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FINE STRUCTURE OF THE ZEROS OF

ORTHOGONAL POLYNOMIALS,

III. PERIODIC RECURSION COEFFICIENTS

BARRY SIMON*

Abstract. We discuss asymptotics of the zeros of orthogonal
polynomials on the real line and on the unit circle when the recur-
sion coefficients are periodic. The zeros on or near the absolutely
continuous spectrum have a clock structure with spacings inverse
to the density of zeros. Zeros away from the a.c. spectrum have
limit points mod p and only finitely many of them.

1. Introduction

This paper is the third in a series [17, 18] that discusses detailed
asymptotics of the zeros of orthogonal polynomials with special em-
phasis on distances between nearby zeros. We discuss both orthogonal
polynomials on the real line (OPRL) where the basic recursion for the
orthonormal polynomials, pn(x), is

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.1)

(an > 0 for n = 1, 2, . . . , bn real, and p−1(x) ≡ 0), and orthogonal
polynomials on the unit circle (OPUC) where the basic recursion is

ϕn+1(z) = ρ−1
n (zϕn(z) − ᾱnϕ

∗
n(z)) (1.2)

Here αn are complex coefficients lying in the unit disk D and

ϕ∗
n(z) = zn ϕn(1/z̄) (1.3)

and
ρn = (1 − |αn|

2)1/2 (1.4)

In this paper, we focus on the case where the Jacobi coefficients
{an}

∞
n=1, {bn}

∞
n=1 or the Verblunsky coefficients {αn}

∞
n=0 are periodic,

that is, for some p,

an+p = an bn+p = bn (1.5)
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or

αn+p = αn (1.6)

It should be possible to say something about perturbations of a periodic

sequence, say α
(0)
n , which obeys (1.6) and αn = α

(0)
n +δαn with |δαn| →

0 sufficiently fast. We leave the details to be worked out elsewhere.
To describe our results, we begin by summarizing some of the basics

of the structure of the measures and recursion relations when (1.5) or
(1.6) holds. We will say more about this underlying structure in the
sections below. In this introduction, we will assume that all gaps are
open, although we don’t need and won’t use that assumption in the
detailed discussion.

When (1.5) holds, the continuous part of the underlying measure,
dρ, on R is supported on p closed intervals [αj , βj], j = 1, . . . , p, called
bands, with gaps (βj , αj+1) in between. Each gap has zero or one mass
point. The m-function of the measure dρ,

m(z) =

∫

dρ(x)

x− z
(1.7)

has a meromorphic continuation to the genus p − 1 hyperelliptic Rie-
mann surface, S, associated to [

∏p
j=1(x−αj)(x− βj)]

1/2. This surface
has a natural projection π : S → C, a twofold cover except at the
branch points {αj}

p
j=1 ∪ {βj}

p
j=1. π

−1[βj , αj+1] is a circle and m(z) has
exactly one pole γ1, . . . , γp−1 on each circle.

It has been known for many years (see Faber [2]) that the density
of zeros dk is supported on ∪p

j=1[αj , βj] ≡ B and is the equilibrium

measure for B in potential theory. We define k(E) =
∫ E

α1
dk. Then

k(βj) = j/p. Our main results about OPRL are:
(1) We can describe the zeros of pnp−1(x) exactly (not just asymptot-

ically) in terms of π(γj) and k(E).
(2) Asymptotically, as n → ∞, the number of zeros of pn in each

band [αj , βj], N
(n,j), obeys supn|

n
p
− N (n,j)| < ∞, and the zeros

{x
(n,j)
ℓ }

N(n,j)
ℓ=1 obey

sup
j

ℓ=1,2,...,N(n,j)−1

n

∣

∣

∣

∣

k(x
(n,j)
ℓ+1 ) − k(x

(n,j)
ℓ ) −

1

n

∣

∣

∣

∣

→ 0 (1.8)

as n→ ∞.
(3) z ∈ C is a limit of zeros of pn if and only if z lies in supp(dρ).
(4) Outside the bands, there are at most 2p + 2b − 3 points which

are limits of zeros of pmp+b−1 for each b = 1, . . . , p and, except for
these limits, zeros have no accumulation points in C\bands.
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For OPUC, the continuous part of the measure, dµ, is supported on
p disjoint intervals {eiθ | xj ≤ θ ≤ yj}, j = 1, . . . , p, in ∂D with p gaps
in between {eiθ | yj ≤ θ ≤ xj+1} with xp+1 ≡ 2π + x1. Each gap has
zero or one mass point. The Carathéodory function of the measure dµ,

F (z) =

∫

eiθ + z

eiθ − z
dµ(θ) (1.9)

has a meromorphic continuation from D to the genus p−1 hyperelliptic
Riemann surface, S, associated to [

∏p
j=1(z − eixj)(z − eiyj )]1/2. The

surface has a natural projection π : S → C, and the closure of each
gap has a circle as the inverse image. F has a single pole in each such
circle, so p in all at γ1, . . . , γp.

Again, the density of zeros is the equilibrium measure for the bands
and each band has mass 1/p in this measure. See [16], especially Chap-
ter 11, for a discussion of periodic OPUC. Our main results for OPUC
are:
(1′) We can describe the zeros of ϕ∗

np − ϕnp exactly (note, not zeros of
ϕnp).

(2′) Asymptotically, as n → ∞, the number of zeros of ϕn near each
band, N (n,j), obeys supn|

n
p
− N (n,j)| < ∞, and the points on the

bands closest to the zeros obey an estimate like (1.8).
(3′) z ∈ C is a limit of zeros of ϕn if and only if z lies in supp(dµ).
(4′) There are at most 2p + 2b − 1 points which are limits of zeros of

ϕmp+b for each b = 1, . . . , p and, except for these limits, zeros have
no accumulation points in C\bands.

