Henri Grosjean (Ed.)

Fine-Tuning of RNA Functions by Modification and Editing

With 79 Figures, 14 in Color; and 17 Tables

Universitäts- und Londesbibliothek Darmstadt Bibliothek Biologie

brv.-Nr. 16119

Table of contents

(

Modification and editing of RNA: historical overview and important facts	
remember	
Henri Grosjean	1
Abstract	
1 Short historical background	1
1.1 Discovery of modified nucleosides	1
1.2 Discovery of RNA modification enzymes	3
1.3 RNA editing, a new concept	4
1.4 Different mechanisms for RNA modification/editing	7
1.5 Localization and temporal order of RNA modification/editing	9
2 Unraveling the functions of RNA modification/editing enzymes	11
2.1 Need to expand the limited RNA vocabulary	
2.2 Not all nucleosides in RNAs are fully modified/edited	11
2.3 Fine-tuning of RNA structure and function	
2.4 Few modifying enzymes play a dual role in RNA maturation	14
3 Conclusion and further prospects: unravel biological complexity	14
Acknowledgements	15
References	16
Biosynthesis and function of tRNA wobble modifications	23
Tsutomu Suzuki	23
Abstract	23
1 Introduction	23
1.1 The wobble rule and the role of RNA modification in decoding	23
1.2 Modified uridines	26
1.3 Modified adenosine (inosine)	26
1.4 Modified guanosines	27
1.5 Modified cytidines	28
2 Ribonucleome analysis: systematic identification of genes involved in	
RNA modifications by reverse genetics methods	28
2.1 Non-essential RNA modifications	28
2.2 Essential RNA modifications	
3 Biosynthesis of lysidine	32
3.1 Identification of an essential gene responsible for lysidine	
formation	32
3.2 In vitro lysidine synthesis by TilS	
3.3 Mechanism of lysidine synthesis	35
3.4 Direct conversion of the amino acid specificity of tRNA ^{lle} due	
to the lysidine modification	36
3.5 The lysidine modification is essential for decoding AUA	
codons in vivo	37

3.6 Recognition of tRNA ^{Ile} by TilS	37
3.7 Evolution of wobble modifications and genetic code assignment	
of AUA codon	39
4 Wobble modification and subcellular localization of tRNAs	40
4.1 Post-transcriptional modifications control the subcellular	
localization of RNA molecules	40
4.2 Role of wobble modifications in the tRNA sorting mechanism in	
Leishmania tarentolae	41
5 Mitochondrial wobble modifications and human diseases	43
5.1 Mitochondrial wobble modifications and the minimal decoding	
system	43
5.2 Biosynthesis of taurinomethyluridines	47
5.3 Role of mitochondrial tRNA-specific 2-thiouridylase (MTU1)	
in the synthesis of $\tau m^5 s^2 U$	49
5.4 Wobble modification defects in mitochondrial diseases	51
5.5 Molecular pathogeneses of mitochondrial diseases	53
6 RNA modification disorders as a cause of human diseases	56
7 Conclusion and outlook	58
7.1 Amino acid conjugation involved in RNA modifications	58
Acknowledgement	59
References	60

Editing and modification in trypanosomatids: the reshaping of non-coding Mary Anne T. Rubio and Juan D. Alfonzo71 2 RNA modification and trans-splicing......72 4 Role of modifications on sub-cellular localization of tRNAs78 5 The story of tRNA^{Trp} in trypanosomatids: where editing meets Transfer RNA modifications and modifying enzymes in Saccharomyces 1 Introduction 87

2 tRNA maturation	
3 Modified nucleosides in tRNA	
4 Genes required for formation of modified nucleosides in tRNA.	
4.1 Pseudouridine (Ψ)	
4.2 Dihydrouridine (D)	

