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Abstract

Introduction: Resource managers need spatially explicit models of hydrologic response to changes in key

climatic drivers across variable landscape conditions. We demonstrate the utility of a Basin Characterization

Model for California (CA-BCM) to integrate high-resolution data on physical watershed characteristics with

historical or projected climate data to predict watershed-specific hydrologic responses.

Methods: The CA-BCM applies a monthly regional water-balance model to simulate hydrologic responses to

climate at the spatial resolution of a 270-m grid. The model has been calibrated using a total of 159 relatively

unimpaired watersheds for the California region.

Results: As a result of calibration, predicted basin discharge closely matches measured data for validation

watersheds. The CA-BCM recharge and runoff estimates, combined with estimates of snowpack and timing of

snowmelt, provide a basis for assessing variations in water availability. Another important output variable, climatic

water deficit, integrates the combined effects of temperature and rainfall on site-specific soil moisture, a factor

that plants may respond to more directly than air temperature and precipitation alone. Model outputs are

calculated for each grid cell, allowing results to be summarized for a variety of planning units including hillslopes,

watersheds, ecoregions, or political boundaries.

Conclusions: The ability to confidently calculate hydrologic outputs at fine spatial scales provides a new suite of

hydrologic predictor variables that can be used for a variety of purposes, such as projections of changes in water

availability, environmental demand, or distribution of plants and habitats. Here we present the framework of the

CA-BCM model for the California hydrologic region, a test of model performance on 159 watersheds, summary

results for the region for the 1981–2010 time period, and changes since the 1951–1980 time period.
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Introduction
Many current efforts aimed at climate change impact

assessment and adaptation planning focus on water

availability for both human populations and ecological

systems (e.g. Trnka et al. 2012; Parmesan 2006). Projec-

tions of future climate scenarios from global climate

models (GCMs) based on projected amounts and tim-

ing of precipitation and increases in air temperature

are widely used in climate impact assessments (Girvetz

et al. 2009). One of the goals of this study is to improve

our understanding of the fate of precipitation in terres-

trial ecosystems in the context of both historical and

projected coupled climate-hydrology assessments. The

three main pathways of precipitated water in a terres-

trial system include the following: (1) returning to the

air via evaporation and plant transpiration; (2) infiltrat-

ing subsurface into soils and potential recharge to aqui-

fers; and (3) flowing “overland” to create runoff that

feeds the flow of stream and river channel networks.

These three terms represent the primary components

of an all-purpose water balance that can be customized

using site-specific data on topography, soils, and geology.

Quantifying the relationships and tradeoffs between these

pathways provides for much more detailed projections

of the impacts of variability in water availability on eco-

systems and their inhabitants. Although future climate

change projections are variable due to uncertainties in-

herent to variable emissions scenarios and the range of

available GCMs, mechanistic, process-based, hydrologic

modeling informed by long-term empirical (measured)

data sets can constrain the functional uncertainty of

GCM-based future hydrology projections.

Reducing uncertainty in future climate-hydrology sce-

narios can be achieved by incorporating deterministic

processes and empirically confirmed landscape charac-

teristics into estimates of potential hydrologic outcomes.

Validation of spatially explicit hydrologic models that

quantify the water balance by comparing measured

streamflow with model output is a promising approach

to defining reasonable mechanistic relationships among

climate, hydrology, and the landscape. These relation-

ships can be calibrated using a historical baseline and

then can be applied to assess future climate projections

(Flint and Flint 2012a). The value of such a spatially

validated mechanistic model is more robust projections

for runoff and other components of the water balance

under future climates. Effective ecological projections

and planning in the face of climate change, especially

in arid climates, now demand this level of hydrologic

specificity (e.g. Marcarelli et al. 2010).

The scale of information needed by land and water

managers is often finer than data generated by GCMs

(Littell et al. 2012). Spatial downscaling resolves climate

data to a spatial grain size that can be validated using

watershed-based methods, applied to local landscapes, or

analyzed across large regions. Downscaling is therefore a

critical first step in developing estimates of water balance

components for watersheds that are robust enough for use

under current or future climates.

Fluctuations in runoff and recharge across multiple

watersheds can be assumed to be monotypic or else

variable in response to variable precipitation: in order

to minimize uncertainty, there is a need for analysts to

be able to model hydrologic cycles based on nearby

conditions at the watershed scale. In addition, since

relatively few watersheds are gaged, physically based

models of hydrologic dynamics are often required to

assess landscapes. For example, for the California hy-

drologic region, which includes all basins that drain

into the state (Figure 1), there were approximately

1,700 streamgages in operation circa 2000, with periods

of record ranging from 1 to 109 years; and only 1,400

Figure 1 Map of study area with modified Jepson ecoregions

and calibration and validation gages and basins indicated. Basin

outline corresponds to basins for which streamflow data was either

measured or reconstructed.
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with periods of record 5 years or greater. These stream-

gages represent less than a third of the 5,128 subwater-

sheds in California (www.cain.ice.ucdavis.edu/calwater/),

which is presumably one of the better instrumented re-

gions of the world.

California’s streamgage records display a wide variety

of discharge dynamics, from flashy systems with high

runoff peaks as a result of low permeability bedrock

(such as granites in the Sierra Nevada) or large areas of

impervious urban surfaces, to high baseflows with very

permeable bedrock composition (e.g. volcanic rock; Flint

and Flint 2007; Flint et al. 2011; Tromp-van Meerveld

et al. 2007). The degree of climate aridity and soil type

also affect potential hydrologic response to climate, with

the deep unsaturated zones in arid regions or the deep

soils of California’s Central Valley storing water when

available from wet climate cycles that can be used as

groundwater during dry periods (Flint and Flint 2007).

The objective of this paper is to document the devel-

opment of a regional scale water-balance model that

rigorously incorporates deterministic processes, and de-

scribe its application to the California hydrologic region

at relatively fine spatial scales. The advantages of fine-

scale application will be discussed. The calibration and

validation of this model to measured streamflow pro-

vide confidence in the application of the model to both

historical and future changes in hydrology as a result of

climate that are described in a companion paper (Thorne

et al. 2013). Further descriptions of the datasets discussed

and the post-processing and availability of files are doc-

umented in Thorne et al. (2012). Previous versions of

this model and applications to small regions or basins

have been previously published and include Flint and

Flint (2007, 2012a), Flint et al. (2011, 2012), and

Micheli et al. (2012).

Hydrologic modeling background

Many approaches to hydrologic modeling have been

developed. The U.S. Geological Survey (USGS) Precipi-

tation-Runoff Modeling System (PRMS) is used to

simulate flows under future climate conditions at the

watershed scale (Leavesley et al. 1992; Hay et al. 2011).

This approach requires daily temperature and precipi-

tation values that are applied to individual watersheds

and used in a deterministic, distributed-parameter set-

ting (Risley et al. 2011). The Variable Infiltration Capacity

model (VIC) is a spatially explicit physical hydrology

model, generally run regionally at coarse spatial scales,

that balances energy and water budgets (Liang et al. 1994)

and also runs using daily data (Wood et al. 2002). This

model has also been applied to monthly climate in a

model comparison study by Mauer et al. (2010), who

found that model selection was less important for cap-

turing high flow timing, but that for the low flows, the

models tested varied, implying a need to vet model

performance, particularly for aridifying regions. These

rainfall-runoff models are specifically calibrated to

streamgage data.

