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Background: The electric isovector giant dipole resonance (IVGDR) in 208Pb has been measured with high

energy resolution with the (p,p′) reaction under extreme forward angles [A. Tamii et al., Phys. Rev. Lett. 107,

062502 (2011)] and shows considerable fine structure.

Purpose: The aim of the present work is to extract scales characterizing the observed fine structure and to relate

them to dominant decay mechanisms of giant resonances. Furthermore, the level density of J π = 1− states is

determined in the energy region of the IVGDR.

Methods: Characteristic scales are extracted from the spectra with a wavelet analysis based on continuous wavelet

transforms. Comparison with corresponding analyses of B(E1) strength distributions from microscopic model

calculations in the framework of the quasiparticle phonon model and the relativistic random phase approximation

allows one to identify giant resonance decay mechanisms responsible for the fine structure. The level density of 1−

states is related to local fluctuations of the cross sections in the energy region of the IVGDR, where contributions

from states with other spin parities can be neglected. The magnitude of the fluctuations is determined by the

autocorrelation function.

Results: Scales in the fine structure of the IVGDR in 208Pb are found at 80, 130, 220, 430, 640, and 960 keV,

and at 1.75 MeV. The values of the most prominent scales can be reasonably well reproduced by the microscopic

calculations although they generally yield a smaller number of scales. The inclusion of complex configurations

in the calculations changes the E1 strength distributions but the impact on the wavelet power spectra and

characteristic scales is limited. The level density of 1− states is extracted in the excitation energy range 9–12.5

MeV and compared to a variety of phenomenological and microscopic models.

Conclusions: In both models the major scales are already present at the one-particle one-hole level indicating

Landau damping as a dominant mechanism responsible for the fine structure of the IVGDR in contrast to the

isoscalar giant quadrupole resonance, where fine structure arises from the coupling to low-lying surface vibrations.

The back-shifted Fermi gas model parametrization of Rauscher et al., Phys. Rev. C 56, 1613 (1997) describes

the level-density data well, while other phenomenological and microscopic approaches fail to reproduce absolute

values or the energy dependence or both.
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I. INTRODUCTION

Giant resonances are elementary excitations of the nucleus

and their understanding forms a cornerstone of microscopic

nuclear theory. They are classified according to their quantum

numbers (angular momentum, parity, isospin). The isovector

giant dipole resonance (IVGDR) has always played a central

role because it was the first one observed experimentally

and thus triggered many basic theoretical concepts for its

description. Gross properties of the IVGDR, like energy

centroid and strength in terms of exhaustion of the energy-

weighted sum rule, are well described in macroscopic as well

as microscopic models [1]. However, despite recent progress

a systematic understanding of the decay width is still lacking.

*vnc@ikp.tu-darmstadt.de

The giant resonance width Ŵ is determined by the interplay

of different mechanisms: fragmentation of the elementary

one particle-one hole (1p1h) excitations with an average

energy �E (Landau damping), direct particle decay out of the

continuum (escape width Ŵ↑), and statistical particle decay

due to coupling to two (2p2h) and many-particle–many-hole

(npnh) states (spreading width Ŵ↓):

Ŵ = �E + Ŵ↑ + Ŵ↓. (1)

A powerful approach to investigate the role of the different

components is coincidence experiments, where direct decay

can be identified by the population of one-hole states in the

daughter nucleus and the spreading width contribution can be

estimated by comparison with statistical model calculations

(see, e.g., Refs. [2–4]). Recently, an alternative method has

been developed based on a quantitative analysis of the fine

structure of giant resonances observed in high-resolution
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inelastic scattering experiments. For comparable energy

resolution, the fine structure is independent of the exciting

probe [5]. A case study of this method has been performed

for the isoscalar giant quadrupole resonance (ISGQR) from

medium-mass to heavy nuclei [6,7]. Different approaches for

an extraction of energy scales characterizing the observed fine

structure have been compared in Ref. [8]. Wavelet analysis has

been identified as a particularly promising type of analysis.

It could be shown that the fine structure of the ISGQR

arises from the mixing of the 1p1h states with a particular

class of 2p2h states, viz., those of 1p1h ⊗ phonon character.

The coupling to low-energy phonons has been predicted to

be a main source of the spreading width [9]. Differences

of the characteristic scales between the investigated nuclei

could be traced back to their low-energy collective structure.