ł

F	
4.3 5-methyluridine (m ⁵ U)	
4.4 5-methoxycarbonylmethyluridine (mcm ⁵ U) and 5-	
methoxycarbonylmethyl-2-thiouridine (mcm ⁵ s ² U)	98
4.5 7-methylguanosine (m ⁷ G)	
4.6 1-methylguanosine (m ¹ G)	
4.7 wybutosine (yW)	
4.8 N^2 , N^2 -dimethylguanosine (\mathbf{m}_2^2 G)	
4.9 5-methylcytidine (m ⁵ C)	
4.10 N^4 -acetylcytidine (ac ⁴ C)	
4.11 Inosine (I)	
4.12 1-methylinosine (m ¹ I)	102
4.12 1-methyladenosine (m ¹ A)	
4.13 N ⁶ -isopentenyladenosine (i ⁶ A)	
4.15 2'-O-ribosyladenosine (phosphate) (Ar(p))	
4.16 2'-O-methylations	
5 Phenotypes of tRNA modification mutants	
6 Genetic approaches to study function of modified nucleosides a	nd
their modifying enzymes	107
7 Concluding remarks and future prospects	
Acknowledgements:	
References	
Abbreviations	
۲ ۲۰۰۱۰ (م رابع)	
Riosynthesis and function of 1-mathyladanosing in transfer RNA	121
Biosynthesis and function of 1-methyladenosine in transfer RNA	
James T. Anderson and Louis Droogmans	
James T. Anderson and Louis Droogmans Abstract	
James T. Anderson and Louis Droogmans Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA _i ^{Met} from <i>S. cerevisiae</i>	
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA _i ^{Met} from <i>S. cerevisiae</i> 6 Conclusions and perspectives	
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA _i ^{Met} from <i>S. cerevisiae</i> 6 Conclusions and perspectives	
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA _i ^{Met} from <i>S. cerevisiae</i> 6 Conclusions and perspectives	
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA _i ^{Met} from <i>S. cerevisiae</i> 6 Conclusions and perspectives Acknowledgements References	
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA _i ^{Met} from <i>S. cerevisiae</i> 6 Conclusions and perspectives Acknowledgements References	121 121 121 123 124 125 126 128 129 134 134 135
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA ^{Met} from S. cerevisiae 6 Conclusions and perspectives Acknowledgements References	121 121 121 123 124 125 126 128 129 134 134 134 135
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA ^{Met} from <i>S. cerevisiae</i> 6 Conclusions and perspectives Acknowledgements References The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA Joseph A. Bokar	
James T. Anderson and Louis Droogmans Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA ^{Met} from <i>S. cerevisiae</i> 6 Conclusions and perspectives Acknowledgements References The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA Joseph A. Bokar Abstract 1 Introduction	
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA ^{iMet} from <i>S. cerevisiae</i> 6 Conclusions and perspectives Acknowledgements References The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA Joseph A. Bokar Abstract 1 Introduction 2 Methylated nucleosides present in eukaryotic mRNA	121 121 121 123 124 125 126 128 129 134 134 134 135 141 141 141 141
James T. Anderson and Louis Droogmans Abstract 1 Introduction 2 The m ¹ A methyltransferases (MTases) 3 m ¹ A influences tRNA structure 3.1 m ¹ A58 and tRNA structure 3.2 m ¹ A9 in mitochondrial tRNA structure and function 4 m ¹ A58 and HIV replication 5 m ¹ A58 function in stabilizing tRNA ^{Met} from <i>S. cerevisiae</i> 6 Conclusions and perspectives Acknowledgements References The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA Joseph A. Bokar Abstract 1 Introduction	121 121 121 123 124 125 126 128 129 134 134 134 135 141 141 141 141

•

.

2.2 Biological function of methylated nucleosides within the cap	
structure	.143
2.3 Enzymes involved in cap methylation	.146
3 Modified nucleosides at internal positions in eukaryotic mRNA	. 148
3.1 Nucleoside modification by deamination	. 148
3.3 N6-methyladenosine	
3.4 Function of m ⁶ A in mRNA	
4 Characterization and purification of HeLa mRNA N ⁶ -adenosine	
methyltransferase	
4.1 Purification and cDNA cloning of the AdoMet-binding subunit	. 158
4.2 Further characterization of MT-B	
4.3 Subnuclear localization of MT-A70 in HeLa cells	. 159
4.4 MT-A70 is the prototype of a previously undescribed class of	
putative RNA adenosine methyltransferases in a wide variety of	
organisms	.159
5 IME4 is the S. cerevisiae ortholog of MT-A70	. 161
5.1 m ⁶ A is present in mRNA isolated from sporulating yeast	
5.2 IME4 is necessary for m ⁶ A formation in sporulating yeast	
6 MT-A70 is critical for viability of mammalian cell lines	
6.1 RNA interference transfection	
6.2 Loss of MT-A70 leads to HeLa cell apoptosis	
7 Conclusion	.170
References	.171
Role of the 5'-cap in the biogenesis of spliceosomal snRNPs	.179
Achim Dickmanns and Ralf Ficner	. 179
Abstract	. 179
1 Introduction	. 179
2 snRNP biogenesis	. 180
2.1 Transcription of snRNAs	
2.2 m ⁷ G-dependent nuclear export of UsnRNAs	
2.3 Assembly of the snRNP core structure (SMN complex)	
2.4 m ⁷ G-cap hypermethylation	. 185
2.5 Nuclear import	. 187
2.6 Sub-nuclear localization	
3 Structural basis for m ⁷ G- and m ₃ G-cap recognition by proteins	
3.1 Three-dimensional structures of m ⁷ G-cap binding proteins	. 190
3.2 Three-dimensional structure of the m ₃ G-cap binding domain of	
human snurportin1	
4 Conclusions and outlook	
Acknowledgements	
References	

