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Abstract

Intense interest in applying convolutional neural net-

works (CNNs) in biomedical image analysis is wide spread,

but its success is impeded by the lack of large annotated

datasets in biomedical imaging. Annotating biomedical im-

ages is not only tedious and time consuming, but also de-

manding of costly, specialty-oriented knowledge and skill-

s, which are not easily accessible. To dramatically reduce

annotation cost, this paper presents a novel method called

AIFT (active, incremental fine-tuning) to naturally integrate

active learning and transfer learning into a single frame-

work. AIFT starts directly with a pre-trained CNN to seek

“worthy” samples from the unannotated for annotation,

and the (fine-tuned) CNN is further fine-tuned continuously

by incorporating newly annotated samples in each iteration

to enhance the CNN’s performance incrementally. We have

evaluated our method in three different biomedical imaging

applications, demonstrating that the cost of annotation can

be cut by at least half. This performance is attributed to the

several advantages derived from the advanced active and

incremental capability of our AIFT method.

1. Introduction

Convolutional neural networks (CNNs) [14] have

brought about a revolution in computer vision thanks

to large annotated datasets, such as ImageNet [6] and

Places [27]. As evidenced by an IEEE TMI special issue [8]

and two forthcoming books [28, 17], intense interest in ap-

plying CNNs in biomedical image analysis is wide spread,
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but its success is impeded by the lack of such large annotat-

ed datasets in biomedical imaging. Annotating biomedical

images is not only tedious and time consuming, but also de-

manding of costly, specialty-oriented knowledge and skill-

s, which are not easily accessible. Therefore, we seek to

answer this critical question: How to dramatically reduce

the cost of annotation when applying CNNs in biomedical

imaging. In doing so, we present a novel method called

AIFT (active, incremental fine-tuning) to naturally integrate

active learning and transfer learning into a single frame-

work. Our AIFT method starts directly with a pre-trained

CNN to seek “salient” samples from the unannotated for

annotation, and the (fine-tuned) CNN is continuously fine-

tuned by incrementally enlarging the training dataset with

newly annotated samples. We have evaluated our method

in three different applications including colonoscopy frame

classification, polyp detection, and pulmonary embolism

(PE) detection, demonstrating that the cost of annotation

can be cut by at least half.

This outstanding performance is attributed to a simple

yet powerful observation: To boost the performance of C-

NNs in biomedical imaging, multiple patches are usual-

ly generated automatically for each candidate through data

augmentation; these patches generated from the same can-

didate share the same label, and are naturally expected to

have similar predictions by the current CNN before they are

expanded into the training dataset. As a result, their entropy

and diversity provide a useful indicator to the “power” of a

candidate in elevating the performance of the current CNN.

However, automatic data augmentation inevitably generates

“hard” samples for some candidates, injecting noisy label-

s; therefore, to significantly enhance the robustness of our

method, we compute entropy and diversity by selecting on-

ly a portion of the patches of each candidate according to

the predictions by the current CNN.
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Several researchers have demonstrated the utility of fine-

tuning CNNs for biomedical image analysis, but they only

performed one-time fine-tuning, that is, simply fine-tuning

a pre-trained CNN once with available training samples in-

volving no active selection processes (e.g., [4, 19, 5, 2, 21,

7, 18, 24]). To our knowledge, our proposed method is a-

mong the first to integrate active learning into fine-tuning C-

NNs in a continuous fashion to make CNNs more amicable

for biomedical image analysis with an aim to cut annota-

tion cost dramatically. Compared with conventional active

learning, our AIFT method offers several advantages:

1. Starting with a completely empty labeled dataset, re-

quiring no initial seed labeled samples (see Alg. 1);

2. Incrementally improving the learner through continu-

ous fine-tuning rather than repeatedly re-training (see

Sec. 3.1);

3. Naturally exploiting expected consistency among the

patches associated for each candidate to select samples

“worthy” of labeling (see Sec. 3.2);

4. Automatically handling noisy labels as only a portion

(e.g., a quarter) of the patches in each candidate partic-

ipate in the selection process (see Sec. 3.3);

5. Computing entropy and diversity locally on a small

number of patches within each candidate, saving com-

putation time considerably (see Sec. 3.3).