In Section 2, we discuss OPRL when (1.5) holds, and in Section 3,
OPUC when (1.6) holds. Each section begins with a summary of trans-
fer matrix techniques for periodic recursion coefficients (Floquet the-
ory).

While I am unaware of any previous work on the precise subject
of Sections 2 and 3, the results are closely related to prior work of
Peherstorfer [6, 7], who discusses zeros in terms of measures supported
on a union of bands with a particular structure that overlaps our class
of measures. For a discussion of zeros for OPUC with two bands, see
[5].

These papers also consider situations where the recursion coefficients
are only almost periodic. For any finite collection of closed intervals on
R or closed arcs on ∂D, there is a natural isospectral torus of OPRL or
OPUC where the corresponding m- or F -function has minimal degree
on the Riemann surface (see, e.g., [16, Section 11.8]). It would be
interesting to extend the results of the current paper to that case.
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It is a pleasure to thank Chuck Newman and Percy Deift for the
hospitality of the Courant Institute where some of this work was done.

2. OPRL With Periodic Jacobi Coefficients

In this section, we analyze the zeros of OPRL with Jacobi coefficients
obeying (1.5). We begin with a summary of the theory of transfer ma-
trices, discriminants, and Abelian functions associated to this situation.
A reference for much of this theory is von Moerbeke [20]; a discussion
of the discriminant can be found in Hochstadt [3], von Moerbeke [20],
Toda [19], and Last [4]. The theory is close to the OPUC theory de-
veloped in Chapter 11 of [16].

Define the 2 × 2 matrix,

Ak(z) =
1

ak+1

(

z − bk+1 −ak

ak+1 0

)

(2.1)

where

a0 ≡ ap (2.2)

Thus

det(Ak) =
ak

ak+1

(2.3)

and the abstract form of (1.1)

zun = an+1un+1 + bn+1un + anun−1 (2.4)

is equivalent to
(

un+1

un

)

= An

(

un

un−1

)

(2.5)

So, in particular,
(

pn+1(z)

pn(z)

)

= AnAn−1 . . . A0

(

1

0

)

(2.6)

This motivates the definition of the transfer matrix,

Tn(z) = An−1(z) . . . A0(z) (2.7)

for n = 1, 2, . . . . We have, by (1.5), that

Tmp+b = Tb(Tp)
m (2.8)

suggesting that Tp plays a basic role. By (2.3) and (2.2),

det(Tp) = 1 (2.9)

A fundamental quantity is the discriminant

∆(z) = Tr(Tp(z)) (2.10)
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By (2.6), we have

Tn(z) =

(

pn(z) qn−1(z)
pn−1(z) qn−2(z)

)

(2.11)

where qn(z) is a polynomial of degree n that is essentially the polyno-
mial of the second kind (the normalization is not the standard one but
involves an extra ap).

By (2.9) and (2.10), Tp(z) has eigenvalues

Γ±(z) =
∆(z)

2
±

√

(∆(z)
2

)2
− 1 (2.12)

In a moment, we will define branch cuts in such a way that on all of
C\cuts,

|Γ+(z)| > |Γ−(z)| (2.13)

so (2.8) implies the Lyapunov exponent is given by

lim
n→∞

1

n
log ‖Tn(z)‖ =

1

p
log|Γ+(z)| ≡ γ(z) (2.14)

(2.12) means |Γ+| = |Γ−| if and only if ∆(z) ∈ [−2, 2], and one shows
that this only happens if z is real. Moreover, if ∆(z) ∈ (−2, 2), then
∆′(x) 6= 0. Thus, for x very negative, (−1)p∆(x) > 0 and solutions
of (−1)p∆(x) = ±2 alternate as +2,−2,−2,+2,+2,−2,−2, . . . , which
we label as

α1 < β1 ≤ α2 < β2 ≤ α3 < · · · < βp (2.15)

Since ∆(x) is a polynomial of degree p, there are p solutions of ∆(x) = 2
and of ∆(x) = −2, so 2p points {αj}

p
j=1 ∪ {βj}

p
j=1.

The bands are [α1, β1], [α2, β2], . . . , [αp, βp] and the gaps are (β1, α2),
(β2, α3), . . . , (βp−1, αp+1). If some βj = αj+1, we say the j-th gap is
closed. Otherwise we say the gap is open.

If we remove the bands from C, Γ±(z) are single-valued analytic
functions and (2.13) holds. Moreover, Γ+ has an analytic continuation
to the Riemann surface, S, of genus ℓ ≤ p−1 where ℓ is the number of
open gaps. S is defined by the function [(z−α1)(z−βp)

∏

open gaps(z−

βj)(z−αj+1)]
1/2. Γ− is precisely the analytic continuation of Γ+ to the

second sheet.
The Dirichlet data are partially those x’s where

Tp(x)

(

1

0

)

= cx

(

1

0

)

(2.16)

that is, points where the 21 matrix element of Tp vanishes. It can
be seen that the Dirichlet data x’s occur, one to each gap, that is,
x1, . . . , xp−1 with βj ≤ xj ≤ αj+1. If x is at an edge of a gap, then
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cj ≡ cxj
is ±1. Otherwise |cj| 6= 1. If |cj| > 1, we add the sign

σj = −1 to xj , and if |cj| < 1, we add the sign σj = +1 to xj . Thus
the values of Dirichlet data for each open gap are two copies of [αj , βj]
glued at the ends, that is, a circle. The set of Dirichlet data is thus an
ℓ-dimensional torus. It is a fundamental result [20] that the map from
a’s and b’s to Dirichlet data sets up a one-one correspondence to all a’s
and b’s with a given ∆, that is, the set of a’s and b’s with a given ∆ is
an ℓ-dimensional torus.