~

Role of a conserved pseudouridine in U2 snRNA on the structural and	
electrostatic features of the spliceosomal pre-mRNA branch site	205
Nancy L. Greenbaum	205
Abstract	
1 Introduction	
1.1 The spliceosome	
1.2 Modified bases in structural RNAs	206
2 Structure of branch site duplexes	
2.1 Structural features of the unmodified branch site helix	209
2.2 Structural features of the ψ -modified branch site helix	210
3 Stabilization of the ψ -modified pre-mRNA branch site helix by	
interactions with water molecules	212
3.1 Global interactions with solvent	212
3.2 Local interactions with water	
4 Global features of the ψ -modified branch site helix	
4.1 Electrostatic surface features of the ψ -dependent branch	
site helix	214
5 Extrapolation from the branch site duplex to the native context	
6 Functional role of ψ in the branch site	
7 Outlook	
Acknowledgements	
References	
Mechanisms and functions of RNA-guided RNA modification	223
Mechanisms and functions of RNA-guided RNA modification Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	
	223
Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223
Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns Abstract	223 223 223
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns Abstract 1 Introduction 2 Discovery of eukaryotic snoRNAs that guide rRNA modifications 2.1 Early studies of snoRNAs 	223 223 223 224 225
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns Abstract	223 223 223 224 225
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 224 225 226
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 224 225 226
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 224 225 226
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226 228
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226 228
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226 228 228 228
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226 228 228 228
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226 228 228 228
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226 228 228 228 228 229 232
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226 228 228 228 228 228 228 223 233 234
 Yi-Tao Yu, Rebecca M. Terns, and Michael P. Terns	223 223 223 224 225 226 226 228 228 228 228 229 232 233 234 235

,

Ň,

7.2 Protein components of pseudouridylation guide RNPs	236
7.3 Evolutionary relationships between archaeal and eukaryotic	
modification guide RNPs	237
8 Assembly and structural organization of modification guide RNPs	239
8.1 Methylation guide RNP structure	
8.2 Pseudouridylation guide RNP structure	
9 Function of pseudouridylation and 2'-O-methylation	
9.1 rRNA modifications occur primarily in functionally important	
regions of the ribosome	247
9.2 rRNA modifications in the peptidyl transferase center contribute	/
to ribosome function and cell growth	247
9.3 Spliceosomal snRNA modifications are required for pre-mRNA	247
splicing	218
9.4 How do modified nucleotides contribute to RNA function?	240
9.5 Are RNA modifications reversible?	
10 Concluding remarks	
Acknowledgments	
References	252
Conserved ribosomal RNA modification and their putative roles in ribosor	
biogenesis and translation	
Bruno Lapeyre	
Abstract	
1 Introduction	263
2 Pseudouridylations conserved in bacteria and eukaryotes	267
3 Base modification and their enzymes	268
4 2'-O-ribose methylations conserved in bacteria and eukaryotes	270
5 The outstanding case of Spb1p: an essential site-specific enzyme	
in a world of snoRNA-guided modifications	271
5.1 The universally conserved $U_{\alpha}m$ is catalyzed by the site-specific	
MTase RrmJ in bacteria	272
5.2 <i>S. cerevisiae</i> possesses three homologs of RrmJ	
6 Perspectives: how can modifications extend the ability of RNA	212
molecules	278
Acknowledgements	
References	
References	219
Nucleotide methylations in rRNA that confer resistance to ribosome-target	
antibiotics	
Stephen Douthwaite, Dominique Fourmy, and Satoko Yoshizawa	
Abstract	
1 Introduction	
2 Ribosomal RNA modifications	
3 The antibiotic resistance rRNA methyltransferases	
4 Resistance to antibiotics targeting the small subunit rRNA	
4.1 The case of kasugamycin resistance	290