More importantly, our method has the potential to exert

important impact on computer-aided diagnosis (CAD) in

biomedical imaging, because the current regulations require

that CAD systems be deployed in a “closed” environment,

in which all CAD results be reviewed and errors if any be

corrected by radiologists; as a result, all false positives are

supposed to be dismissed and all false negatives supplied,

an instant on-line feedback that may make CAD systems

self-learning and improving possible after deployment giv-

en the continuous fine-tuning capability of our method.

2. Related work

2.1. Transfer learning for medical imaging

Gustavo et al. [2] replaced the fully connected layers of

a pre-trained CNN with a new logistic layer and trained

only the appended layer with the labeled data while keep-

ing the rest of the network the same, yielding promising

results for classification of unregistered multiview mam-

mograms. In [5], a fine-tuned pre-trained CNN was ap-

plied for localizing standard planes in ultrasound images.

Gao et al. [7] fine-tuned all layers of a pre-trained CNN

for automatic classification of interstitial lung diseases. In

[21], Shin et al. used fine-tuned pre-trained CNNs to au-

tomatically map medical images to document-level topic-

s, document-level sub-topics, and sentence-level topics. In

[18], fine-tuned pre-trained CNNs were used to automat-

ically retrieve missing or noisy cardiac acquisition plane

information from magnetic resonance imaging and predic-

t the five most common cardiac views. Schlegl et al. [19]

explored unsupervised pre-training of CNNs to inject infor-

mation from sites or image classes for which no annotations

were available, and showed that such across site pre-training

improved classification accuracy compared to random ini-

tialization of the model parameters. Tajbakhsh et al. [24]

systematically investigated the capabilities of transfer learn-

ing in several medical imaging applications. However, they

all performed one-time fine-tuning—simply fine-tuning a

pre-trained CNN just once with available training samples,

involving neither active selection processes nor continuous

fine-tuning.

2.2. Integrating active learning with deep learning

The literature of general active learning and deep learn-

ing is rich and deep [8, 28, 17, 20, 9, 10, 26]. However,

the research aiming to integrate active learning with deep

learning is sparse: Wang and Shang [25] may be the first

to incorporate active learning with deep learning, and based

their approach on stacked restricted Boltzmann machines

and stacked autoencoders. A similar idea was reported for

hyperspectral image classification [15]. Stark et al. [22]

applied active learning to improve the performance of C-

NNs for CAPTCHA recognition, while Al Rahhal et al. [1]

exploited deep learning for active electrocardiogram classi-

fication. All these approaches are fundamentally different

from our AIFT approach in that in each iteration they all re-

peatedly re-trained the learner from scratch while we con-

tinuously fine-tune the (fine-tuned) CNNs in an incremental

manner, offering five advantages as listed in Sec. 1.

3. Proposed method

We present our AIFT method in the context of computer-

aided diagnosis (CAD) in biomedical imaging. A CAD sys-

tem typically has a candidate generator, which can quickly

produce a set of candidates, among which, some are true

positives and some are false positives. After candidate gen-

eration, the task is to train a classifier to eliminate as many

false positives as possible while keeping as many true posi-

tives as possible. To train a classifier, each of the candidates

must be labeled. We assume that each candidate takes one

of |Y | possible labels. To boost the performance of CNNs

for CAD systems, multiple patches are usually generated

automatically for each candidate through data augmenta-

tion; these patches generated from the same candidate in-

herit the candidate’s label. In other words, all labels are

acquired at the candidate level. Mathematically, given a set

of candidates, U = {C1, C2, ..., Cn}, where n is the number

of candidates, and each candidate Ci = {x
1
i , x

2
i , ..., x

m
i } is

associated with m patches, our AIFT algorithm iteratively

selects a set of candidates for labeling (illustrated in Alg. 1).
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Algorithm 1: Active incremental fine-tuning method.