Other hydrologic modeling approaches have used stream-

gage data to validate the model projections using current

or historical data. Alkama et al. (2011) developed the

Interactions between Soil, Biosphere, and Atmosphere-

Total Runoff Integrating Pathways (ISBA-TRIP) and

looked at multi-decadal variability in continental runoff

from 1960–1994 using 154 large rivers with different

lengths of streamgage data for validation. Chiew et al.

(2010) found that five different downscaling techniques

all reproduced observed rainfall, and runoff models used

were capable of reproducing observed streamflows for

eight basins in Australia. These efforts point to the need

to understand the capacity and limitations of hydrologic

models that are used for future projections.

All these rainfall-runoff models rely on soil storage in

some capacity yet do not incorporate bedrock properties;

thus, they neglect the influence of spatially varying bed-

rock permeability in estimates of recharge. Experimental

evaluations of hillslope processes include a few that

have investigated the influence of bedrock permeability

on hydrologic response to climate (Hutchinson and

Moore 2000; Tromp-van Meerveld et al. 2007), while a

few others numerically modeled watersheds including

bedrock properties (Flint and Flint 2006; Jones et al.

2008; Hopp and McDonnell 2009). Generally, these

models are two- or three-dimensional, finite-element

models that explicitly incorporate bedrock but are com-

putationally intensive and cover small areas. Historically,

recharge estimates have relied on monthly water balance

models that incorporate simulations of evapotranspiration

(Alley 1984), inverse modeling (Sanford et al. 2001), or

lysimetry and tracer tests (Gee and Hillel 1988). Water-

balance modeling to assess both recharge and runoff has

been done at the site scale (Flint et al. 2002a; Ragab 1996)

and integrated with various measurements addressing

different spatial scales (Flint et al. 2002b). Watershed-

scale or regional-scale modeling to estimate recharge

and runoff has been done using water-balance model-

ing by Hevesi et al. (2003), Flint et al. (2011), and Flint

and Flint (2007).

Evaluating hydrologic response to climate in California

We used the Basin Characterization Model (BCM) to

model the hydrologic cycle for the California hydrologic

region [Figure 1; modified from Hickman (1993)]. This

paper presents results for two 30-year periods from

1951–2010 for all watersheds and by ecoregion for pre-

cipitation, air temperature, April 1st snowpack, recharge,

runoff, potential evapotranspiration (PET), actual evapo-

transpiration, and climatic water deficit, a parameter
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that is a function of PET and actual evapotranspiration

(Stephenson 1998).

To develop confidence in the application of the model

this paper also evaluates the reliability of hydrologic model

performance by comparing basin discharge, a product

of the runoff and recharge values generated by the

BCM with streamgage data. Historical streamgage data

were assembled from 138 mostly unimpaired basins

(Figure 1), along with reconstructed unimpaired flows

from 21 additional basins, and monthly and yearly

summaries from streamgages were used to test how

well the BCM model outputs perform on watersheds

with varying bedrock permeability, soil properties, im-

permeable surfaces, and degrees of aridity. The results

of this model testing permit hydrologic simulation per-

formance within the study area due to influences of

landscape variables.

Description of the Basin Characterization Model (BCM)

The Basin Characterization Model (BCM) is a

regional water balance model (Flint and Flint 2007;

Thorne et al. 2012). The BCM (Figure 2) mechanistically

models the pathways of precipitation into evapotranspir-

ation, infiltration into soils, runoff, or percolation below

the root zone to recharge groundwater. The evapotrans-

piration component is derived through the use of PET

equations (Priestley and Taylor 1972) that rely on the

calculation of solar radiation using slope, aspect, topo-

graphic shading, and atmospheric parameters. For the

purposes of comparison across watersheds (or other land-

scape units), PET in the BCM is not interactive with the

other segments. In other words, potential water demand

from plants is independent from other hydrodynamic

components in the model. The soil storage component of

the model uses soil properties to calculate how much soil

moisture is available for plant evapotranspiration. Soil

storage is also independent from the other hydrologic

dynamics, except that groundwater recharge, calcu-

lated as infiltration below the zone of evapotrans-

piration, is calculated only from surplus, after soil

moisture capacity has been filled. Groundwater re-

charge (recharge) is also tied to runoff, and the

Figure 2 Schematic describing relation of components of the Basin Characterization Model.
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relationship between the two is driven by the level of

permeability of bedrock.

Therefore, the BCM can model the response of any

given watershed to climate as driven by its energy bal-

ance (based on latitude, longitude, elevation, slope, and

aspect), soil moisture storage capacity, and the charac-

teristics of the materials that are deeper than the rooting

zone, including deep alluvial valleys or bedrock that can

permit percolation into groundwater. The BCM calcu-

lates hydrologic variables on a grid cell basis and can be

run at any spatial resolution, generally limited by data

resolution, computing power, or file storage capabilities.

Grid cell values can be summarized for any spatial pat-

tern, such as watersheds. A post-model calculation for

basin discharge can be performed.

The BCM has several subroutines or modules: the

calculation of potential and actual evapotranspiration

and climatic water deficit; snow accumulation and melt;

available water; and recharge and runoff (Figure 2). The

model begins with climatic inputs of precipitation and

air temperature. This is followed by the calculation of

PET, which relies on an hourly energy-balance calcula-

tion, based on solar radiation, air temperature, and the

Priestley-Taylor equation (Flint and Childs 1991). Clear

sky PET is calculated using a solar radiation model that

incorporates seasonal atmospheric transmissivity with

site parameters of slope, aspect, and topographic shad-

ing (to define the percentage of sky seen for every grid

cell) (Flint and Childs 1987). Hourly PET is aggregated

into monthly time series, and cloudiness corrections are

made on the basis of calibrations using cloudiness data

from National Renewable Energy Laboratory (NREL;

http://www.nrel.gov/; Flint and Flint 2008). Modeled PET

for the southwest United States has been calibrated to

measured PET from California Irrigation Management

Information System (CIMIS) and Arizona Meteorological

Network (AZMET) stations (Flint and Flint 2007).

Using PET and gridded precipitation, maximum and

minimum air temperature, and the approach of the

National Weather Service Snow-17 model (Anderson

1976), the snow module accumulates, sublimates, and

melts snow to produce available water (Figure 2). These

inputs to the water balance have been calibrated regionally

to solar radiation and PET data, and snow cover estimates

have been compared to Moderate Resolution Imaging

Spectroradiometer (MODIS) snow cover maps (Flint and

Flint 2007). This paper presents further snow module cali-

bration work.

The BCM’s available water calculation quantifies water

that is available for use in the remaining parts of the

BCM, which balance watershed hydrologic components

(Figure 2). Available water occupies the soil profile,

where it will become actual evapotranspiration (AET),

and may also result in runoff or recharge, depending

on the soil storage and permeability of the underlying

bedrock. Total soil-water storage is calculated as poros-

ity multiplied by soil depth. Field capacity [soil water

volume at −0.03 megapascals (MPa)] is the soil water

volume below which gravity drainage is negligible, and

wilting point (soil water volume at −1.5 MPa) is the soil

water volume below which actual evapotranspiration

does not occur (Hillel 1980). Once available water is

calculated, it may exceed total soil storage and become

runoff, or it may be less than total soil storage but

greater than field capacity and become recharge. Any-

thing less than field capacity is calculated as AET, at

the rate of PET for that month, until it reaches wilting

point. This permits the subsequent calculation of climatic

water deficit (CWD).