One exception is 40Ca—the lightest nucleus studied so far

with the wavelet technique—where a recent random-phase

approximation (RPA) calculation employing a realistic nuclear

interaction derived with the unitary correlation operator

method (UCOM) found that the characteristic scales result

from Landau damping [10] in contrast to a large variety of

previous RPA results, where the ISGQR strength is always

concentrated in a single state.

Here, we present a first application of the wavelet analysis

to the IVGDR. The doubly magic nucleus 208Pb is taken as

a reference case because techniques to include states built

on complex configurations beyond 1p1h states in RPA-type

approaches are most advanced for closed-shell nuclei. Experi-

mentally, structures of the cross sections in the IVGDR energy

region have already been observed in photonuclear reactions

long ago, and their nature has been a subject of discussion

[11,12]. Recently, proton scattering at energies of a few

hundred MeV and under extreme forward angles including 0◦

has been established as a new spectroscopic tool for the study

of dipole strength with unprecedented resolution [13,14]. In

these kinematics the cross sections of the 208Pb(p,p′) reaction

are dominated by relativistic Coulomb excitation populating

the IVGDR. Figure 1 shows a spectrum at E0 = 295 MeV

and covering an angular range � = 0◦ to 0.94◦. The full (red)

line indicates the background from other contributions to

the spectrum deduced by a multipole decomposition analysis

(MDA) [15,16]. Different from the MDA in the low-energy

region discussed in Ref. [17], the main contributions are from

excitation of the ISGQR (dotted line) and a phenomenological

part (dashed line) including quasifree reactions and the tail

of giant resonances centered at higher excitation energies.

In any case, the contributions under the IVGDR peak are

small justifying the assumption that they do not influence the

fluctuations visible in the data.

The cross section fluctuations are particularly pronounced

on the lower side of the IVGDR and are damped on the upper

side. The magnitude of the fluctuations for a given experimen-

tal energy resolution is determined by the density of 1− states.

If a single excitation mode dominates the cross sections—as in

the present case—and there is a way to estimate the background

in the spectra, one can deduce the level density of 1− states

in the energy region of the giant resonance with a fluctuation

analysis. Level densities are basic nuclear structure quantities

and refined models such as shell-model Monte Carlo [18],

FIG. 1. (Color online) Double-differential cross sections of the
208Pb(p,p′) reaction at E0 = 295 MeV and � = 0◦ to 0.94◦. The

cross sections are due to E1 excitations populated by relativistic

Coulomb excitation. Background from non-E1 excitations (full red

line) is determined by a MDA with contributions from excitation of

E2 strength (dotted line) and a phenomenological component (dashed

line) [16].

quantum Monte Carlo [19], or a Hartree-Fock-Bogoliubov

(HFB) plus combinatorial approach [20] have been developed

for their description. Besides the MDA discussed above, an

independent method to determine the background based on

a wavelet analysis has been developed [21]. When either

background subtraction procedure is applied to the 208Pb(p,p′)
data, level densities of 1− states in the energy region of the

IVGDR can indeed be extracted and compared to a variety of

phenomenological and microscopic models. This experimental

method to determine level densities is complementary to

approaches based on compound nucleus γ decay [22] and

particle emission [23], or thermal neutron capture [24].

The paper is structured as follows: In Sec. II A the wavelet

analysis technique of the experimental and theoretical spectra

is introduced and applied in Sec. II B. Section III deals with the

extraction of level densities with a description of the method in

Sec. III A, a discussion of methods for background subtraction

in Sec. III B, and the application to the IVGDR in 208Pb in

Sec. III C. The paper closes with conclusions (Sec. IV).

II. CHARACTERISTIC SCALES FROM A

WAVELET ANALYSIS

A. Continuous wavelet transform (CWT)

The wavelet transform is an established tool to analyze

different types of signals hidden in fluctuating quantities, e.g.,

with time or energy. It is used in diverse areas, such as image

processing or data compression [25,26], and also applied in

meteorology [27], astrophysics [28], and accelerator physics

[29]. The wavelet analysis can be regarded as an extension

of the Fourier analysis which allows one to conserve the

correlation between the observable and its transform.