Input:

U = {Ci}, i ∈ [1, n] {U contains n candidates}

Ci = {x
j
i}, j ∈ [1,m] {Ci has m patches}

M0: pre-trained CNN

b: batch size

α: patch selection ratio

Output:

L: labeled candidates

Mt: fine-tuned CNN model at Iteration t
Functions:

p← P (C,M) {outputs ofM given ∀x ∈ C}

Mt ← F (L,Mt−1) {fine-tuneMt−1 with L}

a← mean(pi) {a = 1

m

∑m
j=1

pji}

Initialize:

L ← ∅, t← 1

1 repeat

2 for each Ci ∈ U do

3 pi ← P (Ci,Mt−1)
4 if mean(pi) > 0.5 then

5 S
′

i ← top α percent of the patches of Ci

6 else

7 S
′

i ← bottom α percent of the patches of Ci

8 end

9 Build matrix Ri using Eq. 3 for S ′i
10 end

11 Sort U according to the numerical sum of Ri

12 Query labels for top b candidates, yielding Q
13 L ← L

⋃

Q; U ← U \ Q
14 Mt ← F (L,Mt−1); t← t+ 1

15 until classification performance is satisfactory;

3.1. Continuous finetuning

At the beginning, the labeled dataset L is empty; we

take a pre-trained CNN (e.g., AlexNet) and run it on U
to select b number of candidates for labeling. The new-

ly labeled candidates will be incorporated into L to con-

tinuously fine-tune the CNN incrementally until the perfor-

mance is satisfactory. Several researchers have demonstrat-

ed that fine-tuning offers better performance and is more ro-

bust than training from scratch. From our experiments, we

have found that continuously fine-tuning the CNN, which

has been fine-tuned in the previous iteration, with enlarged

datasets converges faster than repeatedly fine-tuning the o-

riginal pre-trained CNN. We also found that continuously

fine-tuning the CNN with only newly labeled data demands

careful meta-parameter adjustments.

3.2. Active candidate selection

In active learning, the key is to develop a criterion for

determining the “worthiness” of a candidate for annotation.

Our criterion is based on an observation: All patches gen-

erated from the same candidate share the same label; they

are expected to have similar predictions by the current C-

NN. As a result, their entropy and diversity provide a use-

ful indicator to the “power” of a candidate in elevating the

performance of the current CNN. Intuitively, entropy cap-

tures the classification certainty—higher uncertainty values

denote higher degrees of information; while diversity indi-

cates the prediction consistency among the patches within a

candidate—higher diversity values denote higher degrees of

prediction inconsistency among the patches within a candi-

date. Therefore, candidates with higher entropy and higher

diversity are expected to contribute more in elevating the

current CNN’s performance. Formally, assuming the pre-

diction of patch xj
i by the current CNN is pji , we define its

entropy as:

eji = −

|Y |
∑

k=1

pj,ki log pj,ki (1)

and diversity between patches xj
i and xl

i of candidate Ci as:

di(j, l) =

|Y |
∑

k=1

(pj,ki − pl,ki )log
pj,ki

pl,ki
(2)

Entropy eji denotes the information furnished by patch xj
i of

candidate Ci in the unlabeled pool. Diversity di(j, l), cap-

tured by the symmetric Kullback Leibler divergence [13],

estimates the amount of information overlap between patch-

es xj
i and xl

i of candidate Ci. By definition, all the entries

in eji and di(j, l) are non-negative. Further, di(j, j) = 0,

∀j, therefore, for notational simplicity, we combine eji and

di(j, l) into a single matrix Ri for each candidate Ci:

Ri(j, l) =

{

λ1e
j
i if j = l,

λ2di(j, l) otherwise
(3)

where λ1 and λ2 are trade-offs between entropy and diver-

sity. We use two parameters for convenience, so as to easily

turn on/off entropy or diversity during experiments.

3.3. Handling noisy labels via majority selection

Automatic data augmentation is essential to boost CNN’s

performance, but it inevitably generates “hard” samples for

some candidates as shown in Fig. 1 and Fig. 2 (c), injecting

noisy labels; therefore, to significantly enhance the robust-

ness of our method, we compute entropy and diversity by

selecting only a portion of the patches of each candidate ac-

cording to the predictions by the current CNN. Specially,

for each candidate Ci we first compute the average proba-

bilistic prediction of all of its patches:

ai =
1

m

m
∑

j=1

pji (4)
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Figure 1: Experts label a frame based on the overall qual-

ity: if over 75% of a frame (i.e., candidate in this applica-

tion) is clear, it is considered “informative”. For example,

the whole frame (the leftmost image) is labeled as “infor-

mative”, but not all the patches associated with this frames

are “informative", although they inherit the “informative”

label. This is the main motivation for the majority selection

in our AIFT method.