The m-function (1.7) associated to dρ has a meromorphic continua-
tion to the Riemann surface, S, with poles precisely at the points xj

on the principal sheet if σj = +1 and on the bottom sheet if σj = −1.
ρ has point mass precisely at those xj ∈ (βj, αj+1) with σj = +1. It
has absolutely continuous support exactly the union of the bands, and
has no singular part other than the possible point masses in the gaps.

Finally, in the review, we note that the potential theoretic equilib-
rium measure dk for the set of bands has several critical properties:
(1) If k(x) =

∫ x

α1
dk, then

k(βj) = k(αj+1) =
j

p
(2.17)

(2) The Thouless formula holds:

γ(z) =

∫

log|z − x| dk(x) + logCB (2.18)

where γ is given by (2.14) and CB is the (logarithmic) capacity of
B.

(3) The (logarithmic) capacity of the bands is given by

CB =

( p
∏

j=1

aj

)−1

(2.19)

(4)

Γ+(z) = CB exp

(

p

∫

log(z − x) dk(x)

)

(2.20)

That completes the review of periodic OPRL. We now turn to the
study of the zeros. We begin by describing exactly (not just asymptot-
ically!) the zeros of Pmp−1:

Theorem 2.1. The zeros of Pmp−1(x) are exactly

(i) The p− 1 Dirichlet data points {xj}
p−1
j=1.
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(ii) The (m− 1)p points {x
(m)
k,q } k=1,...,p

q=1,...,m−1
where

k(x
(m)
k,q ) =

k − 1

p
+

q

mp
(2.21)

Remarks. 1. The points of (2.21) can be described as follows. Break
each band [αj, βj ] into m pieces of equal size in equilibrium measure.

The x
(m)
k,q are the interior break points.

2. If a gap is closed, we include its position in the “Dirichlet points”
of (i).

3. Generically, there are not zeros at the band edges, that is, (2.21)
has q = 1, . . . , m− 1 but not q = 0 or q = m. But it can happen that
one or more of the Dirichlet data points is at an αj+1 or a βj .

4. This immediately implies that once one proves that the density
of zeros exists, that it is given by dk.

5. It is remarkable that this result is new, given that it is so elegant
and its proof so simple! I think this is because the OP community
most often focuses on measures and doesn’t think so much about the
recursion parameters and the Schrödinger operator community doesn’t
usually think of zeros of Pn.

Example 2.2. Let bn ≡ 0, an ≡ 1
2

which has period p = 1. It is well-
known in this case that the Pn are essentially Chebyshev polynomials
of the second kind, that is,

Pn(cos θ) =
1

2n

sin(n+ 1)θ

sin θ
(2.22)

Thus Pm−1 has zeros at points where

θ =
jπ

m
j = 1, . . . , m− 1 (2.23)

(the zeros at θ = 0 and θ = π are cancelled by the sin(θ)). k(x) =
π−arccos(x) and (2.23) is (2.21). We see that Theorem 2.1 generalizes
the obvious result on the zeros of the Chebyshev polynomials of the
second kind. �

First Proof of Theorem 2.1. By (2.11), zeros of Pmp−1 are precisely
points where the 12 matrix element of Tmp vanishes, that is, points
where

(

1
0

)

is an eigenvector of Tmp. That is, zeros of Pmp−1 are Dirich-
let points for this period mp problem.

When (1.5) holds, we can view the a’s and b’s as periodic of period
mp. There are closed gaps where Tmp(z) = ±1, that is, interior points
to the original bands where (Γ±)m = 1, that is, points where (2.21)
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holds. Thus, the Dirichlet data for Tmp are exactly the points claimed.
�

Theorem 2.1 immediately implies point (2) from the introduction.

Theorem 2.3. Let Pn(x) be a family of OPRL associated to a set of

Jacobi parameters obeying (1.5). Let (αj, βj) be a single band and let

N (n,j) be the number of zeros of Pn in that band. Then

|N (mp+b,j) − (m− 1)| ≤ min(b+ 1, p− b) (2.24)

for −1 ≤ b ≤ p− 1. In particular,
∣

∣

∣

∣

N (n,j) −
n

p

∣

∣

∣

∣

≤ 1 +
p

2
(2.25)

Proof. By a variational principle for any n, n′,

|N (n,j) −N (n′,j)| ≤ |n− n′| (2.26)

(2.24) is immediate from Theorem 2.1 if we take n′ = mp − 1 and
n′ = mp+(p−1). (2.25) follows from (2.24) given that min(b+1, p−b) ≤
p/2. �

Remark. Because of possibilities of Dirichlet data zeros at αj and/or
βj, we need (αj, βj) in defining N (n,j). It is more natural to use [αj , βj].
If one does that, (2.24) becomes 2+min(b+1, p− b) and (2.25), 3+ p

2
.

To go beyond these results and prove clock behavior for the zeros of
pmp+b (b 6≡ −1 mod p), we need to analyze the structure of pn in terms
of Γ+,Γ−. For z not a branch point (or closed gap), Γ+ 6= Γ−. Γ+ is
well-defined on C\bands since |Γ+| > |Γ−|. On the bands, |Γ+| = |Γ−|
and, indeed, the boundary values on the two sides of a band are distinct.
But Γ+ is analytic on C\bands, so for such z, we can define P± by

Tp(z) = Γ+P+ + Γ−P− (2.27)

where P+, P− are 2 × 2 rank one projections obeying

P 2
+ = P+ P 2

− = P− P+P− = P−P+ = 0 (2.28)

and

P+ + P− = 1 (2.29)

It follows from (2.27) and (2.29) that

P+ =
Tp(z) − Γ−(z)1

Γ+ − Γ−
(2.30)

P− =
Tp(z) − Γ+(z)1

Γ− − Γ+

(2.31)
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which, in particular, shows that P+ is a meromorphic function on S
whose second-sheet values are just P−.