When soil water is less than total soil storage and

greater than field capacity, soil water greater than field

capacity equals recharge. If recharge is greater than

bedrock permeability (K), then recharge = K and excess

becomes runoff, else it will recharge at K until field

capacity is reached. Runoff and recharge are combined

to calculate basin discharge, and actual evapotranspiration

is subtracted from PET to calculate CWD.

The BCM can be used to identify locations and cli-

matic conditions that generate excess water by quanti-

fying the amount of water available either as runoff

generated throughout a basin or as in-place recharge

(Flint and Flint 2007). Because of the grid-based, sim-

plified nature of the model, with no internal streamflow

routing, long time series for very large areas can be

simulated easily. However, if local unimpaired stream-

flow data are available, estimated recharge and runoff

from each grid cell can be used to calculate basin dis-

charge that can be extrapolated through time for vary-

ing climates. In addition, the application of the model

across landscapes allows for grid-based comparisons

between different areas. Because of the modular and

mechanistic approach used by the BCM, it is flexible

with respect to incorporating new input data or updat-

ing of algorithms should better calculations be derived.

All input files necessary to operate the BCM, and the

output files resulting from the simulations, are shown

in Thorne et al. (2012; Appendix A). A complete list of

all input and output variables and definitions is in-

cluded in Thorne et al. (2012; Appendix B).

Methods
This paper presents the development and calculation

used in the BCM for PET, snow, AET recharge, runoff,

and climatic water deficit. We characterize the results

for a 30-year period from 1981–2010, and changes from

1951–1980, and assess model performance for the runoff

and snow modules by using streamgages and snow

courses.
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Model development

All climate grids and maps of properties require the

same grid scale, in this case 270 m, for model operation.

The historical PRISM precipitation and temperature data

(Daly et al. 2008) were spatially downscaled from 800 m

to 270 m using Gradient-Inverse-Distance-Squared (GIDS)

downscaling (Nalder and Weins 1998). The approach ap-

plies a spatial GIDS weighting to monthly point data by

developing multiple regressions for every fine-resolution

grid cell for every month. Using the PRISM climate vari-

ables and a 270-m-resolution digital elevation model,

parameter weighting is based on the location and eleva-

tion of the coarse-resolution cells surrounding each

fine-resolution cell to predict the climate variable of

the fine-resolution cell (Flint and Flint 2012b; modified

from Nalder and Weins 1998). To remove the “bulls-eye”

effect often associated with certain interpolation schemes

(e.g., kriging, inverse distance squared), the program was

modified to have a search radius that is specified as the

size of grid cell of the coarse-resolution grid. The

modified GIDS spatial downscaling technique does not

introduce additional uncertainty in the downscaling

process and may indeed improve the estimate of the

climate variable by incorporating the deterministic in-

fluence (such as lapse rates or rain shadows) of location

and elevation on climate (Flint and Flint 2012b).

The climate surfaces and monthly PET were com-

bined with maps of elevation, bedrock permeability (K)

estimated on the basis of geology (Figure 3) (Jennings

1977), and water content at field capacity and wilting

point, porosity and depth from SSURGO soil databases

(NRCS 2006). Available soil-water storage, shown in

Figure 4, is calculated as water content at field capacity

minus water content at wilting point multiplied by soil

depth.

Climatic water deficit (CWD) integrates energy load-

ing and moisture availability from precipitation with

available soil water. CWD is calculated as PET minus

AET, and the actual evapotranspiration is calculated

on the basis of the loss of available soil water through-

out the water year. CWD is generally accumulated an-

nually. The distribution of moisture conditions that

define the amount of water in the soil that can be

maintained for plant use throughout the growing sea-

son and summer dry season corresponds very well to

the established distribution of vegetation types. How-

ever, in many locations shallow soils limit the contri-

bution of precipitation.

Figure 3 Map of geology for study area with estimated bedrock permeability.
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Average annual hydrologic derivatives of runoff, re-

charge, and CWD were analyzed for current climatic

conditions, represented as 1981–2010. An analysis of

change between current climatic conditions and histor-

ical baseline (1951–1980) is also discussed for snow-

pack and the ecologically important variable, CWD.

Model calibration, routing, and performance

The CA-BCM was applied to the entire California re-

gion to provide hydrologic response to current climate

using previous regional calibrations for solar radiation,

PET, snow cover, and groundwater (Flint and Flint

2007; Flint et al. 2011), and a series of 159 watersheds

(basins; Figure 1) were selected for calibration and valid-

ation purposes to provide runoff and recharge for current

climatic conditions. Additional calibration of the snow

module was done for California using snow course data

in the Sierra Nevada and Trinity Mountains, MODIS

snow cover data, and mapped glaciers. To ensure correct

timing of snow accumulation and melt on a volume basis,

calibration of the snow module was done to compare aver-

age monthly flows from the CA-BCM to unimpaired flows

to the Central Valley for 21 basins that were based on re-

constructions (see DWR 2007 for methodology). Recharge

and runoff were calculated for all grid cells. Recharge

and runoff estimated by the CA-BCM was used with

post-processing equations, described later, to calculate

basin discharge for 159 basins for which we also had

streamflow time series, including measured streamflow

from National Water Information System (NWIS) and

reconstructed unimpaired flows from the California

Department of Water Resources (DWR 2007).

Generally the basins used for calibration were selected

on the basis of lack of impairments, such as urbanization,

agriculture, reservoirs, or diversions. This information was

obtained using land use/land cover maps or NWIS. Gages

located downstream of obvious urban or agricultural areas

(areas where more than approximately 30% of the area

is mapped as urban or agricultural) were not used for

calibration because of the additional water use or return

flows that are unrepresentative of the water-balance cal-

culations done using the BCM. We also sought to use

streamgages with periods of record that extended across

several years to capture the influences of climate variabil-

ity. However, applications in some basins (either highly

impaired or with very few gages) required use of stream-

flow data that reflected impairments or had relatively

short periods of record.

We used 68 basins for calibration, which was done by

iteratively adjusting the estimates of bedrock perme-

ability to optimize the match between calculated basin

discharge and measured historical streamflow. This was

done to alter the proportion of excess water that becomes

recharge or runoff. This is iterative among all calibration

basins because the geologic units are mapped across the

entire state, and if the permeability is changed to optimize

the fit in one basin it changes the permeability wherever

the geology is mapped. Calibration basins represent 9

of the 14 dominant geologic types, and have been cali-

brated to bedrock permeability on the basis of mapped

geology for California (Figure 3). This part of the cali-

bration process is followed by accounting for stream

channel gains and losses to calculate basin discharge and

optimize the fit between total measured volume and si-

mulated volume for the period of record for each gage.

The equations are used to calculate surface-water flow re-

cession, seepage, and baseflow that can extend throughout

the dry season.