where m is the number of patches within candidate Ci, p
j
i

is the prediction probability of patch xj
i . If ai > 0.5, we

select the top α percent patches; otherwise, the bottom α
percent patches. Based on the selected patches, we then use

Eq. 3 to construct the score matrix Ri of size αm × αm
for each candidate Ci in U . Our proposed majority selection

method automatically excludes the patches with noisy la-

bels because of their low confidences. We should note that

the idea of combining entropy and diversity was inspired

by [3], but there is a fundamental difference because they

computed R across the whole unlabeled dataset with time

complexityO(m2), which is very computational expensive,

while we compute Ri(j, l) locally on the selected patches

within each candidate, saving computation time consider-

ably with time complexity O(α2m2), where α = 1/4 in

our experiments.

3.4. An illustration of prediction patterns

Given unlabeled candidates U = {C1, C2, ..., Cn} with

Ci = {x
1
i , x

2
i , ..., x

m
i }, assuming the prediction of patch xj

i

by the current CNN is pji , we call the histogram of pji for

j ∈ [1,m] the prediction pattern of candidate Ci. As shown

in Column 1 of Tab. 1, there are seven typical prediction

patterns:

• Pattern A: The patches’ predictions are mostly con-

centrated at 0.5, with a higher degree of uncertainty.

Most active learning algorithms [20, 9] favor this type

of candidate as it is good at reducing the uncertainty.

• Pattern B: It is flatter than Pattern A, as the patches’

predictions are spread widely from 0 to 1, yielding a

higher degree of inconsistency. Since all the patch-

es belonging to a candidate are generated via data ar-

gumentation, they (at least the majority of them) are

expected to have similar predictions. This type of can-

didate has the potential to contribute significantly to

enhancing the current CNN’s performance.

• Pattern C: The patches’ predictions are clustered at

both ends, resulting in a higher degree of diversity.

This type of candidate is most likely associated with

noisy labels at the patch level as illustrated in Fig. 1,

and it is the least favorable in active selection because

it may cause confusion in fine-tuning the CNN.

• Patterns D and E: The patches’ predictions are clus-

tered at one end (i.e., 0 or 1) with a higher degree of

certainty. The annotation of these types of candidates

at this stage should be postponed because the curren-

t CNN has most likely predicted them correctly; they

would contribute very little to fine-tuning the current

CNN. However, these candidates may evolve into d-

ifferent patterns worthy of annotation with more fine-

tuning.

• Patterns F and G: They have higher degrees of certain-

ty in some of the patches’ predictions and are asso-

ciated with some outliers in the patches’ predictions.

These types of candidates are valuable because they

are capable of smoothly improving the CNN’s perfor-

mance. Though they may not make significant con-

tributions, they should not cause dramatic harm to the

CNN’s performance.

4. Applications

In this section, we apply our method to three differen-

t applications including colonoscopy frame classification,

polyp detection, and pulmonary embolism (PE) detection.

Our AIFT algorithm is implemented in the Caffe frame-

work [11] based on the pre-trained AlexNet model [12].

In the following, we shall evaluate six variants of AIFT

(active incremental fine-funing) including Diversity1/4 (us-

ing diversity on 1/4 of the patches of each candidate), Di-

versity (using diversity on all the patches of each candi-

date), Entropy1/4, Entropy, (Entropy+Diversity)1/4, (En-

tropy+Diversity), and compare them with IFT Random (in-

cremental fine-tuning with random candidate selection) and

Learning from Scratch in terms of AUC (area under ROC

curve).

4.1. Colonoscopy Frame Classification

Objective quality assessment of colonoscopy procedures

is vital to ensure high-quality colonoscopy. A colonoscopy

video typically contains a large number of non-informative

images with poor colon visualization that are not ideal for

inspecting the colon or performing therapeutic actions. The

larger the fraction of non-informative images in a video, the

lower the quality of colon visualization, thus the lower the

quality of colonoscopy. Therefore, one way to measure the

quality of a colonoscopy procedure is to monitor the quality

of the captured images. Technically, image quality assess-

ment at colonoscopy can be formulated as an image clas-
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Table 1: Relationships among seven prediction patterns and six AIFT methods in active candidate selection. We assume that

a candidate has 11 patches, and their probabilities predicted by the current CNN are listed in Column 2. AIFT Entropyα,

Diversityα, and (Entropy+Diversity)α operate on the top or bottom α percent of the candidate’s patches based on the majority

prediction as described in Sec. 3.3. In this illustration, we choose α to be 1/4, meaning that the selection criterion (Eq. 3) is

computed based on 3 patches within each candidate. The first choice of each method is highlighted in yellow and the second

choice is in light yellow.