Define

a(z) =

〈(

0

1

)

, P+(z)

(

1

0

)〉

(2.32)

b(z) =

〈(

1

0

)

, P+(z)

(

1

0

)〉

(2.33)

so (2.29) implies
〈(

0

1

)

, P−(z)

(

1

0

)〉

= −a(z) (2.34)

〈(

1

0

)

, P−(z)

(

1

0

)〉

= 1 − b(z) (2.35)

Under most circumstances, a(z) has a pole at band edges where
Γ+−Γ− → 0. For later purpose, we note that 〈

(

0
1

)

, (Tp(z)−Γ−1)
(

1
0

)

〉 =

〈
(

0
1

)

, Tp(z)
(

1
0

)

〉 has a finite limit at such points. Later we will be looking
at

a(z)(Γm
+ − Γm

−) =

〈(

0

1

)

, Tp(z)

(

1

0

)〉

Γm
+ − Γm

−
Γ+ − Γ−

→

〈(

0

1

)

, Tp(z)

(

1

0

)〉

mΓm−1
+

if Γ+ − Γ− → 0. This is zero if and only if 〈
(

0
1

)

, Tp(z)
(

1
0

)

〉 = 0, that is,
if and only if the edge of the band is a Dirichlet data point.

(2.27) and (2.28) imply

Tmp(z) = Tp(z)
m = Γm

+P+ + Γm
−P− (2.36)

so

Tmp(z)

(

0

1

)

= [a(z)(Γm
+ − Γm

−)]

(

0

1

)

+ [b(z)Γm
+ + (1 − b(z))Γm

− )]

(

1

0

)

(2.37)
Thus, by (2.25) for b ≥ 0,

Pmp+b−1 =

〈(

0

1

)

, TbTmp

(

1

0

)〉

(2.38)

= [(Γm
+ − Γm

−)a(z)]qb−2(z) + [b(z)Γm
+ + (1 − b(z))Γm

− )]pb−1(z)
(2.39)

where

q−2(z) ≡ 1 q−1(z) ≡ 0 (2.40)
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Second Proof of Theorem 2.1. For b = 0, pb−1 ≡ 0 and qb−2 = 1, so

pmp−1(z) = (Γm
+ − Γm

−)a(z) (2.41)

Its zeros are thus points where a(z) = 0 or where Γm
+ = Γm

− , except
that at branch points, a(z) can have a pole which can cancel a zero of
Γm

+ − Γm
− .

a(z) = 0 if and only if
(

1
0

)

is an eigenvector of Tp(z), that is, exactly
at the Dirichlet data points.

Γm
+ = Γm

− is equivalent to Γ2m
+ = 1 since Γ− = Γ−1

+ . This implies
|Γ+| = |Γ−|, so can only happen on the bands. On the bands, by
(2.24),

Γ+(x) = exp(πip k(x)) (2.42)

and Γ2m
+ = 1 if and only if

mpk(x) ∈ Z (2.43)

that is, if (2.21) holds for some q = 0, . . . , m. But at q = 0 or q = m,
a(z) has a pole that cancels the zero of Γm

+ − Γm
− , so the zeros of pmp−1

are precisely given by (i) and (ii) of Theorem 2.1. �

We can use (2.39) to analyze zeros of pmp+b−1 for large m. We begin
with the region away from the bands:

Theorem 2.4. Let z ∈ C\bands and let b be fixed. Then

lim
m→∞

Γ+(z)−mpmp+b−1(z) = a(z)qb−2(z) + b(z)pb−1(z) (2.44)

In particular, if the right side of (2.44) is called jb(z), then

(1) If jb(z0) 6= 0, then pmp+b−1(z) is nonvanishing near z0 for m large.

(2) If jb(z0) = 0, then pmp+b−1(z) has a zero (k zeros if z has a k-th
order zero at z0) near z0 for m large.

(3) There are at most 2p + 2b − 3 points in C\bands where jb(z0) is

zero.

Proof. (2.44) is immediate from (2.39) and |Γ−/Γ+| < 1. (1) and (2)
then follow by Hurwitz’s theorem if we show that jb(z) is not identically
zero.

By (2.1) and (2.7) near z = ∞,

Tp(z) =

( p
∏

j=1

aj

)−1

zp

(

1 0
0 0

)

+O(zp−1)

which implies Γ+ = (
∏p

j=1 aj)
−1zp + O(zp−1) and Γ−(z) = O(z−p). It

follows that a(z) → 0 as z → ∞ and b(z) → 1. Thus, since pb−1 has
degree b− 1, (2.39) shows that as z → ∞ on the main sheet, f(z0) has
a pole of order b− 1.
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On the other sheet, P+ changes to P−, so a(z) → 0 and b(z) → 0 on
the other sheet. It follows that j(z) has a pole at ∞ of degree at most
b− 2. j also has poles of degree at most 1 at each branch point. Thus,
jb(z) as a function on S has total degree at most 2p+(b−1)+(b−2) =
2p+ 2b− 3 which bounds the number of zeros. �

Finally, we turn to zeros on the bands. A major role will be played
by the function on the right side of (2.44) (j is for “Jost” since this
acts in many ways like a Jost function):

jb(z) = a(z)qb−2(z) + b(z)pb−1(z) (2.45)

Lemma 2.5. jb is nonvanishing on the interior of the bands.