In the present case energy spectra of nuclear giant reso-

nances are analyzed. The coefficients of the wavelet transform
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are then defined as

C(δE,Ex) =
∫ ∞

−∞
σ (E)	(δE,Ex,E)dE. (2)

They depend on two parameters, the scale δE stretching and

compressing the wavelet 	(E), and the position Ex shifting

the wavelet in the spectrum σ (E). The variation of the variables

can be carried out using continuous (CWT) or discrete (DWT)

steps. The analysis of the fine structure of giant resonances is

performed using CWT, where the fit procedure can be adjusted

to the required precision. The application of DWT for an

analysis of background contributions in the spectra is discussed

in Sec. III. Applications of the CWT to high-resolution nuclear

spectra of giant resonances are described in Refs. [6,7,10,30].

Further details and a comparison with other techniques for the

analysis of fine structure in nuclear giant resonances can be

found in Ref. [8].

The choice of the wavelet function plays an important role

in the analysis. In order to achieve an optimum representation

of the signal using wavelet transformation, one has to select a

function 	 which resembles the properties of the studied signal

σ . In fact, the better the correspondence between the shape of

	 and the signal σ is, the larger is the wavelet coefficient.

A maximum of the wavelet coefficients at a certain value δE

indicates a correlation in the signal at the given scale, often

called a characteristic scale. The best resolution for nuclear

spectra is obtained with the so-called Morlet wavelet (cf. Fig. 9

in Ref. [8]) because the detector response is typically close to

the Gaussian line shape and the Morlet wavelet is a product of

Gaussian and cosine functions:

ψMorlet(x) = π−1/4eikxe−x2/2. (3)

The value k specifies the number of sinusoidal oscillations

within the Gaussian window. The results show little difference

whether the complex Morlet function or only the real part is

considered. Therefore, only the real Morlet function was used.

B. Application to the IVGDR in 208Pb

In the following, we apply a CWT analysis to the
208Pb(p,p′) excitation spectrum for scattering angles � =
0◦ to 0.94◦. At these extreme forward angles E1 Coulomb

excitation dominates the cross sections and nuclear transitions

are suppressed with the exception of the isovector spin-flip M1

resonance. The excitation energy region below 9 MeV, where

the spin-M1 mode is located and contributes significantly to

the cross sections [17,31], is thus excluded. In order to search

for characteristic scales it is helpful to construct the power

spectrum of the signal, i.e., the projection of the absolute values

of the wavelet coefficients on the scale axis.

In Fig. 2 the excitation energy spectrum (upper right)

and corresponding absolute values of the wavelet coefficients

(middle and lower right) are plotted. White regions indicate

the smallest values of the wavelet coefficients, while dark

ones denote maxima, i.e., characteristic scales. One identifies

scale values where the absolute values of the wavelet coef-

ficients show a local maximum, albeit with a characteristic

minimum-maximum variation as a function of excitation

energy induced by the oscillating wavelet function. For a better
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FIG. 2. (Color online) CWT analysis of the excitation energy

spectrum of the 208Pb(p,p′) reaction at E0 = 295 MeV and � <

0.94◦. Top right: Spectrum of the reaction in the IVGDR region.

Middle: Absolute values of the wavelet coefficients (right) and

power spectrum (left). Bottom: Enlarged picture for the region of

scales below 1 MeV. White color corresponds to smallest wavelet

coefficients, while dark blue regions indicate the largest values.

Arrows indicate the positions of characteristic scales.

recognition of such characteristic scales, power spectra are

plotted (middle and lower left). The power values are divided

by the corresponding scale in order to remove a trivial increase

with increasing scale [32]. The middle panel shows the scale

region up to 7 MeV, while the lower panel gives an enlarged

view of the region below 1 MeV. Characteristic scales are

clearly visible in the power spectra indicated by arrows.

The extracted scale values are converted to correspond to

the full width at half maximum (FWHM) of a Lorentzian

function, as described in Ref. [8]. Characteristic scales are

observed at 80, 130, 220, 430, 640, and 960 keV, and at 1.75,

4, and 6 MeV. Two scales are found below 100 keV, where the

smallest scale at about 30 keV corresponds to the experimental

energy resolution. The strong scale at 130 keV is confined in

energy to the region 9–12 MeV where the most pronounced

structure is seen in the IVGDR of 208Pb. The other scales

up to 1 MeV are related to a larger excitation energy region

extending up to about 15 MeV, while the dominating scale

at 1.75 MeV and the broad scale at large values appear over

the whole resonance region. A characteristic scale roughly

corresponding to the width of the resonance of about 4 MeV

is indicated as a shoulder of the bump peaking at about

6 MeV. It should be noted that at scale values of several MeV,

uncertainties due to the limited data range of about 10 MeV

become dominant, preventing a clear interpretation of the two

largest scales.
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FIG. 3. (Color online) CWT analysis of the IVGDR strength

distribution from QPM calculations [upper right-hand side (rhs)]

described in the text. White color corresponds to the smallest values

of the wavelet coefficients, while dark blue shows the maximum.