Figure 2: Three colonoscopy frames, (a) informative, (b)

non-informative, and (c) ambiguous but labeled “informa-

tive” because it is mostly clear. The ambiguous frames con-

tain both clear and blur parts, and generate noisy labels at

the patch level via automatic data argumentation. Our AIFT

method aims to automatically handle the label noise.

sification task whereby an input image is labeled as either

informative or non-informative.

For the experiments, 4,000 colonoscopy frames are s-

elected from 6 complete colonoscopy videos. A trained

expert then manually labeled the collected images as in-

formative or non-informative. A gastroenterologist further

reviewed the labeled images for corrections. The labeled

frames at the video level are separated into training and

test sets, each containing approximately 2,000 colonoscopy

frames. For data augmentation, we extracted 21 patches

Figure 3: Comparing 8 methods in colonoscopy frame clas-

sification (see text for a detailed analysis).

from each frame.

In all three applications, our AIFT begins with an emp-

ty training dataset and directly uses AlexNet pre-trained on

ImageNet. Fig. 3 shows that at the first step (with 2 labels

queried), IFT Random yields the best performance. There

are two possible reasons: (1) random selection gives the

samples with the positive/negative ratio compatible with the

test dataset; (2) the pre-trained AlexNet gives poor predic-
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tions on our dataset, as it was trained by natural images

instead of biomedical images. Its output probabilities are

mostly confused or even incorrect, yielding poor selection

scores. However, AIFT Diversity1/4, Entropy, Entropy1/4

quickly surpass IFT Random after the first fine-tuning, as

they select important samples for fine-tuning, making the

training process more efficient than just randomly select-

ing from the remaining training dataset. AIFT Entropy and

Diversity1/4 with only 4 label queries can achieve the per-

formance of IFT Random with 18 label queries, and that of

Learning from Scratch with 22 randomly selected frames.

Thereby, more than 75% labeling cost could be saved from

IFT Random and 80% from Learning from Scratch.

AIFT Diversity works even poorer than IFT Random

because of noisy labels generated through data augmenta-

tion. AIFT Diversity strongly favors frames whose predic-

tion pattern resembles Pattern C (see Tab. 1). Naturally, it

will most likely select an ambiguous frame such as Fig. 1

and Fig. 2 (c), because predictions of its patches are highly

diverse. All patches generated from the same frame inherit

the same label as the frame; therefore, at the patch level, the

labels are very noisy for the ambiguous frames. AIFT En-

tropy, Entropy1/4, and Diversity1/4 can automatically ex-

clude the noisy label, naturally yielding outstanding perfor-

mance. Given the outstanding performance of AIFT En-

tropy, Entropy1/4, and Diversity1/4, one may consider com-

bining entropy and diversity, but unfortunately, combina-

tions do not always give better performance, because find-

ing a nice balance between entropy and diversity is tricky as

shown in our example analysis in Tab. 1 and supplementary

material.

4.2. Polyp Detection

Colonoscopy is the preferred technique for colon can-

cer screening and prevention. The goal of colonoscopy is

to find and remove colonic polyps—precursors to colon

cancer—as shown in Fig. 4. For polyp detection, our

database contains 38 short colonoscopy videos from 38 d-

ifferent patients, and they are separated into the training

dataset (21 videos; 11 with polyps and 10 without polyps)

and the testing dataset (17 videos; 8 videos with polyps and

9 videos without polyps). There are no overlaps between

the training dataset and testing dataset at the patient level.

Each colonoscopy frame in the data set comes with a binary

ground truth image. 16300 candidates and 11950 candi-

dates were generated from the training dataset and testing

dataset, respectively.

