -1.10%–-0.11%).

Table 3. Regression coefficients and associated 95% uncertainty intervals in parenthesis as estimated under LASSO, with intervals obtained from 5000 bootstrap

samples and dependent variable being Rt × 1000 estimated under the EpiEstim framework.

Lag1 Cases2 Sporadic Cases3 Mean AH4 Mean T5 Max T6 Min T7 Rainfall8

0 2.27 (1.48, 3.75)� 2.41 (0.59, 3.61)� 3.2 (0, 7.85) 0.11 (0, 1.33) -2.76 (-7.03, 0) -0.02 (-3.03, 3.35) -0.15 (-0.45, 0)

1 1.48 (1.14, 2.05)� 2.53 (1.27, 3.45)� 2.39 (0, 7.17) 0.03 (0, 0.03) -1.5 (-5.46, 0) -0.33 (-3.37, 1.57) -0.17 (-0.48, 0)

2 1.53 (1.22, 1.96)� 2.24 (1.16, 3.07)� 0.91 (0, 4.96) 0.06 (0, 1.09) -0.41 (-3.32, 1.21) -0.38 (-3.35, 0.78) -0.21 (-0.51, 0)

3 1.59 (1.28, 1.96)� 2.01 (1.14, 2.75)� 0.57 (0, 3.96) 0.19 (0, 2.26) 0.14 (-1.58, 2.27) -0.1 (-2.13, 1.4) -0.1 (-0.38, 0)

4 1.63 (1.28, 2.05)� 1.77 (1.07, 2.41)� 1.3 (0, 5.97) 0.05 (0, 1) 0.98 (0, 3.55) -0.13 (-2.23, 1.25) -0.06 (-0.32, 0.07)

5 1.37 (1, 1.75)� 1.67 (1.02, 2.31)� 2.06 (0, 7.24) 0.14 (0, 2.15) 1.96 (0, 4.74) 0.14 (-1.05, 2.29) -0.05 (-0.3, 0.08)

6 1.34 (0.77, 1.9)� 1.51 (0.83, 2.19)� 1.59 (0, 6.4) 0.19 (0, 2.63) 2.08 (0, 4.94) 0.66 (0, 3.69) -0.06 (-0.3, 0.06)

7 -0.12 (-0.69, 0) -1.56 (-2.52, -0.51)� 1.9 (0, 7.09) 0.12 (0, 1.97) 2.41 (0, 5.13) 0.45 (0, 3.14) 0.07 (-0.04, 0.35)

8 -0.9 (-1.32, -0.47)� -1.89 (-2.65, -1.13)� 1.96 (0, 7.08) 0.32 (0, 3.39) 1.65 (0, 4.27) 1.5 (0, 5.2) 0.1 (0, 0.39)

9 -1.01 (-1.44, -0.5)� -1.88 (-2.59, -1.18)� 1.01 (0, 5.4) 0.13 (0, 1.94) 1.51 (0, 4.09) 1.58 (0, 5.35) 0.12 (0, 0.43)

10 -1.28 (-1.55, -1)� -1.82 (-2.51, -1.01)� 1.32 (0, 6.27) 0.05 (0, 0.65) 1.03 (0, 3.51) 1.3 (0, 5.02) 0.15 (0, 0.46)

11 -1.49 (-1.84, -1.17)� -1.81 (-2.51, -0.88)� 1.13 (0, 5.81) 0.04 (0, 0.45) 1.08 (0, 3.66) 1.16 (0, 4.69) 0.12 (0, 0.41)

12 -1.68 (-2.4, -1.07)� -1.87 (-2.57, -0.96)� 1.06 (-0.3, 6.14) 0.01 (-0.13, 0) 1.14 (0, 3.77) 0.25 (-0.78, 2.56) 0.18 (0, 0.49)

13 -1.99 (-3.21, -1.02)� -1.63 (-2.36, -0.55)� 0.86 (-0.97, 6.13) -0.14 (-2.19, 0) 0.61 (-0.62, 3.24) 0.18 (-1.07, 2.41) 0.07 (-0.05, 0.33)

14 -2.59 (-4.67, -1.1)� -1.61 (-2.38, -0.34)� 0.68 (-2.72, 9.16) -1.26 (-6.45, 0) 1.11 (0, 4.49) 0.14 (-1.1, 2.4) -0.1 (-0.4, 0.01)

1Lags refer to the daily lagged covariate
2Daily number of reported dengue cases
3Daily number of reported sporadic dengue cases (i.e. Isolated cases that have no epidemiological link)
4Daily mean absolute humidity
5Daily mean temperature
6Daily mean maximum temperature
7Daily mean minimum temperature
8Daily mean rainfall

