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Abstract
Background: Development of albuminuria and arterial stiff-
ness in Munich Wistar Frömter (MWF) rats, a model of chron-
ic kidney disease, is related to alterations in extracellular ma-
trix, increased oxidative stress, and endothelial dysfunction. 
Finerenone (FIN), a novel, nonsteroidal, potent, and selective 
mineralocorticoid receptor antagonist, improves endothe-
lial dysfunction through enhancing nitric oxide (NO) bio-
availability and decreasing superoxide anion levels due to an 
upregulation in vascular and renal superoxide dismutase ac-
tivity. We hypothesize that FIN reduces arterial stiffness in 
this model associated to the reduction in albuminuria and 
matrix metalloproteinase (MMP)-2/9 activity. Methods: 
Twelve-week-old MWF rats with established albuminuria 

and age-matched normoalbuminuric Wistar (W) rats were 
treated with FIN (10 mg/kg/day, once-daily oral gavage) or 
with vehicle (control, C) for 4 weeks. Results: Arterial stiff-
ness was significantly higher in mesenteric arteries (MA) of 
MWF-C as compared to W-C. FIN treatment significantly low-
ered β-index, a measure of intrinsic stiffness independent of 
geometry, in MWF (βMWF-FIN = 7.7 ± 0.4 vs. βMWF-C = 9.2 ± 0.5, 
p < 0.05) positively correlating with urinary albumin excre-
tion. Elastin fenestrae area in the internal elastic lamina of 
MA from MWF-FIN was significantly larger (+377%, p < 0.05). 
FIN increased plasma pro-MMP-2 and decreased plasma 
MMP-2 and MMP-9 activities, correlating with reductions in 
β-index. MA from MWF-FIN exhibited higher NO bioavail-
ability and reduced superoxide anion levels compared to 
MWF-C. Conclusion: FIN treatment reduces intrinsic arterial 
stiffness in MA from MWF rats associated with changes in 
elastin organization, normalization of MMP-2 and MMP-9 ac-
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tivities, and reduction of oxidative stress. Moreover, reduc-
tion of arterial stiffness correlates with reduction in albumin-
uria. © 2020 S. Karger AG, Basel

Introduction

Arterial stiffness is an independent predictor of car-
diovascular morbidity and mortality [1–4] and is also as-
sociated to the progression of chronic kidney disease 
(CKD) [5–10]. Albuminuria represents an early marker 
of both renal and vascular damage [11–13]. Epidemio-
logic data indicate an independent association between 
arterial stiffness and albuminuria in hypertensive [14, 15] 
and diabetic patients [16–19], as well as in the general 
population [20, 21]. This association supports the hy-
pothesis of a generalized vascular dysfunction due to sim-
ilar pathophysiologic mechanisms as a common pathway 
linking the cardiovascular-renal axis in patients with al-
buminuria [22–25]. 

The Munich Wistar Frömter (MWF) rat is a genetic 
model of spontaneous nondiabetic albuminuria develop-
ment that mirrors several features observed in patients 
with albuminuria and CKD [24, 26]. It develops progres-
sive albuminuria, mild hypertension and renal injury 
with age [24, 26–31]. In this model, we showed a genetic 
link between albuminuria development and increased ar-
terial stiffness due to alterations in elastin organization, 
increased oxidative stress and matrix metalloproteinase 
(MMP)-9 activity, and endothelial dysfunction [32, 33].

Steroidal mineralocorticoid receptor antagonists 
(MRA), that is, spironolactone, canrenone, and eplere-
none, reduce vascular stiffness [34, 35]. However, their use 
is not approved in CKD or diabetic kidney disease. Finere-
none (FIN; BAY 94-8862) is a novel, nonsteroidal, potent, 
and selective MRA, which combines the potency of spi-
ronolactone with the selectivity of eplerenone. Its struc-
ture confers a different binding mode within the MR as 
well as different physicochemical properties (lipophilicity 
and polarity) which have an impact on tissue penetration 
and distribution [36, 37]. Quantitative whole-body auto-
radiography with FIN revealed a balanced cardiac versus 
renal distribution ratio in rodents [36, 37]. FIN reduced 
cardiac hypertrophy, pro-B-type natriuretic peptide, and 
proteinuria more efficiently than eplerenone when direct-
ly comparing equinatriuretic doses in a rat model of hy-
pertensive cardiorenal end-organ damage [36]. 

We have recently demonstrated the efficacy of FIN to 
ameliorate albuminuria and normalize endothelial dys-

function in the aorta of MWF rats at a blood pressure-low-
ering dosage [38]. This was found to be related to an increase 
in endothelial nitric oxide (NO) availability due to an up-
regulation in peNOS, Mn-superoxide dismutase (SOD) and 
Cu, Zn-SOD expression in the vascular wall with a subse-
quent decrease in superoxide anion (O2

–) and hydrogen 
peroxide (H2O2) levels. In addition, the upregulation of re-
nal total SOD activity after FIN treatment supports a func-
tional link between extrarenal normalization of vascular 
dysfunction and improvement of glomerular permeability 
dysfunction. The hypothesis of this study is that FIN reduc-
es arterial stiffness in the MWF CKD model associated to 
the reduction of albuminuria and MMP-2/9 activities.