In order to evaluate the CA-BCM effectiveness in esti-

mating hydrologic conditions across California, once the

model was calibrated using the 68 calibration basins, we

used an independent set of 91 validation basins to com-

pare estimated results generated using the calibrated

model. Basin discharge was calculated for validation

Figure 4 Map of soil available water calculated from SSURGO

soils databases.
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basins without the adjustment of bedrock permeability

to improve matches to measured data. This comparative

analysis provides a measure of model performance based

on the ability of the CA-BCM to accurately estimate

basin discharge. Since the basin discharge estimates for

validation basins were developed using the bedrock

permeability values developed and adjusted during the

calibration phase, this method tests how well these per-

meability estimates work when extrapolated across the

entire state. The statistics were developed following the

same procedure as the calibration basins to achieve an

exact match between measured and simulated volumes

for the period of record of the streamgage. See Additional

file 1 for descriptions of 159 calibration and validation

basins, equation coefficients, and goodness-of-fit statistics.

Procedure for calculating basin discharge

As described, the CA-BCM simulates recharge (BCMrch)

and runoff (BCMrun) for each 270-m grid cell for each

month (i). To compare them to gaged mean monthly

streamflow, all grid cells upstream of the streamgage

are summed for each month to create time series for

BCMrun and BCMrch. To transform these results into a

form that can be compared to the pattern and amount

of gaged streamflow, the water balance is conceptualized

as consisting of three groundwater reservoirs that are

hydraulically connected (Figure 5). This conceptualization

has been refined since the publication of an earlier version

of BCM (Thorne et al. 2012; Flint et al. 2012). The surface

reservoir (1) consists of all the surface and near surface

processes, such as runoff and seepage, that hold and

direct water toward the stream and that are event

driven (GWsurface(i)). The shallow groundwater reservoir

(2) consists of the shallow transient saturated zone that

rises and falls seasonally providing much of the baseflow,

but can sometimes also be event driven, and provides

some recession flow (GWshallow(i)). The deep groundwater

reservoir (3) is the regional aquifer but can also provide

some flow to the shallow groundwater reservoir (GWdeep(i))

over long time frames.

A set of empirical discharge equations defines storage

in successive time-steps (i) and performs partitioning.

GWshallow(i) is the computational method used to extend

streamflow for time-steps when BCMrun(i) and BCMrch(i)

are zero (e.g. during seasonal and annual dry periods).

For time-steps when BCMrun(i) and BCMrch(i) are non-

zero, the amounts are accumulated for the grid cells up-

stream of a streamgage and are compartmentalized into

the surface and subsurface reservoirs.

GWsurface(i) is evaluated as:

GW surface ið Þ ¼ GW surface i−1ð Þ

þ BCMrun ið Þ–Surfaceflow i−1ð Þ ð1Þ

where the current month’s streamflow Surfaceflow(i) is:

Surfaceflow ið Þ ¼ SurfaceScaler � GW surface ið Þ

� �SurfaceExp

ð2Þ

and SurfaceScaler and SurfaceExp are coefficients that

are used to match peak and recessional flows. Typically

these coefficients are ≤1, but in some cases precipitation

data can underrepresent localized peak events and

SurfaceScaler may exceed 1 to account for precipitation

errors and match peak flows.

GWshallow(i) is evaluated as:

GW shallow ið Þ ¼ GW shallow i−1ð Þ

þ BCMrch ið Þ–shallowflow ið Þ−deepflow ið Þ

ð3Þ

where

Shallowflow ið Þ ¼ ShallowScaler � GW shallow i−1ð Þ

� �ShallowExp

ð4Þ

and ShallowScaler and ShallowExp are coefficients (≤1)

that are used to match base flow and longer term

Figure 5 Schematic of the conceptualization of streamflow and groundwater processes represented by equations to calculate basin

discharge from recharge and runoff calculated by the Basin Characterization Model.
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recessional flows, and

Deepflow ið Þ ¼ DeepScaler � GW shallow i−1ð Þ

� �DeepExp

ð5Þ

and is water subtracted from the shallow reservoir to

simulate deep groundwater recharge and DeepScaler and

DeepExp are coefficients (≤1) that are used to help

maintain mass balance between the measured stream-

flow and simulated streamflow by limiting the contribu-

tion of the shallow groundwater reservoir to streamflow.

Streamflow within the basin (upstream of the stream-

gage: Stream(i)) is calculated by summing the contribution

from the surface and shallow reservoirs:

Stream ið Þ ¼ Surfaceflow ið Þ þ Shallowflow ið Þ ð6Þ

Finally, basin discharge (Discharge(i)) is calculated as:

Discharge ið Þ ¼ WatBal � Stream ið Þ ð7Þ

where WatBal is a coefficient (>1 or ≤1) used to maintain

a water balance between the simulated basin discharge

and the streamgage data or unimpaired flow estimates and

simulates gaining (>1) or losing (<1) streams within the

basin over the longer term (tens of years). This coefficient

may also account for impairments to the basin that impact

the stream as well. While Rch(i) and Run(i) are calculated

by the BCM, all the other components used to calculate

Discharge(i) are the post-processed portion of the BCM

water balance that is compared to the pattern and amount

of gaged streamflow.

BCMrch and BCMrun reflect natural hydrologic condi-

tions and do not account for diversions, reservoir stor-

age or releases, urban runoff, groundwater pumping, or

other impairments, and therefore will not exactly match

measured streamflow in impaired basins.

Results
Study basins used for calibration and validation are

generally representative of the range of elevations of the

5,120 basins modeled for the California region (see

Thorne et al., Figure 4), with decreasing representation

at higher elevations. Bedrock permeability due to under-

lying geology is dominated by lower permeability basins

because very high permeability basins, such as those

with alluvial valley fill, do not generally generate enough

stream flow to be captured using streamgages. Similarly,

the range of climates in the state is not well represented

by the set of study calibration basins due to poorer rep-

resentation of desert regions with their lack of stream-

flow data. The range of ecoregions represented by

study basins also reflects the lack of unimpaired

streamgage data in the desert areas, the eastern side of

the Sierra Nevada, and the deep soils of the Central

Valley (Great Valley).

BCM calibration and performance

The application of the BCM to simulate unimpaired

hydrologic conditions across the entire state relies on the

thoroughness of the calibration to geology and the ef-

fectiveness of matching estimated basin discharge to

corresponding measured streamflow. Calibration statis-

tics (Additional file 1) include the linear regression r2

for comparisons of monthly and yearly measured versus

simulated basin discharge and the Nash-Sutcliffe effi-

ciency statistic (E; Nash and Sutcliffe 1970). E is calcu-

lated as 1 minus the ratio of the mean square error to

the variance. The r2 statistic is useful as a comparative

statistic as suggested by Legates and McCabe (1999),

whereas the E value provides perhaps a better represen-

tation of goodness-of-fit. E is widely used to evaluate

the performance of hydrologic models and has been

shown to be sensitive to differences in the observed

versus modeled simulated means and variances but also

can be overly sensitive to extreme values, as can also be

the case for r2 (Legates and McCabe 1999). E ranges

from negative infinity to 1 with higher values indicating

better agreement. Statistics calculated for the 159 ba-

sins are shown in the Additional file 1, with values

slightly higher for calibration basins than validation ba-

sins. Average goodness-of-fit statistics for all the basins

(calibration plus validation) are E = 0.67, monthly r2 =

0.73 and yearly r2 = 0.82. ShallowScaler and DeepScaler

coefficients were 1.00 for all basins in this dataset and

are omitted from the Additional file 1.