Remark. By jb(x) for x real, we mean (2.45) with a defined via
limε↓0 a(x+ iε) since P± are only defined off C\bands.

Proof. As already mentioned, the boundary values obey

lim
ε↓0

P+(x+ iε) = lim
ε↓0

P−(x− iε) (2.46)

(by the two-sheeted nature of P+ and P−). Thus, by (2.30) and (2.31),

a(x+ i0) = −a(x − i0) (2.47)

b(x+ i0) = 1 − b(x− i0) (2.48)

Moreover, since Tp and Γ± are real on R\bands, a(z) and b(z) are real
on R\bands (by (2.26)). Thus

a(x+ i0) = a(x− i0) (2.49)

b(x+ i0) = b(x− i0) (2.50)

The last four equations imply for x in the bands

Re(a(x+ i0)) = 0 (2.51)

Re(b(x+ i0)) = 1
2

(2.52)

p and q are real on R, so

Re(jb(x)) = 1
2
pb−1(x) (2.53)

Thus, if jb(x0) = 0 on the bands, pb−1(x0) = 0.
As we have seen, a(z) = 0 only at the Dirichlet points and so not in

the bands. If pb−1(x0) = 0 = jb(x0), then since a(x0) 6= 0, we also have
qb−2(x0) = 0. By (2.11), if pb−1(x0) = qb−2(x0), then det(Tb(x0)) = 0,
which is false. We conclude via proof by contradiction that jb(x) has
no zeros. �
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Theorem 2.6. For each b and each band j, there is an integer Db,j so

the number of zeros Nb,j(m) of pmp+b−1 is either m−Db,j or m−Db,j+1.
In particular,

sup
n,j

∣

∣

∣

∣

n

p
−N (n,j)

∣

∣

∣

∣

<∞ (2.54)

Moreover, (1.8) holds.

Proof. By (2.39), (2.46), (2.47), and (2.48), we have

pmp+b−1(x) = jb(x)Γ+(x)m + jb(x) Γ+(x)
m

(2.55)

on the bands. By the lemma, jb(x) is nonvanishing inside band j, so

jb(x) = |jb(x)|e
iγb(x) (2.56)

where γb is continuous — indeed, real analytic — and by a simple
argument, γb and γ′b have limits as x ↓ aj or x ↑ bj .

By (2.42), (2.55) becomes

pmp+b−1(x) = 2|jb(x)| cos(πmp k(x) + γb(x)) (2.57)

Define Db,j to be the negative of the integral part of [γb(bj)−γb(aj)]/π.
Since supbands|γ

′
b(x)| < ∞, there is, for large m, at most one solution

of πmp k(x) + γb(x) = πℓ for each ℓ. Given this, it is immediate that
the number of zeros is m−Db,j or m−Db,j + 1.

Finally, (1.8) is immediate from (2.57). Given that γ is C1, we even
get that

k(x
(n,j)
ℓ+1 ) − k(x

(n,j)
ℓ ) =

1

n
+O

(

1

n2

)

(2.58)

�

As for point (3) from the introduction, the proof of Theorem 2.4
shows that if z0 is not in the bands and is a limit of zeros of pmp+b−1(z),
then pmp+b−1(z0) goes to zero exponentially (as Γm

− ). If this is true for
each b, then

∑∞
n=0|pn(z)|

2 < ∞, which means z0 is in the pure point
spectrum of dµ. Since the bands are also in the spectrum, we have

Proposition 2.7. z0 ∈ C is a limit of zeros of pn(z) (all n) if and only

if z0 ∈ supp(dµ).

Remark. This also follows from a result of Denisov-Simon [1], but
their argument, which applies more generally, is more subtle.
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3. OPUC With Periodic Verblunsky Coefficients

In this section, we analyze the zeros of OPUC with Verblunsky coef-
ficients obeying (1.6). We begin with a summary of the transfer matri-
ces, discriminants, and Abelian functions in this situation. These ideas,
while an obvious analog of the OPRL situation, seem not to have been
studied before their appearance in [16], which is the reference for more
details. Many of the consequences of these ideas were found earlier in
work of Peherstorfer and Steinbauer [8, 9, 10, 11, 12, 13, 14].

Throughout, we will suppose that p is even. If (α0, . . . , αp−1, αp, . . . )
is a sequence with odd period, (β0, β1, . . . ) = (α0, 0, α1, 0, α2, . . . ) has
even period and

Φ2n(z, {βj}) = Φn(z2, {αj}) (3.1)

so results for the even p case immediately imply results for the odd p.
Define the 2 × 2 matrix

Ak(z) =
1

ρk

(

z −ᾱk

−zαk 1

)

(3.2)

where ρk is given by (1.4). Then

det(Ak(α)) = z

(1.2) and its ∗ are equivalent to
(

ϕn+1

ϕ∗
n+1

)

= An(z)

(

ϕn

ϕ∗
n

)

(3.3)

The second kind polynomials, ψn(z), are the OPUC with Verblunsky
coefficients {−αj}

∞
j=0. Then it is easy to see that

(

ψn+1

−ψ∗
n+1

)

= An(z)

(

ψn

−ψ∗
n

)

(3.4)

with A given by (3.2).
We thus define

Tn(z) = An−1(z) . . . A0(z) (3.5)

By (1.6), we have
Tmp+b = Tb(Tp)

m (3.6)

(3.3) and (3.4) imply that
(

ϕn

ϕ∗
n

)

= Tn

(

1

1

)

(3.7)

(

ψn

−ψ∗
n

)

= Tn

(

1

−1

)

(3.8)
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so that

Tn(z) = 1
2

(

ϕn(z) + ψn(z) ϕn(z) − ψn(z)
ϕ∗

n(z) − ψ∗
n(z) ϕ∗

n(z) + ψ∗
n(z)