Arrows indicate the positions of characteristic scales.

In order to understand the origin of the characteristic

energy scales obtained from the experimental data, one needs a

comparison with theoretical calculations. Results of the CWT

analysis for microscopic calculations of the electric dipole

response in 208Pb with the quasiparticle phonon model (QPM)

and relativistic RPA (RRPA) are discussed. Both models allow

for the inclusion of complex configurations. Therefore, besides

calculations on the 1p1h level (called QPM 1-phonon and

RRPA, respectively), also extensions including 2p2h states

[called QPM and relativistic time blocking approximation

(RTBA), respectively] are considered. A general description
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FIG. 4. (Color online) CWT analysis of the GDR strength distri-

bution from RTBA calculations (upper rhs) described in the text.

White color corresponds to the smallest values of the wavelet

coefficients, while dark blue shows the maximum. Arrows indicate

the positions of characteristic scales.

TABLE I. Characteristic scales of the GDR in 208Pb extracted

from the wavelet analysis of the experimental data and from the

QPM, RRPA, and RTBA calculations described in the text.

Scales (keV)

Experiment 80 130 220 430 640 960 1750

QPM (1-phonon) 100 160 340 720 1550

QPM 90 140 340 700 1500

RRPA 90 140 210 580 1050

RTBA 90 220 600 1300

of the QPM can be found in Ref. [33] and of the RTBA

in Ref. [34]. Details of the present QPM calculations are

discussed in Refs. [15,17,35]. Results of the wavelet analysis

of QPM and RTBA E1 strength distributions are presented in

Figs. 3 and 4, respectively.

The three most prominent scales (i.e., 140 keV, 720 keV,

1.55 MeV) observed in the QPM calculations are in fair

agreement with values deduced from experiment. However,

the relative power differs compared to experiment with the

most prominent scale in the QPM results at low energy while

the equivalent of the strongest experimental scale at about

1.75 MeV is less pronounced. Also, some experimentally

observed scales do not show up in the calculation. The picture

obtained from the RTBA results is quite similar but the larger

scale above 1 MeV is more and the 0.6 MeV scale less

pronounced than in the QPM case. A summary of the extracted

scales is given in Table I together with an analysis of the

corresponding calculations on the 1p1h level. The experi-

mental scales at 4 and 6 MeV scales are not included in Table I

for the reason discussed above.

A comparison of the experimental cross sections at 0◦ [left-

hand side (l.h.s)] and the power spectrum (rhs) resulting from

the CWT analysis with those of the model calculations for the

B(E1) strength distributions is shown in Fig. 5. It should be

noted that the experimental spectrum, (a), does not represent

the B(E1) strength but rather the Coulomb excitation cross

section, which is modified by the excitation-energy dependent

virtual photon number. Extraction of the B(E1) distribution is

possible (cf. Refs. [15,17]). However, the need to disentangle

the E1 cross section from other contributions can only be

achieved for larger energy bins, where the information on

the fine structure is partially lost. Such a conversion of the

experimental data to B(E1) strength would lead to a slight

shift (< 5%) of the characteristic scales and an increase of

relative power to higher excitation energies.

As shown in Fig. 5(b), a QPM calculation on the RPA level

results in a B(E1) strength distribution dominated by five

transitions distributed between 11 and 15 MeV with a centroid

energy of 13.25 MeV (defined as m1/m0, where mi denotes

the ith moment of the distribution). The experimental centroid

energy of 13.43 MeV is fairly well reproduced. Inclusion of

2-phonon configurations, Fig. 5(c), leads to fragmentation but

the dominant 1p1h transitions remain and the centroid energy

is unaffected. A similar comparison of the RRPA, Fig. 5(d), and

the RTBA, Fig. 5(e), results shows somewhat larger differences

of the distributions although the centroid energy is hardly
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FIG. 5. (a) Experimental spectrum of the 208Pb(p,p′) reaction

of Fig. 2 in comparison with theoretical predictions of the B(E1)

strength distribution in 208Pb (lhs) and the resulting power spectra

from a CWT analysis (rhs). Theoretical results are shown for the

QPM with (b) 1-phonon and (c) (1+2)-phonon model spaces, (d)

RRPA, and (e) RTBA. Characteristic scales are marked by arrows.

changed (13.01 MeV for RRPA and 13.06 MeV for RTBA,

respectively).