4.2 Resistance by methylation of the small subunit rRNA	290
5 Resistance by methylation of the large subunit rRNA	
5.1 Thiopeptide antibiotics	
5.2 Orthosomycin antibiotics	
5.3 MLS _B antibiotics	
6 Synergistic effects of dual rRNA methylations	
7 Conclusion and future perspectives	
Acknowledgements	
References	
Translational Recoding and RNA Modifications	309
Olivier Namy, François Lecointe, Henri Grosjean, and	
Jean-Pierre Rousset	309
Abstract	309
1 Introduction	309
1.1 Recoding events	
1.2 The stimulatory recoding signals	
1.3 Modified nucleotides in RNA and decoding	
1.4 Complexity of the decoding process within the ribosome	
1.5 Testing the roles of modified nucleotides of RNA in recoding	
2 Influence of modified tRNA nucleotides in frameshifting	
2.1 Programmed +1 frameshifting in bacteria	
2.2 Programmed +1 frameshifting in Eukarya	
2.3 Programmed -1 frameshifting in Bacteria and Eukarya	
3 Modified nucleotides in tRNA also affect stop codon readthrough	
efficiency	323
4 Conclusions and Perspectives	
4.1 Decoding rules of recoding process are special	
4.2 <i>Trans</i> -recoding elements are complex and difficult to identify	
4.3 Role of modified nucleotides in both tRNA and rRNA	
Acknowledgements	
References	
Data bases	
Data bases	
Adenosine to inosine RNA editing in animal cells	341
Barry Hoopengardner, Mary A. O'Connell, Robert Reenan, and Liam P.	
Keegan	341
Abstract	
1 Introduction: ADAR RNA editing in vertebrates	
1.1 Functional studies on vertebrate ADAR2	
1.2 Functional studies on vertebrate ADAR2	
1.3 Other <i>ADAR</i> genes in vertebrates	
1.4 Searches for edited transcripts in human cells	
2 RNA editing in <i>Drosophila</i>	
2.1 Edited transcripts in <i>Drosophila</i> : from serendipity to systematic	
identification	

u

3 RNA editing in squid	356
4 RNA editing in C. elegans	
Conclusion	
Acknowledgments	
References	
Mammalian C to U editing	365
Harold C. Smith, Joseph E. Wedekind, Kefang Xie, and Mark P. Sowden	
Abstract	365
1 Introduction	
2 Site-specific apoB mRNA editing: the basic facts	366
3 Characteristics of the RNA substrate	
4 APOBEC-1	369
4.1 Requirement of APOBEC-1 for C to U mRNA editing	369
4.2 Catalytic residues, RNA binding and oligomerization of	
APOBEC-1	
4.3 Post-translational modification of APOBEC-1	372
4.4 The conserved deaminase fold	373
4.5 Comparative models of APOBEC-1 and AID	373
4.6 APOBEC-1 and dC to dU DNA mutation	376
4.7 APOBEC-1 and neoplasia	377
5 Auxiliary proteins	378
5.1 Emergence of the C to U editosome concept	378
5.2 The editosome	379
5.3 APOBEC-1 complementation factor (ACF)	
5.4 Other auxiliary proteins	380
6 Subcellular distribution of editing factors	381
6.1 APOBEC-1	381
6.2 ACF	382
6.3 Regulation of apoB mRNA stability	383
7 Regulation of apoB mRNA editing	383
8 Prospective for APOBEC-1 and APOBEC-1 related proteins	385
Acknowledgements	
References	388
Transfer RNA modifications and DNA editing in HIV-1 reverse	
transcription	
Roland Marquet and Frédéric Dardel	
Abstract	
1 Introduction	
2 tRNA modification and HIV-1 reverse transcription	
2.1 Function of the modified nucleotides of tRNA	
2.2 Selective uptake of primer tRNA into the viral particle	
2.3 Initiation of reverse transcription	
2.4 Plus strand strong stop synthesis	410
3 DNA editing and HIV-1 reverse transcription	411

ĉ

Į

3.1 Vif: a viral infectivity factor that counteracts a cellular	
restriction factor	411
3.2 Cytosine deamination as an innate antiviral activity	412
3.3 Vif neutralizes APOBEC3G	416
4 Conclusions	419
Acknowledgements	
References	
Um34 in selenocysteine tRNA is required for the expression of	-
stress-related selenoproteins in mammals	431
Bradley A. Carlson, Xue-Ming Xu, Vadim N. Gladyshev, and Dolph L.	
Hatfield	431
Abstract	
1 Introduction	
2 Sec tRNA ^{[Ser]Sec}	432
3 Generation of mouse models	
3.1 Selective rescue of selenoprotein expression	
4 Discussion and concluding remarks	
References	
Index	439

ราก และ 2 และกระบบ และ และ เป็นระบบที่สายที่ และ ในสะมัยจะ มีประโยชงส์ สาขสินส์ของสีสุดสีสุดสีสุดสีสุดสีสุดสี