For some basins it was necessary to adjust the Sur-

faceScaler coefficient to match peak flows, and the aver-

age coefficient is greater than 1.0, suggesting that the

monthly precipitation data do not accurately reflect the

maximum precipitation within some basins. The average

SurfaceExp coefficient controls the shape of the seasonal

recession curve, and the averages for all the calibration

basins were the same, 0.97, with higher values resulting

in a steeper recession curve and lower values indicating a

slower recession. The ShallowExp coefficient controls the

annual recession and summer baseflows, with an average

of 0.55, and the DeepExp coefficient allows for the match

of multi-year changes in baseflows, with an average of

0.58. If there is little recharge calculated by the BCM, the

DeepExp coefficient is insensitive to adjustment.

The timing of snow accumulation and melt is an im-

portant feature to capture correctly because of the im-

portance of the snowpack to California water resources.

Details shown in Curtis et al. (in review) illustrate good-

ness-of-fit to the presence of glaciers, and accumulation

and melt using maps of remotely sensed snow cover. The

comparisons to measured snow water equivalent were
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generally within 0.3 m for 45 snow courses. Visual com-

parisons of snow accumulation with January and February

snow cover data and snowmelt with April and May snow

cover data indicated good fits (Curtis et al. in review).

The calibration of snow module parameters was done

to optimize the discharge estimated by the CA-BCM in

comparison to reconstructed unimpaired flows for 21

mountain basins draining to the San Francisco Bay Delta

(Figure 1). Average monthly r2 for reconstructed unim-

paired flows versus BCM-estimated flows for water

years 1996–2005 was 0.76, yearly r2 was 0.91, and E

was 0.69. The discrepancies between monthly and yearly

r2 represent a mismatch in monthly timing for these large

basins with long surface water and groundwater travel

times, which is not shown in the yearly r2 calculation.

The average r2 for the comparison of the reconstructed

and BCM-estimates of average flow for 1996–2005 for

each month, which indicates how well the BCM repre-

sents the timing of snow processes, was 0.91, indicating

an excellent match in the timing of monthly discharge.

The poorest fits were for the Sacramento River near Red

Bluff and the Feather River near Oroville (0.57 and 0.71,

respectively), while the best fits were the major water-

supplying basins in the southern Sierra Nevada (r2 = 0.94–

0.98; Tuolumne, Merced, San Joaquin, Kings, and Kaweah

river basins).

Calibration basins evaluated alone have a mean E of

0.73, and generally, basins with the least impairments had

the best calibrations. Sample calibrations are compared

for Dry Creek near Cloverdale in the Russian River basin,

Napa River near Calistoga in the North Bay, Big Creek

above Pine Flat Reservoir near Trimmer, in the Kings

River basin in the southern Sierra Nevada, Aptos Creek at

Aptos in the Santa Cruz mountains, and Sprague River

near Beatty, OR, in the upper Klamath River (Figure 6).

Dry Creek, Napa River, and Big Creek all have moderate

base flows, but based on our estimates Dry Creek loses

45% of both estimated unimpaired runoff and recharge

to the groundwater system, while the Napa River is

gaining from the groundwater system. Big Creek, located

in granitic geology towards the lower elevations of the

Kings River basin, is also a gaining stream.

Our hypothesis is that the model fits less well where

there are many urban impacts that cannot be fully taken

into account by the CA-BCM. There are several cases

where urbanization and agriculture impacted the calibra-

tion, such as for Aptos Creek at Aptos (Figure 6d), and

where urbanization resulted in very high peak flows as a

result of impermeable urban areas enhancing runoff,

both during precipitation events where there is reduced

infiltration, and during the summer when urban runoff

is enhanced, neither of which is taken into account in

the CA-BCM. An example of the impact of diversions

and groundwater pumping for public use on measured

discharge values can be seen in the difference between

the Merced River at Happy Isles, upstream of Yosemite

Village, and the Merced River at Pohono, downstream

of Yosemite Village, where the percentage of runoff

needs to be reduced to 45% to match measured flows

(Additional file 1).

The mean E for validation basins evaluated alone is 0.59

(0.69 for basins with reconstructed unimpaired flows),

with the upper Klamath and small basins in the Modoc

Plateau volcanics performing the poorest (Sprague River

near Beatty OR E = 0.35; Figure 6e). This is likely due

to the large groundwater reservoir in the volcanics that

has very long travel times from precipitation input to

outflow in streams. The Sprague River basin also has a

large agricultural component and return flows, so any

attempt during calibration to maintain a match in volumes

results in an overestimate of the peak flows. The presence

of a groundwater reservoir also shows in the differences

between the r2 values for the monthly and yearly values

(0.36 versus 0.82, respectively), which indicate if there

are lags in the monthly calibration between measured

and simulated flows that are negated when calculated

yearly.

CA-BCM climate and hydrology

Our study summarizes the following estimates gener-

ated by the CA-BCM: precipitation, air temperature, PET,

actual evapotranspiration, snow water equivalent (SWE),

runoff, recharge, and climatic water deficit for the 1981–

2010 time period and also evaluates change in comparison

to the 1951–1980 time period.

Climate has been variable over time with general in-

creases in precipitation, excepting northwestern CA and

the Modoc Plateau, and increases in air temperature

throughout the state by up to 1°C. As a result PET has

increased throughout the state by about 3% (Table 1).

Recharge and runoff have changed corresponding to

changes in precipitation, and climatic water deficit has

gone up in most ecoregions.

The hydrologic response to climate variability experi-

enced from 1981 to 2010 is shown by responses in runoff

and recharge for California (Figure 7). Average annual

runoff and recharge are highest in locations with the

greatest estimated excess water, generally in locations

where annual snowpack is highest, such as in the Sierra

Nevada and Trinity Mountains. Spatial patterns of runoff

and recharge differ based on variability in bedrock perme-

ability and potential soil storage. However, in locations

with similar bedrock permeability, seasonal climate pat-

terns are what dictate whether excess water becomes

runoff or recharge. For example, locations on the North

coast dominated by sandstones have bedrock perme-

abilities similar to those of the granites in the southern

Sierra Nevada, yet the resulting hydrology is quite
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Figure 6 Calibration time series comparing measured and estimated basin discharge in millions of cubic meters, for five calibration

basins: (a) Dry Creek near Cloverdale, CA, (b) Napa River at Calistoga, CA, (c) Big Creek above Pine Flat Reservoir near Trimmer, CA, (d) Aptos

Creek at Aptos, CA, and (e) Sprague River near Beatty, OR. Calibration statistics, Nash-Sutcliffe efficiency tatistic (E), and monthly r2 are included.
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different. Storms in the Sierra Nevada generate precipita-

tion that saturates the soils and becomes runoff. Spring-

time snowmelt can also saturate the soils as the majority

of an entire winter’s precipitation stored as snowpack is

released onto the landscape in a couple of months. This

differs from the climate on the North coast where the

coastal climate results in more evenly distributed temporal

patterns of precipitation that allows time for the bedrock

to recharge with relatively less runoff.