Since there is no absolute scale, the corresponding CWT

power spectra shown on the rhs of Fig. 5 are normalized relative

to each other. They provide a qualitative measure for the ability

of different models to describe fine structure and characteristic

scales. Overall, both models broadly reproduce the variation

of power with scale value. A power peak at small scales of a

100 to 200 keV is followed by a minimum of power at a few

hundred keV and another rise towards larger values. The scale

values of power maxima and minima are better reproduced

by the QPM. However, the relative ratio of maxima at smaller

and larger scales is predicted to decrease in the QPM while

experiment shows an increase. In the RTBA the ratio is closer

to the data. The region of scales in the figure is restricted to

2 MeV because the theoretical calculations show limited power

at even larger scale values, in contrast to the experiment. This

finding may be related to the neglection of coupling to the

continuum in the models.

The comparison of Figs. 5(b) and 5(c) and Figs. 5(d)

and 5(e) allows one to extract information on the damping

mechanism responsible for the fine structure. Clearly, the QPM

results show structure already at the 1-phonon level. While the

appearance of scales � 1 MeV can be easily understood by the

spacing of the five dominant transitions, the wavelet analysis

of the RPA result [Fig. 5(b)] also finds the characteristic scales

with smaller values < 1 MeV. The similarity between the

power spectra and scales deduced from the QPM calculation

for a one-phonon model space with those including 2-phonon

states suggests that the fragmentation of 1p1h transitions

(i.e., Landau damping) is the most important mechanism

leading to fine structure of the IVGDR in 208Pb. The coupling

to complex configurations and, in particular, to low-lying

collective vibrations identified as dominant mechanism in the

ISGQR in heavy nuclei [7] seems to play a minor role only.

While the relative weight changes, major scales are also found

at about the same energies in the CWT analysis of the RRPA

[Fig. 5(d)] and RTBA [Fig. 5(e)] results. The observation of

characteristic scales in the RRPA calculation again supports

an interpretation of Landau damping as a main cause of the

fine structure of the IVGDR in 208Pb.

III. LEVEL DENSITY OF Jπ
= 1− STATES

In this section the extraction of the level density of 1−

states in 208Pb in the excitation energy region of the IVGDR

by means of a fluctuation analysis is described.

A. Fluctuation analysis

To extract level densities from high-resolution spectra, a

fluctuation analysis can be utilized. The method was originally

proposed to analyze β-delayed particle emission spectra

[36], but later it was successfully adopted for the study of

electron scattering data [37,38] and can be used in general

for high-resolution spectra of nuclear reactions (see, e.g.,

Refs. [21,39,40]). Detailed descriptions of the method can

also be found in Refs. [41,42]. The main idea of the analysis

is to take advantage of the autocorrelation function in order to

obtain a measure of the cross-section fluctuations with respect

to a stationary mean value.

The method can be applied in an energy region where the

mean level spacing 〈D〉 is smaller than the experimental energy

resolution �E. One has to distinguish between two possible

cases: (i) 〈Ŵ〉 � 〈D〉, i.e., the mean level width 〈Ŵ〉 is smaller

than the average distance between levels and the fluctuations

result from the density of states and their incoherent overlap,

and (ii) 〈Ŵ〉 > 〈D〉, the so-called Ericson fluctuations [43],

which result from the coherent overlap of the states. In

principle, it is also possible to utilize the method in the Ericson

regime, but the statistics has to be very high because of the

large number of open decay channels. Thus, in practice one is

usually limited to the region 〈Ŵ〉 � 〈D〉.
The application of the fluctuation analysis is based on the

following two assumptions:

(i) In an highly excited nucleus, the probability for a given

spacing between states with the same spin and parity is given

by the Wigner distribution [44]

PW (s) =
πs

2
exp

(

−
πs2

4

)

, (4)

with s = D/〈D〉. This distribution has a maximum close to

the mean value and shows a suppression of small distances

between neighboring levels.