At each polyp candidate location with the given bound-

ing box, we perform a data augmentation by a factor f ∈
{1.0, 1.2, 1.5}. At each scale, we extract patches after the

candidate is translated by 10 percent of the resized bounding

box in vertical and horizontal directions. We further rotate

each resulting patch 8 times by mirroring and flipping. The

Figure 4: Polyps in colonoscopy videos with different shape

and appearance.

Figure 5: Comparing 8 methods in polyp detection (see text

for a detailed analysis).

Figure 6: Monitor the performance of the proposed method

on the remaining training dataset. Using 5% of the whole

training dataset (800/16300), the CNN can predict almost

perfectly on the remaining 95% dataset.

patches generated by data augmentation belong to the same

candidate.

Fig. 5 shows that AIFT (Entropy+Diversity)1/4 and

Diversity1/4 reach the peak performance with 610 label

queries, while IFT Random needs 5711 queries, indicat-

ing that AIFT can cut nearly 90% of the annotation cost

required by IFT Random. The fast convergence of AIFT

(Entropy+Diversity)1/4 and Diversity1/4 is attributed to the

majority selection method, which can efficiently select the

informative and representative candidates while excluding

those with noisy labels. When the queried number is about

5000, the AIFT Entropy1/4 reaches its peak performance.

The reason is that the entropy can only measure the infor-

mativeness so the queried sample is very likely to be sim-

ilar to each other. It needs more queries to select most
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of the informative candidates. AIFT Diversity and (En-

tropy+Diversity) cannot perform as well as the counterparts

with the majority selection due to noisy labels. Learning

from Scratch never achieves the performance of fine-tuning

even if all training samples are used, which is in agreement

with [24].

To gain further insights, we also monitor the perfor-

mance of the 8 methods on the remaining training dataset.

Each time after we have fine-tuned the previous CNN, we

test it on the remaining training dataset. We have observed

that only 800 candidates are needed to reach the maximum

performance. As is shown in Fig. 6, the candidates selected

by our method, which are only 5% (800/16300) of all the

candidates, can represent the remaining dataset, because in

colonoscopy videos consecutive frames are usually similar

to each other.

4.3. Pulmonary Embolism Detection

Our experiments are based on the PE candidates gener-

ated by the method proposed in [16] and the image repre-

sentation introduced in [23] as shown in Fig. 7. We adop-

t the 2-channel representation because it consistently cap-

tures PEs in cross-sectional and longitudinal views of ves-

sels, achieving greater classification accuracy and acceler-

ating CNN training process. In order to feed the RGB-like

patches into CNN, the 2-channel patches are converted to 3-

channel RGB-like patches by duplicating the second chan-

nel. For experiments, we use a database consisting of 121

CTPA datasets with a total number of 326 PEs. The to-

bogganing algorithm [16] is applied to obtain a crude set

of PE candidates. 6255 PE candidates are generated, of

which 5568 are false positives and 687 are true positives.

To train CNN, we extract patches of 3 different physical

sizes, i.e.,10 mm-, 15 mm-, and 20 mm-wide. Then, we

translate each candidate location along the direction of the

affected vessel 3 times, up to 20% of the physical size of

each patch. Then, data augmentation for training dataset is

performed by rotating the longitudinal and cross-sectional

vessel planes around the vessel axis, resulting in 5 addition-

al variations for each scale and translation.

Finally, a stratified training dataset with 434 true positive

PE candidates and 3406 false positive PE candidates would

be generated for training and incrementally fine-tuning the

CNN and a testing dataset with 253 true positive PE candi-

dates and 2162 false positive PE candidates. The overall PE

probability is calculated by averaging the probabilistic pre-

diction generated for the patches within PE candidate after

data augmentation.

Fig. 8 compares the 8 methods on the testing dataset.

The performance of each method becomes saturated af-

ter 2000 labels queried. AIFT (Entropy+Diversity)1/4 and

Diversity1/4 converge the fastest among the 8 method-

s and yields the best overall performance, attributed to

Figure 7: Five different PEs in the standard 3-channel rep-

resentation, as well as in the 2-channel representation [23] ,

which was adopted in this work because it achieves greater

classification accuracy and accelerates CNN training con-

vergence. The figure is used with permission.