The change in climate over the last half of the 20th

century is exemplified by the observed changes in snow-

pack in California, which integrate the effects of precipi-

tation and air temperature variability on the dominant

water resource in California that is relied upon for water

supply. This snowpack region is the warmest in the

western US (Lundquist et al. 2009) and is the most sen-

sitive to small changes in air temperature. This is illus-

trated by the change in April 1st snowpack, calculated

as snow water equivalent (SWE), between the periods

1981–2010 and 1951–1980 (Figure 8), where SWE has

diminished the most in extent in the northern portions

of the state by up to 500 mm/year, whereas the highest

elevation SWE in the central and southern Sierra Nevada

has actually increased in some locations up to 500 mm/

year. The increases in air temperature in the Sierra

Nevada over the 30-year time periods, 0.3°C maximum

air temperature and 0.9°C minimum air temperature

(Table 1), allow for more moisture to be held in the air,

resulting in increases in precipitation, which at high

elevations occurs as snow. Although the rising air tem-

peratures have resulted in a rise in the lowest elevation

at which snowpack may develop, locations with mini-

mum winter temperatures well below freezing have

generally increased in SWE, such as Mount Shasta and

the high elevation southern Sierra Nevada (Mote 2006).

The loss of April 1st SWE results in less runoff to ex-

tend the water resource throughout the summer sea-

son. This has implications for recharge and climatic

water deficit as well. Average April 1st SWE has de-

clined in all ecoregions that have an annual snowpack,

except the eastern Sierra Nevada, by as much as 39% in

northwestern CA, and the dominant snowpack region,

the Sierra Nevada, has seen a reduction of 11% over the

two time periods.

CWD patterns over the California region are similar

to those of PET (Figure 9a, c), with CWD as low as

Table 1 Climate and hydrologic variables for modified Jepson ecoregions in California

North-
western CA

Cascade
ranges

Modoc
plateau

Central
western CA

Great
Valley

Sierra
Nevada

East of Sierra
Nevada

South-
western CA

Mojave
Desert

Sonoran
Desert

Precipitation (mm) Mean 1,467 1,120 435 593 341 955 309 466 155 114

Change −33.4 9.5 −1.7 28.2 24.5 15.6 23.4 2.5 13.6 12.9

% Change −2% 1% 0% 5% 8% 2% 8% 1% 10% 13%

Minimum air
temperature (°C)

Mean 6.0 3.2 0.4 7.9 9.7 3.8 1.0 9.0 10.5 14.8

Change 0.4 0.3 0.5 0.6 0.7 0.9 0.9 0.9 0.7 1.0

Maximum air
temperature (°C)

Mean 18.9 17.1 15.4 21.9 24.4 17.3 16.7 22.9 25.4 30.0

Change 0.2 0.3 0.1 0.3 0.3 0.3 0.3 0.4 0.4 0.3

Potential
evapotranspiration
(mm)

Mean 1,042 1,055 1,018 1,279 1,365 1,179 1,194 1,381 1,470 1,523

Change 10.4 9.2 13.7 21.9 20.3 23.7 30.1 35.6 27.0 26.5

% Change 1% 1% 1% 2% 2% 2% 3% 3% 2% 2%

Recharge (mm) Mean 504 174 42 103 40 219 49 59 4 1

Change −24.2 −1.9 −1.0 4.0 4.5 0.4 5.9 −3.0 0.9 0.3

% Change −5% −1% −2% 4% 13% 0% 14% −5% 26% 35%

Runoff (mm) Mean 492 507 87 120 11 319 61 80 3 5

Change −22.3 7.3 2.4 11.9 2.5 7.3 8.8 −2.6 0.5 0.7

% Change −4% 1% 3% 11% 30% 2% 17% −3% 25% 17%

Climatic water
deficit (mm)

Mean 558 535 575 863 1,065 638 778 1,011 1,293 1,339

Change 1.2 9.3 25.0 9.9 2.0 24.8 36.0 30.7 20.4 13.5

% Change 0% 2% 5% 1% 0% 4% 5% 3% 2% 1%

Snow water
equivalent (mm)

Mean 85 227 91 1 0 241 102 12 0 0

Change −33.0 −34.0 −16.0 0.0 0.0 −27.0 8.0 −2.0 0.0 0.0

% Change 39% 15% 18% 0% 0% 11% −8% 17% 0% 0%

Mean value for 1981–2010 and change from 1951–1980.
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400 mm/year in mountain regions and as high as 1,700

mm/year in deserts and regions with low precipitation.

The actual evapotranspiration is highest where there is

ample available water to maintain evapotranspiration

(Figure 9b). The lowest CWD is in regions with snowpack

that, as it melts in the springtime, provides a longer dur-

ation of available water, thus maintaining a lower annual

deficit, even despite shallow soils. Locations in the south

with higher PET have higher deficits.

Fine-scale applications

Although precipitation has generally increased between

the two time periods evaluated here for California, the

increases in air temperature and PET translate into in-

creases in CWD in many locations, particularly those

dominated by snowpack, such as the Sierra Nevada or

Modoc Plateau ecoregions, which have increased in CWD

by 4 and 5%, respectively, over the two 30-year periods.

Fine-scale modeling and analysis permit the influence

of elevation and aspect to appear as CWD changes, relying

also on the fine-scale attributes of mapped soils. Examples

of CWD under higher than average annual precipitation

(water year 1998; Figure 10a) and lower than average

annual precipitation (water year 1977; Figure 10b) indicate

the influence of energy loading on slopes. This area west

of Lake Tahoe in the American River basin has annual

snowpack that provides low CWD in a wet year across the

area. In fact, a wet year looks very much like an average

year in other parts of the Sierra Nevada because the soils

are generally shallow and excess water readily becomes

runoff. A dry year shows the influence of less snowpack,

and much of the landscape on the left side of Figure 10b,

which is at lower elevations and receives less snow, dries

out over the season, thereby increasing the annual CWD.

This is true except for landscapes shown at the bottom of

both figures, noted in the oval, where in the center is a

Figure 7 Maps of runoff and recharge for water years 1981–2010 calculated by the Basin Characterization Model for the California

hydrologic region.
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large north-facing hillslope that maintains low energy

loading and thus a low CWD, even in a dry year. The ap-

plication of water-balance modeling at 270-m resolution

allows the representation of this process at the scale of

hillslopes.

The evaluation of extreme years and the potential im-

plications of projected climate change can also be seen

in the depiction of precipitation, potential evapotrans-

piration, actual evapotranspiration, runoff, and recharge

for a landscape-scale view across northern California

(Figure 11). This view from the North Bay counties across

the Sacramento Valley and into the northern Sierra

Nevada illustrates the range in precipitation across the

region in wet and dry years, while the PET changes little

due to air temperature. Actual evapotranspiration in 1998

is high in soils that can store water, such as those in the

Central Valley, or where it is cooler with shallower soils,

such as in the eastern foothills of the Sierra Nevada. In a

dry year the Central Valley has lower actual evapotranspir-

ation because supply was low. Low rainfall corresponds

to low recharge or runoff as well, while in a wet year

recharge is high in the Central Valley deep soils and

runoff is high in locations with low permeability bed-

rock or shallow soils (Figure 11).