(ii) The ground state decay widths or transition strengths

obey a Porter-Thomas distribution [45]

PPT (s) =
1

√
2πs

exp

(

−
s

2

)

, (5)

with s = Ŵ0/〈Ŵ0〉. These assumptions are adopted from

random matrix theory (RMT) [46,47] and based on the

observation that they provide a good description of nuclear

excitations in the vicinity of the neutron separation energy

[48].

054322-5



I. POLTORATSKA et al. PHYSICAL REVIEW C 89, 054322 (2014)

FIG. 6. (Color online) (a) Spectrum of the 208Pb(p,p′) reaction

at E0 = 295 MeV and � = 0◦ to 0.94◦ and the background obtained

from MDA (dashed line) and DWT (dotted line). (b) Background-

subtracted smoothed spectra g(Ex) and g>(Ex). (c) Stationary

spectrum d(Ex). (d) Experimental autocorrelation function.

The procedure of the fluctuation analysis for the 208Pb(p,p′)
scattering data at 0◦ is schematically demonstrated in Fig. 6. It

can be divided in four main steps. In order to obtain a spectrum

containing only the information needed, one has to subtract any

background not arising from excitations of the nuclear mode

under investigation. Methods to determine this background are

discussed in Sec. III B.

After background subtraction, the spectrum contains the

information on the fluctuations in the spectrum of the IVGDR.

In order to eliminate the fluctuation contributions arising from

finite statistics, the spectrum is folded with a Gaussian function

with the width σ chosen to be smaller than the experimental

energy resolution. The resulting spectrum is called g(Ex)

hereafter. Similarly, a second spectrum g>(Ex) is created

by the convolution with a Gaussian function, whose width

σ> is at least two times larger than the energy resolution

in the experiment in order to remove gross structures from

the spectrum. It has been found that the most stable results

are obtained by setting σ ≃ 0.5�E and σ>/σ = 2.5 to 3.5 in

agreement with the results of Refs. [39,49]. The spectra g(Ex)

and g>(Ex) for the present data are shown in Fig. 6(b). The

dimensionless stationary spectrum d(Ex) defined by

d(Ex) =
g>(Ex)

g(Ex)
(6)

is shown in Fig. 6(c). As a result of the normalization on the

local mean value, the energy dependence of the cross sections

vanishes. The value of d(Ex) is sensitive to the fine structure

of the spectrum and distributed around an average intensity

〈d(Ex)〉 = 1. With increasing excitation energy the mean level

spacing is decreasing, and in turn the oscillations of d(Ex) are

damped. A quantitative description of the fluctuations is given

by the autocorrelation function

C(ǫ) =
〈d(Ex) · d(Ex + ǫ)〉

〈d(Ex)〉 · 〈d(Ex + ǫ)〉
. (7)

Here, ǫ gives the energy shift between the spectra. The value

C(ǫ = 0) − 1 is nothing but the variance of d(Ex):

C(ǫ = 0) − 1 =
〈

d2(Ex)
〉

− 〈d(Ex)〉2

〈d(Ex)〉2
. (8)

According to Ref. [36], this experimental autocorrelation

function shown in Fig. 6(d) can be approximated by an

expression

C(ǫ) − 1 =
α〈D〉

2σ
√

π
f (σ,σ>), (9)

where the function f depends on experimental parameters

only. The value α is the sum of the normalized variances of

the assumed spacing and transition width distributions

α = αD + αI . (10)

If only transitions with the same quantum numbers J π

contribute to the spectrum, then α can be directly determined

as the sum of the variances of the Wigner and Porter-Thomas

distributions, α = αW + αPT = 0.273 + 2.0. The mean level

spacing 〈D〉 is proportional to the variance of d(Ex) and can

be extracted from the value of C(ǫ = 0) − 1. The nuclear level

density can then be determined from the mean level spacing

as ρ(E) = 1/〈D〉.
Uncertainties in the extracted values of 〈D〉 result from

the following sources: (i) statistical errors, (ii) neglect of

states of different J π or inaccuracy in the background

determination, (iii) widths of the smoothing functions, and

(iv) finite length of the energy interval. Statistical errors are

negligible because of the folding of the spectra described

above. Background contributions from other multipolarities

to the (p,p′) cross sections at extreme forward angles are very

small except for M1, and the M1 strength is confined to an

excitation energies Ex � 9 MeV outside the region analyzed

here [15,17]. The determination of the background uses two

independent techniques. Results for both methods are shown

and their variation gives an estimate of the corresponding

uncertainty. The choice of σ and σ> gives rise to uncertainties

in the mean level spacing of about 5%. The length of the

interval is important, since too short intervals would result

in errors in the autocorrelation function because of the finite

number of data points. On the other hand, the exponential

energy dependence of the level spacing within an interval is

replaced by a linear one in the analysis, which is a reasonable

approximation for sufficiently small ranges only. The value of

0.5 MeV chosen in this study represents a compromise and

limits the error contribution to about 2%.