Figure 8: Comparing 8 methods in pulmonary embolism

detection (see text for a detailed analysis).

majority selection method proposed in this work. AIFT

(Entropy+Diversity)1/4 and Diversity1/4 with only 1000 la-

bels required can achieve the performance of random se-

lecting 2200 labels fine-tune from AlexNet (IFT Random).

Note that even AIFT Diversity reach its peak performance

when about 3100 samples queried because PE data set in-

jected little noisy labels. Since entropy favors the uncertain

ambiguous samples, both AIFT Entropy1/4 and Entropy

perform bad at the beginning. IFT Random outperforms

at the first few steps as analysed in Sec. 4.1, but increase s-

lowly overall. Based on this analysis, the cost of annotation

can be cut at least half by the our method.

4.4. Observations on selected patterns

We meticulously monitored the active selection process

and examined the selected candidates, as an example, we in-

clude the top 10 candidates selected by the six AIFT meth-

ods at Iteration 3 in colonoscopy frame classification in the
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supplementary material (see Fig. 10). From this process, we

have observed the following:

• Patterns A and B are dominant in the earlier stages of

AIFT as the CNN has not been fine-tuned properly to

the target domain.

• Patterns C, D and E are dominant in the later stages of

AIFT as the CNN has been largely fine-tuned on the

target dataset.

• The majority selection—AIFT Entropy1/4,

Diversity1/4, or (Entropy+Diversity)1/4—is ef-

fective in excluding Patterns C, D, and E, while AIFT

Entropy (without the majority selection) can handle

Patterns C, D, and E reasonably well.

• Patterns B, F, and G generally make good contributions

to elevating the current CNN’s performance.

• AIFT Entropy and Entropy1/4 favor Pattern A because

of its higher degree of uncertainty as shown in Fig. 10.

• AIFT Diversity1/4 prefers Pattern B while AIFT Di-

versity prefers Pattern C (Fig. 10). This is why AIFT

Diversity may cause sudden disturbances in the CN-

N’s performance and why AIFT Diversity1/4 should

be preferred in general.

• Combing entropy and diversity would be highly desir-

able, but striking a balance between them is not trivial,

because it demands application-specific λ1 and λ2 (see

Eq. 3) and requires further research.

5. Conclusion, discussion and future work

We have developed an active, incremental fine-tuning

method, integrating active learning with transfer learning,

offering several advantages: It starts with a completely

empty labeled dataset, and incrementally improves the CN-

N’s performance through continuous fine-tuning by actively

selecting the most informative and representative samples.

It also can automatically handle noisy labels via majority

selection and it computes entropy and diversity locally on a

small number of patches within each candidate, saving com-

putation time considerably. We have evaluated our method

in three different biomedical imaging applications, demon-

strating that the cost of annotation can be cut by at least

half. This performance is attributed to the advanced active

and incremental capability of our AIFT method.

We based our experiments on the AlexNet architecture

because a pre-trained AlexNet model is available in the

Caffe library and its architecture strikes a nice balance in

depth: it is deep enough that we can investigate the impact

of AIFT on the performance of pre-trained CNNs, and it

is also shallow enough that we can conduct experiments

quickly. Alternatively, deeper architectures such as VG-

G, GoogleNet, and Residual network could have been used

and have shown relatively high performance for challenging

computer vision tasks. However, the purpose of this work is

Figure 9: Positive/negative ratio in the samples selected by

six methods. Yellow bar represents the negatives and blue

bar represents the positives.

not to achieve the highest performance for different biomed-

ical image tasks but to answer the critical question: How to

dramatically reduce the cost of annotation when applying

CNNs in biomedical imaging. The architecture and learn-

ing parameters are reported in the supplementary material.

In the real world, datasets are usually unbalanced. In or-

der to achieve good classification performance, both class-

es of samples should be used in training. Fig. 9 shows

the positive/negative label ratio of the samples selected by

the six methods in each iteration in colonoscopy quali-

ty application. For random selection, the ratio is near-

ly the same as whole training dataset, a reason that IFT

Random has stable performance at the cold-start. AIFT

Diversity1/4, Entropy1/4 and Entropy seem capable of

keeping the dataset balanced automatically, a new observa-

tion that deserves more investigation in the future.

We choose to select, classify and label samples at the

candidate level. Labeling at the patient level would certain-

ly reduce the cost of annotation more but introduce more

severe label noise; labeling at the patch level would cope

with the label noise but impose a much heavier burden on

experts for annotation. We believe that labeling at the candi-

date level offers a sensible balance in our three applications.