)

(3.9)

The discriminant is defined by

∆(z) = z−p/2 Tr(Tp(z)) (3.10)

The z−p/2 factor (recall p is even) is there because det(z−p/2Tp(z)) = 1,
so z−p/2Tp(z) has eigenvalues Γ±(z) given by (2.12). ∆(z) is real on
∂D so

∆(z) = ∆(1/z̄) (3.11)

∆(z) ∈ (−2, 2) only if z = eiθ and there are p roots, each of
Tr(Tp(z)) ∓ 2zp/2 = 0, that is, p solutions of ∆(z) = ±2. These al-
ternate on the circle at points +2,−2,−2,+2,+2,−2,−2, . . . , so we
pick

0 ≤ x1 < y1 ≤ x2 < y2 ≤ · · · < yp ≤ 2π (3.12)

where eixj , eiyj are solutions of ∆(z) = ±2.
The bands

Bj = {eiθ | xj ≤ θ ≤ yj} (3.13)

are precisely the points where ∆(z) ∈ [−2, 2]. In between are the gaps

Gj{e
iθ | yj < θ < xj+1} (3.14)

where xp+1 = x1 + 2π. Some gaps can be closed, that is, Gj is empty
(i.e., yj = xj+1).

We also see that on C\bands, |Γ+| > |Γ−|, so the Lyapunov exponent
is given by

lim
n→∞

1
n

log ‖Tn(z)‖ = 1
2

log|z| + 1
p

log|Γ+(z)| ≡ γ(z) (3.15)

If we remove the bands from C, (2.13) holds. Moreover, Γ+(z) has
an analytic continuation to the Riemann surface, S, of [

∏

open gaps(z −

eiyj+1)(z−eixj )]1/2. The genus of S, ℓ ≤ p−1, where ℓ+1 is the number
of open gaps. (In some sense, the OPRL case, where the genus ℓ is the
number of gaps, has ℓ + 1 gaps also, but one gap is R\[α1, βp] which
includes infinity.) Γ− is the analytic continuation of Γ+ to the second
sheet.

The Dirichlet data are partly these points in ∂D, zj ,

Tp(z)

(

1

1

)

= cz

(

1

1

)

(3.16)

It can be shown there is one such zj in each gap (including closed gaps)
for the p roots of ϕp(z)−ϕ∗

p(z). We let cj = czj
. If zj is at a gap edge,

|cj| = 1; otherwise |cj| 6= 1. If |cj| > 1, we add sign −1 to zj and place
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the Dirichlet point on the lower sheet of S at point zj . If |cj | < 1, we
add sign +1 and put the Dirichlet point on the initial sheet. +1 points
correspond to pure points in dµ.

As in the OPRL case, the set of possible Dirichlet data points is a
torus, but now of dimension ℓ + 1. This torus parametrizes those µ
with periodic α’s and discriminant ∆.

The F -function, (1.9), has a meromorphic contribution to S with
poles precisely at the Dirichlet data points.

The potential theoretic equilibrium measures dk for the bands have
several critical properties:
(1) If k(eiθ0) = k({eiθ | x1 < θ < θ0}), then

k(eiyj) = k(eixj+1) =
j

p
(3.17)

(2) The Thouless formula holds:

γ(z) =

∫

log|z − eiθ| dk(eiθ) + logCB (3.18)

where γ is given by (3.15) and CB is the capacity of the bands.
(3) We have

CB =

p−1
∏

j=0

(1 − |αj|
2)1/2 (3.19)

(4)

Γ+(z) = CBz
−p/2 exp

(

p

∫

log(z − eiθ) dk(eiθ)

)

(3.20)

This completes the review of periodic OPUC. The analog of Theo-
rem 2.1 does not involve Φn but Φn − Φ∗

n:

Theorem 3.1. The zeros of Φmp(z) − Φ∗
mp(z) are at the following

points:

(i) the p Dirichlet data zj’s in each gap of the period p problem.

(ii) the (m− 1)p points where

k(eiθ) =
k − 1

p
+

q

mp
(3.21)

k = 1, . . . , p; q = 1, . . . , m− 1.

Proof. As noted (and proven several ways in [16, Chapter 11]), for a
period mp problem, Φmp−Φ∗

mp has its zeros, one in each gap. The gaps
of the mp problem are the gaps of the original problem plus a closed
gap at each point where (3.21) holds. There is a zero in each closed gap
and at each point where (3.16) holds since then Tmp(z)

(

1
1

)

= cmj
(

1
1

)

. �
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We now turn to the analysis of zeros of ϕmp+b(z), b = 0, 1, . . . , p− 1;
m = 0, 1, 2, . . . . The analog of (2.38) is, by (3.7),

ϕmp+b =

〈(

1

0

)

, Tb(Tp)
m

(

1

1

)〉

(3.22)

As in Section 2, we write, for z ∈ C\bands:

z−p/2Tp(z) = Γ+(z)P+(z) + Γ−(z)P−(z) (3.23)

where P± are 2×2 matrices which are complementary projections, that
is, (2.28)/(2.29) hold. (2.30)/(2.31) are replaced by

P+ =
z−p/2Tp(z) − Γ−(z)1

Γ+ − Γ−
(3.24)

P− =
z−p/2Tp(z) − Γ+(z)1

Γ− − Γ+
(3.25)

So, in particular, P± have meromorphic continuations to S, and P+

continued to the other sheet is P−.
Define

a(z) =
1

2

〈(

1

1

)

, P+

(

1

1

)〉

(3.26)

b(z) =
1

2

〈(

1

−1

)

, P+

(

1

1

)〉

(3.27)

so that, by (2.29),

1

2

〈(

1

1

)