B. Background determination

Two methods are applied to determine the background in

the (p,p′) spectra due to nuclear processes. The first one

uses the MDA described in Refs. [15,17]. In the energy

region of the IVGDR, contributions other than E1 were found

from excitation of the ISGQR and from a phenomenological
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FIG. 7. (Color online) Decomposition of the 208Pb(p,p′) spectrum with the DWT analysis into approximations Ai and details Di . The

approximation A9 describes the total width of the GDR; thus A10 can be adopted as the background shape.

background determined at excitation energies beyond the giant

resonance region. Their sum represents the first background

model. It is shown as dashed line in Fig. 6(a). Alternatively,

a spectrum decomposition based on the discrete wavelet

transform (DWT) is used, where scales and positions in

the wavelet analysis are varied by powers of 2. It allows

an iterative decomposition of the spectrum by filtering and

decomposing it into two signals, approximations (Ai) and

details (Di). Application of the method to the spectrum of the
208Pb(p,p′) reaction is shown in Fig. 7. The approximation

is the large-scale or low-frequency component of the signal,

and the detail corresponds to the small-scale or high-frequency

part for a given scale region analog to the effect of high- and

low-pass filters in an electric circuit. In each step i of the

decomposition, the initial signal σ (E) can be reconstructed as

σ (E) = Ai +
∑

Di . (11)

This operation can repeated until the individual detail consists

of a single bin.

A DWT can only be performed with wavelets which possess

a so-called scaling function [8]. This is not the case for the

Morlet wavelet; thus a biorthogonal wavelet function is used

as an alternative. The biorthogonal wavelet family has a very

similar form to the Morlet wavelet (cf. Fig. 9 in Ref. [8]). It also

provides another useful property which can be applied for a

determination of the background in the data. Each wavelet

function can be characterized by its number of vanishing

moments,
∫ ∞

−∞
En	(E)dE = 0, n = 0,1, . . . ,m. (12)

In the present case (Bior3.9) the number is equal to 3, i.e.,

any background in the spectrum that can be approximated by

a quadratic polynomial function does not contribute to the

wavelet coefficients.

The largest characteristic scale in the spectrum is given

by the total width of the IVGDR. It is well reproduced by

approximation A9 (cf. Fig. 7). Thus, the next approximation

A10 can be considered as a nonresonant contribution to

the spectrum. It determines the background except for an

overall normalization, and the corresponding curve is shown

in Fig. 6(a) as a dotted line. It is close to the background from

the MDA analysis. The normalization is determined from a

repetition of the analysis for different angle bins. Since the

background shows a distinctively different angular dependence

than the E1 cross sections, it can be fixed by the requirement

of a constant level density in all spectra after background

subtraction. Figure 8 displays the resulting background shapes

determined by means of the DWT analysis for three different

scattering angle cuts obtained from measurements with the

Grand Raiden spectrometer placed at 0◦.

C. Application to the excitation region of the IVGDR

In Fig. 9 the experimental level densities of 1− states in
208Pb determined with the two different approaches of back-

ground subtraction are compared with values calculated by

different phenomenological and microscopic approaches. For

the fluctuation analysis the considered excitation energy inter-

val between 8.5 and 16 MeV has been split into subintervals of

0.5 MeV length. The mean level spacing has been determined

in each bin. Insufficient statistics of the experimental spectrum

054322-7



I. POLTORATSKA et al. PHYSICAL REVIEW C 89, 054322 (2014)

FIG. 8. Excitation energy spectra of the 208Pb(p,p′) reaction measured at the 0◦ setting of the Grand Raiden spectrometer for different

scattering angle cuts. The dashed lines show background extracted by means of the DWT analysis.

or the onset of the Ericson fluctuations in the excitation energy

region above 12 MeV lead to a drop-down of experimentally

deduced level densities. The phenomenon has also been

observed in a similar analysis of M2 resonances in 180◦

electron scattering data [50]. Repetition of the analysis using

different angle bins as described above suggests a comparable

upper limit of the excitation energy in which the fluctuation

analysis can be applied. Therefore, the results shown in Fig. 9

are restricted to excitation energies Ex = 9 to 12.5 MeV.