Additional implications of fine-scale modeling can be

seen in two depictions of the change in CWD between

the periods 1981–2010 and 1951–1980. In Figure 12a,

located in the Modoc Plateau, most of the area in the

figure consists of warmer colors, indicating an increase in

CWD. At this scale it is noticeable by the rings around the

mountain tops indicating that the snow line has receded

up the mountainsides in two locations, increasing the

CWD in the band no longer covered by snow. In a loca-

tion with no snowpack in the central coast, just east of

Monterey Bay (Figure 12b), the change in climate over

this local area has increased the CWD variably across

the landscape. It is clear at a fine scale that north-facing

slopes are more resilient to change in climate and that sev-

eral valleys have not changed as much as the surrounding

uplands, which is due to deeper soils in the valley bottoms

maintaining moisture longer into the season.

Discussion
California hydrologic region

Steep elevation gradients, a long temperate coastline, a

large latitudinal extent, and a variety of geological histories

provide the regional spatial framework for assessing po-

tential hydrologic response across the California hydro-

logic region. Inclusion of topographic and soils details

creates a more comprehensive view of underlying water-

shed variability that, in turn, we know supports high levels

of biodiversity. The range of hydrologic response to these

conditions across California is exemplified by the range

and variation in runoff and recharge (ranging from ap-

proximately 0 to over 500 mm/year), while the dynamics

of snowpack indicate the vulnerability of a region reliant

on springtime snowpack to rising air temperatures.

Increasingly warmer climate conditions over time drive

estimated increases in CWD, which are highly sensitive to

increases in air temperature. Increases in precipitation do

not uniformly lower end-of-year CWD because resulting

increases in excess water can be either retained in soil stor-

age or converted to recharge or runoff early in the season.

Therefore, even in the face of potentially increasing

amounts of seasonal precipitation in this Mediterranean cli-

mate, with higher temperatures CWD tends to increase

during the months following the conclusion of the rainy

period in a way that essentially offsets any effects of precipi-

tation increases on soil moisture. This fine-scale representa-

tion of CWD dynamics enables the identification of

landscape features and habitats that may resist significant

climatic changes in the future. We observe that north-

facing slopes with relatively low energy loads are less

sensitive in terms of drought stress to dramatically lower-

Figure 8 Map of change in April 1st snow water equivalent

between water years 1951–1980 and 1981–2010.
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than-average precipitation years. We also observe that the

CA-BCM validates that deeper soils in valley bottoms are

capable of sustaining more moisture longer into the dry

season than environments with thin soils. Using these

tools, managers seeking to maximize biodiversity and

ecosystem health can identify local climate refugia for

vulnerable species.

BCM performance

The utility of the BCM to assess unimpaired hydrologic

conditions for California relies on thoroughly character-

izing underlying geology based in part on the use of

streamgage data to calibrate the hydrologic balance be-

tween recharge and runoff. In this study we assembled

runoff data from 159 streamgages and reconstructions,

which permitted an assessment of how well the CA-BCM

model performs at integrating all the hydrologic balance

components. Other components of the CA-BCM could

potentially also be calibrated as well (Figure 2). For ex-

ample, model calibrations were previously performed for

the solar radiation and evapotranspiration components

(Flint and Flint 2007). Soil moisture and climatic water

deficit could be field verified as well through spatial

and temporal sampling of plant evapotranspiration

rates (e.g. Ryu et al. 2008) and by direct measures of soil

moisture (e.g. Mittelbach et al. 2011). The application of

this mechanistic model permits a look at how conditions

have changed over time and provides an illustration of

where basins are more or less sensitive to changes in cli-

mate, where runoff or recharge processes are dominant,

and where climate-driven moisture stresses to the land-

scape are likely to be more or less profound.

Simulated and measured results were comparable in

basins throughout the state for both unimpaired and im-

paired (including impacts due to urban and agricultural

conditions) basins based on close matches of estimated

basin discharge to measured streamflow. Basins with the

lowest BCM performance in terms of calibration statis-

tics contained unaccounted-for land uses, such as agricul-

tural or municipal diversions or return flows, or water

impoundments such as reservoirs. These results provide

reasonable confidence in the spatially distributed BCM es-

timates of recharge, runoff, and climatic water deficit

throughout the entire state, including ungaged basins.

However, runoff in the BCM is not explicitly routed within

the model, and basin discharge requires post-processing

using measured streamflow to determine the relative

contributions of recharge and runoff in a basin to gains

and losses in streamflow. Once established, these compo-

nents can be used to extrapolate basin discharge through

time, assuming no changes in impairments. Uncertain-

ties in calibration do not impact estimates of CWD as

this calculation does not rely on the bedrock perme-

ability used to partition the excess water into recharge

and run off. Soil water conditions are a function of soil

properties, available water from precipitation, and

Figure 9 Maps of (a) potential evapotranspiration, (b) actual evapotranspiration, and (c) climatic water deficit for water years

1981–2010, calculated by the Basin Characterization Model for California.
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evapotranspiration. Therefore, the BCM calculation of

CWD equals PET minus AET (Stephenson 1998) re-

flects the uncertainties inherent in the climate data, in

the soil properties from soil mapping, and in PET.

Model and data limitations

A highly valuable application of the BCM beyond the

estimates of spatially distributed recharge and runoff

would be to estimate basin discharge for ungaged basins.

We attempted to correlate equation coefficients (scaling

factors and exponents in Equations 1 to 7) developed in

gaged basins to landscape variables such as geology, soil

properties, slope, basin area, or aridity to provide an em-

pirical basis for estimating discharge in ungaged basins.

This endeavor was unsuccessful on a statistically significant

basis across all calibration basins, possibly due to potential

errors in the soils or geology maps, or in the PRISM climate

data, or due to human activities that are affecting basin hy-

drology at the watershed scale. However, general regional

characteristics that influence the hydrology in a basin can

be used to extrapolate discharge to ungaged basins. For ex-

ample, observations of high baseflow in basins with high

bedrock permeability might be correlated across multiple

basins, and basins of similar size and soils in close proxim-

ity may share equation coefficients to estimate discharge.

Since the BCM is a mechanistic model, driven by a series

of assumptions about the physical environment, we argue

that the model output is of value for regional comparisons

of watersheds, even in the absence of independent valid-

ation for ungaged basins. As with any rainfall-runoff model

development, there is a good deal of art and empiricism as-

sociated with calibration, and extrapolation of discharge to

ungaged basins remains an uncertain enterprise. However,

if we assume that the watershed properties and climate are

Figure 10 Maps of climatic water deficit for a region west of Lake Tahoe (see inset Figure 9c) in the American River basin for water

years (a) 1998 and (b) 1977.
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correctly characterized, the BCM hydrologic outputs are

based on properties that are spatially distributed through-

out the study area, and the calculations are performed con-

sistently across all basins, this provides a significant level of

confidence in results for regional cross-comparisons of

basins.

Some of the potential sources of error in input vari-

ables are well known to geographers. Soils maps are par-

ticularly prone to error since accurate measures of soil

depth are difficult to measure and currently unobtain-

able for large areas. County-level soils maps (SSURGO)

provide very good spatial detail on soil types and proper-

ties but are limited in locations with soil depths greater

than 2 m.