, P−

(

1

1

)〉

= 1 − a(z) (3.28)

1

2

〈(

1

−1

)

, P−

(

1

1

)〉

= −b(z) (3.29)

Thus, since 1√
2

(

1
1

)

, 1√
2

(

1
−1

)

are an orthonormal basis,

z−mp/2Tmp

(

1

1

)

= Γm
+

[

a(z)

(

1

1

)

+ b(z)

(

1

−1

)]

+ Γm
−

[

(1 − a(z))

(

1

1

)

− b(z)

(

1

−1

)] (3.30)

Therefore, by (3.7), (3.8), and (3.22),

ϕmp+b(z) = ϕb(z)[a(z)z
mp/2Γm

+ + (1 − a)zmp/2Γm
− ]

+ ψb(z)[b(z)z
mp/2Γm

+ − b(z)zmp/2Γm
− ]

(3.31)

We thus define
jb(z) = a(z)ϕb(z) + b(z)ψb(z) (3.32)
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and we have, since |Γ+| > |Γ−| on C\bands:

Theorem 3.2. For z ∈ C\bands,

lim
m→∞

z−mp/2Γ−m
+ ϕmp+b(z) = jb(z) (3.33)

In addition, jb is nonvanishing near z = ∞.

In particular, if z0 /∈ bands and jb(z0) 6= 0, then for some ε > 0 and

M, we have ϕmp+b(z0) 6= 0 if |z − z0| < ε and m ≥ M. If z0 /∈ bands

and jb(z0) has a zero of order k, then for some ε > 0 and all m large,

ϕmp+b(z) has precisely k zeros (counting multiplicity). The number of

z0 in C\bands with jb(z0) = 0 is at most 2p+ 2b− 1.

Proof. As noted, (3.31) and |Γ+| > |Γ−| imply (3.33). To analyze jb(z)
near z = ∞, we proceed as follows: We have, by (3.2) and (3.5), that
as |z| → ∞,

Tp(z) = zp

( p−1
∏

j=0

ρ−1
j

)[(

1 0
−αp−1 0

)

. . .

(

1 0
−α0 0

)]

+O(zp−1) (3.34)

= zp

( p−1
∏

j=1

ρ−1
j

) (

1 0
−αp−1 0

)

+O(zp−1) (3.35)

from which it follows that

P+ =

(

1 0
−αp−1 0

)

+O(z−1) (3.36)

P− =

(

0 0
αp−1 1

)

+O(z−1) (3.37)

and

a(z) = 1
2
(1 − αp−1) +O(z−1) (3.38)

b(z) = 1
2
(1 + αp−1) +O(z−1) (3.39)

We have

ϕb(z) =

( p−1
∏

j=0

ρ−1
j

)

zb +O(zb−1) (3.40)

ψb(z) =

( p−1
∏

j=0

ρ−1
j

)

zb +O(zb−1) (3.41)

from which we see that

jb(z) =

( p−1
∏

j=0

ρ−1
j

)

zb +O(zb−1) (3.42)
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since (3.38)/(3.39) imply a(z) + b(z) = 1 +O(z−b). In particular, jb(z)
is not zero near ∞, so jb is not identically zero, and the assertion about
locations of zeros of ϕmp+b(z) follows from Hurwitz’s theorem.

Since 1 − a(z) − b(z) = O(z−1), (3.28)/(3.29) imply that, on the
second sheet, the analytic continuation of jb(z) near ∞ is O(zb−1). It
follows that jb has a pole of order b at ∞ on the main sheet (regular if
b = 0) and a pole of order at most b− 1 (a zero if b = 0 and is regular
if b = 1) at ∞ on the second sheet. jb also can have at most 2p simple
poles at the 2p branch points.

It follows that the degree of jb as a meromorphic function on S is at
most 2p + 2b − 1 (if b = 0, 2p). Thus the number of zeros is at most
2p+2b−1 if b 6= 0. If b = 0, there are at most 2p+2b zeros. But since
then one is at ∞ on the second sheet, the number of zeros on finite
points is at most 2p+ 2b− 1. �

Next, we note that

Theorem 3.3. Let {αn} be periodic and not at all 0. z0 is a limit of

zeros of ϕn(z) (i.e., there exist zn with ϕn(zn) = 0 and zn → z0 if and

only if z0 lies in the support of dµ).

Remark. αn = 0 has 0 as a limit point of zeros at ϕn(z) = zn, so one
needs some additional condition on the α’s to assure this result.

Proof. By Theorems 8.1.11 and 8.1.12 of [15], if z0 ∈ supp(dµ), then it
is a limit point of zeros. For the other direction, suppose z0 /∈ bands
and is a limit point of zeros. By Theorem 3.2, jb(z0) = 0 for each

b = 0, 1, . . . , p − 1, so by (3.31), ϕmp+b(z) ∼ C(Γ−z
p/2
0 )m which, since

|z0| ≤ 1 and |Γ−| < 1, implies that ϕn(z0) goes to zero exponentially.
Since αn is not identically zero, some αj , j ∈ {0, 1, . . . , p − 1} is

nonzero. Thus, by Szegő recursion for ϕj ,

ϕ∗
mp+j(z0) = α−1

j [z0ϕmp(z0) − ρjϕmp+1(z0)]

goes to zero exponentially in m.
Since αn is periodic, supn|αn| < 1, and so, supn ρ