The experimentally obtained level densities are compared

with different parametrizations of the phenomenological back-

shifted Fermi gas (BSFG) [51,52] and constant temperature

models [53] and with microscopic calculations performed in

the framework of a Hartree-Fock-Bogoliuvov (HFB) [20] or a

Hartree-Fock-BCS (HF-BCS) approach [54]. Good agreement

with the BSFG parametrization of Ref. [51] is found. The

FIG. 9. (Color online) Comparison of the experimentally

obtained level densities for 1− states in 208Pb in the energy range

9–12.5 MeV with predictions from (top to bottom at Ex = 15 MeV)

the constant temperature model [53] (purple line), the BSFG model

using the parameters of Ref. [51] (red line) and [52] (green line),

HFB [20] (orange line), and HFB-BCS [54] (blue line).

constant temperature model of Ref. [53] reproduces correctly

the energy dependence but gives two times higher level den-

sities. All other models including the BSFG parametrization

of Ref. [52] and the microscopic HFB [20] and HF-BCS [54]

approaches fail to reproduce the magnitude and the energy

dependence of the experimental data.

IV. CONCLUSIONS

In the present work, the fine structure of the IVGDR in
208Pb observed nearly background-free in a high-resolution

measurement of the (p,p′) reaction at E0 = 295 MeV and � =
0◦ is investigated. A wavelet analysis [8] reveals energy scales

ranging from about 100 keV to several MeV characterizing

the fine structure. Their nature and relation to dominant decay

mechanisms can be interpreted by comparison to microscopic

calculations of the B(E1) strength distribution in 208Pb within

the QPM [35] and RTBA [34] models. For both approaches,

results including 1p1h and (1p1h + 2p2h) model spaces are

available. The fine structure and most prominent scales appear

already at the RPA level. The consistency of characteristic

scales extracted with and without 2p2h states indicates that the

coupling of the 1p1h doorway states to more complex states is

weak and suggests Landau damping as the main source of fine

structure of the IVGDR in 208Pb. Since no additional scales

appear with the inclusion of complex configurations, other

mechanisms like direct decay or the coupling to low-lying

collective vibrations identified as the dominant mechanism

inducing fine structure in ISGQR in heavy nuclei [7] seem to

play a minor role only.

The spectral fluctuations also provide information on the

level density of 1− states in the lower energy region of

the IVGDR up to about 12.5 MeV. Two different methods

are applied for the subtraction of spectrum contributions not

related to excitation of the IVGDR based on a discrete wavelet

analysis and a multipole decomposition of the cross-section

angular distributions, respectively. The results are not very

sensitive to the particular choice since the background amounts

to a few percent of the total cross sections only. The consistency

of the analysis is further demonstrated by the good agreement

of level-density values obtained for different angular bins. The
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fluctuation analysis method is applicable in the present case up

to about 12.5 MeV; at higher excitation energies the statistics

are insufficient and/or the Ericson regime of overlapping

level widths is reached. Still, a region of about 5 MeV

above the neutron threshold can be covered complementary to

most other methods restricted to energies below and close to

threshold. The phenomenological BSFG model of Rauscher

et al. [51] describes the experimental data well, while the

BSFG approach of Ref. [52] and microscopic HF-BCS [54]

and HFB [20] give too low absolute values and also a

weaker increase with excitation energy than experimentally

observed.

The present study is another example of the power of

high-resolution inelastic scattering studies of giant resonances.

The (p,p′) reaction at incident energies of a few 100 MeV

and scattering angles close to 0◦ is a remarkably selective

tool for excitation of the IVGDR by relativistic Coulomb

excitation [13,14]. The results presented above indicate a

different mechanism leading to fine structure of the IVGDR

than found in the ISGQR. In the former, Landau damping

causes the pronounced structures observed in 208Pb between

about 9 and 12 MeV. For the latter, resonance fine structure

was shown [6,7] to arise from the contribution to the spreading

width due to coupling to low-energy surface vibrations [9]. For

the case of the IVGDR it is important to study the fine structure

systematically over a wider mass range in order to clarify to

what extent the dominant role of Landau damping is a general

phenomenon or related to the doubly closed-shell structure of
208Pb. Work along these lines is underway.
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