Human activities are extensive in California and likely

have some degree of impact in nearly every basin. Activ-

ities that can affect the hydrologic cycle at the watershed

scale include small impoundments, direct pumping from

Figure 11 Landscape-scale maps of precipitation, potential evapotranspiration, actual evapotranspiration, recharge and runoff for a

wet year, water year 1998, and a dry year, water year 1977. Inset location shown in Figure 9c.
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streams for urban or agricultural use, construction of

impermeable surfaces, and changes to the natural land

cover. These can affect variously the partitioning of in-

put PPT to different pathways in the hydrologic cycle

and also the actual evapotranspiration (AET) and PET

calculated as part of the model. We were not able to

make a detailed assessment of the influence of human

activities on the overall model accuracy and feel this is a

future research agenda, particularly for basins with several

gages that are placed below and above areas of human

disturbance. If the model is adequately parameterized

to estimate basin discharge in unimpaired locations,

then the model can be used to assess nearby locations

with similar physical watershed characteristics that are

ungaged. Similarly, the model could be used to assess

the degree of impact that impairments may have on

basin discharge.

The estimate of spatially distributed runoff does not

equal basin discharge as measured at a streamgage with-

out post-processing to determine the components of run-

off and recharge that contribute to stream channel gains

and losses, which must be done using some measured data

for a given basin. The resultant parameters corresponding

to the gains and losses generally reflect climatic conditions

and geologic setting, but at the scale of California have

not been determined to a degree that allows for the direct

extrapolation of basin discharge to all ungaged basins.

The spatial distribution of runoff and recharge, however,

provides relative differences over the region and can indi-

cate the differences in sensitivity of basins to changes in

climate. The estimates of changes in soil moisture and

CWD do not rely on interpretation of bedrock permeabil-

ity, and uncertainties correspond more closely with those

of the mapped soil properties and climate data.

Because the BCM model outputs are calculated on a

grid-cell basis, results can be summarized across land-

scapes using summary units of any size of interest such as

watersheds, ecoregions, or political boundaries. The ability

to spatially project hydrologic model outputs permits the

cross-comparison of these landscape delineations, with

mapped outputs of interest to various fields of research.

The limitations to the appropriate spatial application can

be quite small if the underlying input properties are accur-

ate because the energy load calculations are based on the

resolution of the digital elevation model, in this case, 270

m. The variables most closely associated with energy loads

(PET, AET, CWD) could potentially be applied at the

hillslope scale, given the resolution of SSURGO soils

data for most locations. However, it is recommended

that most hydrologic applications be considered at no

less than the size of planning watersheds (Natural Re-

sources Conservation Service’s California Interagency

Watershed Mapping Committee; CalWater 1999).

The ability to calculate hydrologic outputs using a

transparent, mechanistic approach, and at fine spatial

scales, permits a new set of predictor variables to be

used in the spatial projection of suitable plant ranges or

habitats (e.g. Williams et al. 2009). This is a particularly

important opportunity for ecologists and conservation

biologists because species distribution models are one of

the primary methods of evaluating the susceptibility of

Figure 12 Close-up maps of the change in climatic water deficit

between water years 1981–2010 and 1951–1980 for areas (a) in

the Modoc Plateau and (b) central coast of California. Inset

location shown in Figure 9c.
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species to climate change (e.g. Guisan and Thuiller Guisan

and Thuiller 2005; Loarie et al. 2009). The discharge and

groundwater outputs can inform water management for

storage, human consumption, and anadromous fisheries.

One of the most important variables that BCM calculates

is climatic water deficit (Stephenson 1998). Natural re-

source managers and field ecologists are particularly inter-

ested in this variable, as it integrates site conditions with

temperature and moisture, and is therefore a factor that

plants may respond to more directly than climate variables

alone, particularly in regions with pronounced seasons.

The strength of the BCM in portraying CWD is that dif-

ferent watersheds can be compared by identifying the area-

weighted mean value. Therefore relative differences across

hydrologic California are comparable. Soil moisture and cli-

matic water deficit are also of interest for tracking suitabil-

ity of rain-fed agriculture and for assessment of suitability

of natural environments for component plants and animals.

Conclusions
The downscaling of historical climate data for application

to the BCM to calculate hydrologic response to ongoing

changes in climate has provided a dataset rich in regional

representation of climatic and hydrologic trends, but

spatially detailed enough to provide fine-scale examples

of local impacts of climate on the landscape.

Landscape responses to current changes in climate can

be moderated in locations with relatively low energy loads,

such as north-facing hillslopes or coastal regions with

frequent cloud cover. Soil also amplifies or moderates

the hydrologic response of the landscape depending on

whether soils are thin and excess water is easily lost to

runoff or recharge or whether they are thick and therefore

can maintain moisture longer into the dry season. Moun-

tainous regions seasonally occupied by snowpack are quite

sensitive to ongoing changes in climate as the timing of

snowmelt is enhanced by warming thus changing the

length of the wet season and extending the dry season for

all regions downstream that rely on snowpack for public

and agricultural use.

The CA-BCM, using the best map data available, still

shows we have not captured all the details that drive

individual watershed dynamics. However, for compara-

tive purposes across a large number of watersheds and

ecoregions, the relative consistency of the model permits

informative interpretations. This is, in essence, very similar

to the way in which Global Climate Models themselves

run, in that they provide a platform for intercomparison of

regions even while they may be more or less accurate when

compared to ground-based measurements. In this regard,

then, the next challenge for modelers of these physical (and

biophysical) processes is to determine how to incorporate

an increasingly finer scale of detail as these data become

available. CA-BCM output maps indicate where on the

landscape significant changes in the hydrologic cycle may

occur. If, at the watershed scale, basin discharge or recharge

boundary conditions are needed, then this study suggests

some local calibration is necessary. However, if the basins

are purely unimpaired, then nearby or adjacent basin

calibration is likely to suffice.

The consistent patterns offered by the CA-BCM for a

wide variety of biophysical variables make the model output

of particular interest to landscape ecologists, including

those interested in modeling the biogeographic response of

species and vegetation types to future changes in climate.

Part of the interest derives from the fact that future

moisture conditions are much more difficult to project

than future temperature, a fact that emerges when com-

paring the outputs of future GCMs for temperature and

precipitation, where there is much higher agreement

between models for temperature. Having a mechanistic

model that captures the dynamics of the water that is

predicted permits a better estimation of hydrologic

conditions under different scenarios, which in turn can

provide a view to the range of potential impacts to water

available for natural processes and for human uses. It also

provides an opportunity to compare estimated unimpaired

conditions to current levels of impairment, given sufficient

site-specific data.

Because of the modular nature of the Basin Charac-

terization Model, it is possible to make two types of im-

provements. First, any particular module’s calculations

may be updated and improved. An example would be if

PET values for different vegetation types could be calcu-

lated, these could be applied using an existing vegetation

map to render more accuracy in the plant-driven parts of

the model. Second, input data maps may be updated and

improved. Ongoing refinements are currently to apply a

radiation function to the Snow-17 snowmelt algorithm,

which relies solely on air temperature to melt snow. This

will enhance the timing of snowmelt in mountainous

regions, especially during warming conditions when

springtime snowmelt occurs earlier in the season and

the sun angle is lower on the horizon inducing more

variation in shading. Additionally, local studies are pro-

viding more information for improved calibrations and

refinements in geologic maps.
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