Finally, in this paper, we use only entropy and diversi-

ty as the criteria. In theory, a large number of active se-

lection methods may be designed, but we have found that

there are only seven fundamental patterns as summarized

in the Sec. 3.4. As a result, we could conveniently focus on

comparing the seven patterns rather than the many methods.

Multiple methods may be used to select a particular pattern:

for example, entropy, Gaussian distance, and standard de-

viation would seek Pattern A, while diversity, variance, and

divergence look for Pattern C. We would not expect sig-

nificant performance differences among the methods within

each group, resulting in six major selction methods for deep

comparisons based on real-world clinical applications.
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Supplementary material

The AlexNet architecture and learning parameters used in our experiments

As discussed in Sec. 5, the purpose of this work is not to achieve the highest performance for different biomedical image

tasks but to answer the critical question: How to dramatically reduce the cost of annotation when applying CNNs in biomed-

ical imaging. For this purpose, we base our experiments on AlexNet, whose architecture is shown in Table 2, as it is deep

enough that we can investigate the impact of AIFT on the performance of pre-trained CNNs, and also small enough that we

can conduct experiments quickly. Learning parameters used for the training and fine-tuning of AlexNet in our experiments

are summarized in Table 3.

Table 2: The AlexNet architecture used in our experiments. Of note, C is 2 as all

our three applications are binary classifications by nature.

layer type input kernel stride pad output

data input 3x227x227 N/A N/A N/A 3x227x227

conv1 convolution 3x227x227 11x11 4 0 96x55x55

pool1 max pooling 96x55x55 3x3 2 0 96x27x27

conv2 convolution 96x27x27 5x5 1 2 256x27x27

pool2 max pooling 256x27x27 3x3 2 0 256x13x13

conv3 convolution 256x13x13 3x3 1 1 384x13x13

conv4 convolution 384x13x13 3x3 1 1 384x13x13

conv5 convolution 384x13x13 3x3 1 1 256x13x13

pool5 max pooling 256x13x13 3x3 2 0 256x6x6

fc6 fully connected 256x6x6 6x6 1 0 4096x1

fc7 fully connected 4096x1 1x1 1 0 4096x1

fc8 fully connected 4096x1 1x1 1 0 Cx1

Table 3: Learning parameters used for the training and fine-tuning of AlexNet in our experiments. µ is the

momentum, αfc8 is the learning rate of the weights in the last layer, α is the learning rate of the weights

in the rest layers, and γ determines how α decreases over epochs. The learning rate for the bias term is

always set twice as large as the learning rate of the corresponding weights. “Epochs” indicates the number

of epochs used in each AIFT iteration. AIFT1 indicates the first iteration of AIFT while AIFT+ indicates

all the following iterations of AIFT.

Application Method µ α αfc8 γ epochs

Colonoscopy Frame Classification

AIFT1 0.9 0.0001 0.001 0.95 20
AIFT+ 0.9 0.0001 0.0001 0.95 15

Learning from Scratch 0.9 0.0001 0.001 0.95 20

Polyp Detection

AIFT1 0.9 0.001 0.01 0.95 5
AIFT+ 0.9 0.0001 0.001 0.10 3

Learning from Scratch 0.9 0.001 0.01 0.95 10

Pulmonary Embolism Detection

AIFT1 0.9 0.001 0.01 0.95 10
AIFT+ 0.9 0.001 0.01 0.10 5

Learning from Scratch 0.9 0.001 0.01 0.95 20
1 Polyp Detection AIFT Diversity+: 0.9 | 0.001 | 0.01 | 0.50 | 3
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Figure 10: Top 10 candidates selected by the six AIFT methods at Iteration 3 in colonoscopy frame classification. Positive

candidates are in red and negative candidates are in blue. Both AIFT Entropy and AIFT Entropy1/4 favor Pattern A because

of its higher degrees of uncertainty. AIFT Diversity1/4 prefers Pattern B while AIFT Diversity suggests Pattern C. With

λ1 = λ2 = 1 (Eq. 3), diversity is dominant in AIFT (Entropy+Diversity) and (Entropy+Diversity)1/4.
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