−1
n <∞. Since

ϕ∗
mp+j+1(z0) = ρ−1

j+1(ϕ
∗
mp+j(z0) − αjϕmp+j(z0))

we see ϕ∗
mp+j+1(z0) decays exponentially and so, by induction, ϕ∗

n(z0)
decays exponentially. By the Christoffel-Darboux formula (see [15,
eqn. (2.2.70)]), |ϕ∗

n(z0)|
2 ≥ 1 − |z0|

2, so the decay implies |z0| = 1.
But if z0 ∈ ∂D and

∑

n|ϕn(z0)|
2 < ∞, then µ({z0}) > 0 (see [15,

Theorem 2.7.3]).
Thus if z0 is a limit of zeros, either z0 ∈ bands or µ({z0}) > 0, that

is, z0 ∈ supp(dµ). �
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Finally, in our analysis of periodic OPUC, we turn to zeros near to
the bands. We define ̃b on C\bands so that (3.31) becomes

ϕmp+b(z) = jb(z)z
mp/2Γm

+ + ̃b(z)z
mp/2Γm

− (3.43)

While ϕmp+b(z) is continuous across the bands, jb, ̃b, and Γ± are not.
In fact, Γ+ (resp. jb) continued across a band becomes Γ− (resp. ̃b).
We define all four objects at eiθ ∈ ∂D as limits as r ↑ 1 of the values
at reiθ.

Proposition 3.4. (i) In the bands,

eiθp/2Γ+(eiθ) = exp(−iπp k(θ)) (3.44)

(ii) At no point in the bands do both jb(e
iθ) and ̃b(e

iθ) vanish.

(iii) ̃b is everywhere nonvanishing on the interiors of the bands.

Proof. (i) This follows from (3.20). There is an issue of checking that
it is exp(−iπp k(θ)), not exp(iπp k(θ)). To confirm this, note that
∂
∂θ

Im log(exp(−iπp k(θ))) ≤ 0 and mainly < 0. Since ∂|Γ+|/∂r ≤ 0 at
r = 1, this is consistent with (3.44) and the Cauchy-Riemann equations.

(ii) follows from (3.43) and the fact that ϕn(z) is nonvanishing on
∂D.

(iii) Continue (3.43) through the cut. Since ϕm is entire, the con-
tinuation onto the “second sheet” is also ϕm. Γ± get interchanged by
crossing the cut. Let us use jb,2, ̃b,2 for the continuation to the second
sheet (of course, jb,2 is ̃b on the second sheet, but that will not concern
us).

By this (3.43) continued, ϕmp+b(z) = 0 if and only if
(

Γ−(z)

Γ+(z)

)m

= −
̃b,2(z)

jb,2(z)
(3.45)

If ̃b(z0) = 0 for z0 ∈ ∂D, then |̃b,2(rz0)/jb,2(rz0)| goes from 0 to a
nonzero value as r increases. On the other hand, since |Γ−/Γ+| < 1 on
C\bands, for m large, |Γ−(rz0)/Γ+(rz0)|

m goes from 1 to a very small
value as r increases. It follows that for m large,

∣

∣

∣

∣

Γ−(z)

Γ+(z)

∣

∣

∣

∣

m

=

∣

∣

∣

∣

̃b,2(z)

jb,2(z)

∣

∣

∣

∣

has a solution rmz0 with rm > 1 and rm → 1. As in [17], we can change
the phase slightly to ensure (3.45) holds for some point, zm, near rmz0
with |zm| > 1. Since ϕ has no zero in C\D, this is a contradiction. �

Remark. This proof shows that in the bands |̃b(e
iθ)| > |jb(e

iθ)|.
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(3.43) says we want to solve
(

Γ−(z)

Γ+(z)

)m

= gb(z) (3.46)

to find zeros of ϕmp+b(z). We have, by the remark, that |g(θ)| < 1.

Definition. We call z0 ∈ bands a singular point of order k if jb(z0) = 0
and the zero is of order k.

We do not know if there are singular points in any example! If so,
they should be nongeneric. We define the functions

g̃b(θ) = −
jb(e

iθ)

̃b(eiθ)
(3.47)

and

gb(z) = −
jb(z)

̃b(z)
(3.48)

For eiθ in the interior of a band minus the singular points, let A(θ) be
given by

g̃b(θ)

g̃b(θ)
= exp(2iA(θ)) (3.49)

with A continuous away from the singular points.
The analysis of a similar equation to (3.46) in [17] shows that:

(a) The solutions of (3.46) near |z| = 1 lie in sectors where

2πp k(θ) = A(θ) +
2πj

m
+O

(

1

m logm

)

(3.50)

with exactly one solution in each such sector.
(b) The magnitudes of the solutions obey

|z| = 1 − O

(

logm

m

)

(3.51)

(c) Successive zeros zk+1, zk obey

k(arg(zk+1)) − k(arg zk) =
1

mp
+O

(

1

m logm

)

(3.52)

and
∣

∣

∣

∣

zk+1

zk

∣

∣

∣

∣

= 1 +O

(

1

m logm

)

(3.53)

(d) All estimates in (a)–(c) are uniform on a band.
(e) Away from singular points, all O(1/m logm) errors can be replaced

by O(1/m2) and O(logm/m) in (3.51) by O(1/m). If there are no
singular points, these are uniform over a band.
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It is easy to see that the total variation of A in each interval between
singular points (or band endpoints) is finite, so (3.50) and the fact that
k varies by 1/p over a band say that the number of solutions in a band
differs from m by a finite amount. This implies

Theorem 3.5. Let N (n,j) be the number of zeros, z0, of ϕn(z) that obey

(a) arg z0 ∈ band j
(b)

(1 − |z0|) ≤ n−1/2 (3.54)

Then

(a) supn,j|N
(n,j) − n

p
| <∞

(b) For n large, all such zeros have

(1 − |z0|) ≤ C
log n

n
(3.55)

and if there are no singular points, we can replace log n/n in (3.55)
by 1/n.
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