�denotes statistical significance at the 95% level

https://doi.org/10.1371/journal.pcbi.1009791.t003
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4. Discussion

Quantifying disease transmissibility is crucial for understanding the epidemiology of infectious

diseases, and it helps in the design of effective control measures to facilitate outbreak prepared-

ness. Crucially, assessment of disease transmissibility allows policy makers to be aware of the

disease situation in real-time. Although the concept of effective reproduction numbers is well-

established, its application as a public health surveillance index had only experienced increased

popularity in recent times. Due to the COVID-19 pandemic, it is now viewed as a convenient

and useful index for surveillance of infectious diseases [18–19,38]. Many studies have used

effective reproduction numbers to monitor near real-time changes in the transmission of

respiratory pathogens such as SARS-CoV-1 [19], SARS-CoV-2 [18] and seasonal influenza

[39]. They have proven useful in providing important insights into the temporal changes in

transmission as well as evaluating in real-time the efficacy of control measures [40]. However,

the effective reproduction number was rarely used for dengue, primarily due to concerns with

dengue’s spatially and climatically influenced generation interval. Therefore, our study adds to

the existing literature on dengue surveillance by demonstrating the utility of using effective

reproduction numbers as a real-time dengue surveillance tool for detecting outbreaks and

guiding intervention in Singapore. We quantified effective reproduction numbers at both

national and local levels, and examined the spatial and temporal variation of the estimates in

relation to a wide range of environmental and anthropogenic factors.

We found that the lagged reported dengue case counts and sporadic case counts were asso-

ciated with dengue transmissibility at the national level. This is to be expected given that den-

gue case counts were used to calibrate the statistical models for estimating effective

reproduction numbers. The difference in the direction of association at the different lags is

likely attributable to the generation interval distribution, in which the average infectiousness

profile of dengue first increases and then decreases with time. More importantly, although

dengue cases were known to be affected by the weather [41–44], we found no residual relation-

ship between climate factors and dengue transmissibility once disease case counts were con-

trolled for.

Table 4. Regression coefficients and associated 95% confidence interval for spatial analysis, where the dependent

variable refers to mean Rt,EpiFilter and percentage Rt,EpiFilter> 1.0 from 2010 to 2020.

Variable Mean Rt,EpiFilter Percentage Rt,EpiFilter>1.0

Freshwater -0.00 (-0.14, 0.01) 0.04 (-3.91, 4.72)

Non-vegetated pervious surfaces -0.01 (-0.14, 0.01) -0.26 (-4.47, 3.98)

Impervious surfaces 0.04 (0.03, 0.05)� 0.32 (-3.74, 4.38)

Vegetation1 -0.03 (-0.15, 0.10) -0.61 (-1.10, -0.11)�

Vegetation2 0.03 (0.01, 0.04)� -0.23 (-3.87, 4.33)

Vegetation3 -0.15 (-0.14, 0.01) -0.10 (-4.32, 4.12)

Vegetation4 -0.02 (-0.02, 0.01) -0.31 (-5.11, 4.49)

Population 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

Premise Type 0.01 (0.01, 0.01)� 0.20 (0.11, 0.29)�

1with structure dominated by human management (with tree canopy)
2with structure dominated by human management (without tree canopy)
3with limited human management (with tree canopy)
4with limited human management (without tree canopy)
5public high-rise apartments as referent

�denotes statistical significance at 95% level

https://doi.org/10.1371/journal.pcbi.1009791.t004
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Our analysis revealed that the eastern regions of Singapore experience higher dengue trans-

mission intensity. This corresponds with historical spatial trends for dengue indicating that

the eastern regions had comparatively higher levels of reported dengue cases [45]. We exam-

ined and identified relevant spatial characteristics that influenced dengue transmission inten-

sity at the local level. First, the proportion of impervious surfaces was positively associated

with dengue transmission intensity. This is not surprising since impervious surfaces are a

proxy indicator for urbanization, which provides favourable breeding habitats for Ae. aegypti
mosquitoes that thrive in urban environments [46–47]. Next, the transmission intensity of

dengue was positively associated with increased proportion of vegetation with structure domi-

nated by human management (without tree canopy). This is likely due to the increased avail-

ability of water in leaf litter, soil surface, pots and in the discarded receptacles hidden in the

foliage or shrub, which supports mosquito breeding [47–48]. In contrast, vegetation with

structure dominated by human management (with tree canopy) was associated with lower

dengue transmission intensity. Although Ae. albopictus is native and ubiquitous throughout

Singapore, the status of Ae. aegypti and Ae. albopictus as dengue vectors in Singapore mirrors

the global situation, in which Ae. aegypti is the primary vector while Ae. albopictus is a less effi-

cient vector. Furthermore, Ae. aegypti prefer highly urbanized areas so they are unlikely to be

found in forested areas [49–50]. The intensity of transmission was also found to be higher in

landed houses than in public high-rise apartments. This is consistent with previous studies

conducted in Singapore, which showed that landed properties generally have higher inci-

dences of dengue [51–52]. The topography of landed residential homes is much more favor-

able to mosquito breeding than high rise residences. The larger surface area and greater variety

of structures and receptacle types within landed residential home compounds make them con-

ducive for harbouring mosquito breeding habitats [48].

To the best of our knowledge, our study is the first to apply effective reproduction numbers

as a surveillance index for dengue and to estimate the effective reproduction number of dengue

on a fine spatial scale. In addition, we nested generation interval uncertainty that included

both the vector and host incubation periods in our estimation of effective reproduction num-

bers. We showed that both methods, EpiEstim and EpiFilter, are comparable in terms of

model performance and fit the dengue case data well at the national level. The EpiEstim

method, however, had poorer performances under three model assessment measures and con-

verged to prior assumptions under low case counts. Therefore, the EpiFilter method provided

more reliable estimates of effective reproduction numbers in this scenario. We also showed

that dengue outbreaks were preceded by sustained periods of high transmissibility. This dem-

onstrates that estimates of effective reproduction numbers can detect large rises in dengue case

counts, supporting the utility of effective reproduction numbers as a dengue surveillance tool.

Real-time monitoring of effective reproduction numbers can assist public health agencies in

identifying high transmission risk areas and prioritizing the allocation of control measures.

There are, however, some limitations to our study. Firstly, we assumed that all cases were

transmitted locally and that there were no imported cases. Failure to account for imported

cases can lead to an overestimation of the effective reproduction number. However, the pro-

portion of imported cases in Singapore is very low, accounting for only less than 4% of total

case count. Secondly, the estimates of effective reproduction number obtained under EpiEstim

method are sensitive to the size of the sliding window over which the estimates are calculated.

Smaller windows produce highly variable estimates with wide credible intervals, whereas lon-

ger windows lead to smoothed estimates with narrower credible intervals. Thirdly, the meth-

ods for estimating Rt require that the observation rate for dengue cases be stable over time.

This hold true in Singapore, where dengue is endemic, with an average of 34.3 dengue cases

observed daily, far exceeding the suggested minimum of 12 cases in [14]. In addition, the
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surface land cover data and the population-based statistics were based on a single year, 2018,

and we assumed that these spatial covariates did not vary substantially over time. Next, several

studies have shown that Ae. aegypti abundance is associated with increased transmission

[2,45,53–54], however, due to data availability, we were unable to account for the effects of Ae.

aegypti population on dengue transmissibility in our study. Also, we did not account for varia-

tion in the transmissibility of each of the four dengue serotypes that are in circulation in Singa-

pore [55], which might depend on other factors such as levels of population immunity and/or

cross-immunity to each serotype. However, given that these dynamics are likely long-term

trends, they are unlikely to affect estimates as effective reproduction numbers are short-term

metrics [56]. Lastly, while we revealed significant spatial autocorrelation in Rt estimates, these

were not explicitly incorporated in our estimates, due to the limitations in the utilised func-

tional form of Rt. Future work can consider incorporating a spatially recursive estimator for

Rt, but would require deriving a new estimator from first principles [57], and the development

of tools required to calibrate this estimator to actual data.

5. Conclusion

This study demonstrates the potential of Rt as a dengue surveillance tool to complement cur-

rently available forecasting models. Effective reproduction numbers produced using proposed

methods have high accuracy and provide important insights into the temporal change of den-

gue transmissibility nationally and at the local level. Real-time estimation of the effective

reproduction number can assist public health agencies in identifying areas with high dengue

transmission risk and facilitating localised outbreak preparedness and response.
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dominated by human management (tree canopy) (F) Percentage of vegetation with structure

dominated by human management (without tree canopy) (G) Percentage of vegetation with

limited human management (tree canopy) (H) Percentage of vegetation with limited human

management (without tree canopy) (I) Premise type. The figure was created with base layer

obtained from https://gadm.org/maps.html.
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S1 Appendix. Daily reported dengue case counts (Top Panel) and estimated effective repro-

duction numbers under EpiEstim and EpiFilter methods (Bottom Panel) in 24 spatial units.
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