Materials and Methods

Animals and Experimental Protocol
Twelve-week-old male Wistar (W; Charles River, Barcelona, 

Spain) and MWF rats (Charité – University Medicine Berlin, 
 Germany) were housed in groups of 2 under controlled dark–light 
cycles (12/12 h), temperature conditions, and with food (A.04, Pan-
lab) and water available ad libitum. Animals were randomly grouped 
to receive FIN (10 mg/kg/day in 10% ethanol, 40% polyethylene 
glycol 400, 50% water; W-FIN; MWF-FIN; n = 10 per group) or ve-
hicle (10% ethanol, 40% polyethylene glycol 400, 50% water; W-C; 
MWF-C; n = 10 per group) for 4 weeks by once-daily oral gavage, as 
previously described [38]. Systolic blood pressure (SBP) was mea-
sured at the end of treatment by the tail-cuff method after a previous 
adaptation to the cuff. Urinary albumin excretion (UAE) was deter-
mined placing the rats in metabolic cages for 24 h after a 1-day ad-
aptation period. UAE was measured by enzyme-linked immunosor-
bent assay using a rat-specific antibody (ICN Biomedicals, Eschwe-
ge, Germany). The Institutional Animal Care and Use Committee 
approved all experimental procedures according to the guidelines 
for ethical care of experimental animals of the European Commu-
nity (PROEX413/15). All efforts were made to avoid animal suffer-
ing in accordance with the ARRIVE (Animal Research: Reporting 
of In Vivo Experiments) guidelines for reporting experiments in-
volving animals [39, 40]. All experimental procedures were blinded.

Structural and Mechanical Properties in Mesenteric Resistance 
Arteries
Second-order branch of mesenteric resistance arteries (MA) 

were dissected to determine structural and mechanical properties 
with a pressure myograph (Model P100, Danish Myo-Tech) as pre-
viously described [32, 41, 43] (online suppl. methods; for all online 
suppl. material, see www.karger.com/doi/10.1159/000506275). 

Elastin Content and Organization in Mesenteric Resistance 
Arteries 
Elastin content and organization in the external elastic lamina 

and internal elastic lamina (IEL) were studied in intact pressure-
fixed second branch MA with fluorescent confocal microscopy 
based on the autofluorescent properties of elastin (excitation 
488 nm/emission 500–560 nm) as previously described [32, 41, 43] 
(online suppl. Methods). 
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Detection of Pro-MMP-2, MMP-2, and MMP-9 Activities and  
Tissue Inhibitors of Metalloproteinases (TIMP-1) Levels 
Plasma samples were diluted to load a final amount of 4 and 

20 µg of proteins for pro-MMP-2, MMP-2, and MMP-9 activity as-
says, respectively. Laemmli solution (0.125 mol L–1 Tris, 25% glyc-
erol, 20% SDS, and 0.01% bromophenol blue) was added to plasma 
samples (1: 5 dilution) and then subjected to sodium dodecyl sulfate 
(SDS)-polyacrylamide gels electrophoresis containing 0.1% gelatin. 
After being washed with distilled water, gels were incubated for 1 h 
with the activation buffer (50 mmol L–1 Tris-HCl, 6 mmol L–1 
CaCl2, and 2.5% Triton X-100) and for 24 h at 37  ° C with Triton 
X-100 free activation buffer. Gels were then stained with Coomass-
ie Brilliant Blue (BioRad) for 10 min and destained with a solution 
containing 40% methanol and 10% acetic acid for 1 min. Thereafter 
gels were incubated with a stop solution (10% acetic acid) for 24–48 
h, as required. Gelatin zymographies were quantified using optical 
density values by ImageJ software, as described [35]. TIMP-1 plas-
ma levels were determined by rat TIMP-1 Quantikine enzyme-
linked immunosorbent assay (RTM100, BoTechne).

NO, Superoxide Anion, and Hydrogen Peroxide Bioavailability
NO bioavailability was calculated by the analysis of the differ-

ence in area under the concentration-response curve (ΔAUC) elic-
ited by noradrenaline in MA (online suppl. Methods) in the pres-
ence and absence of the NO synthase inhibitor, N omega-Nitro-L-
arginine methyl ester hydrochloride (L-NAME) (10–4 mol L–1). 
Superoxide anion and hydrogen peroxide bioavailability was cal-
culated by the analysis of ∆AUC elicited by noradrenaline in the 
presence and absence of the inhibitor of superoxide generation, 
apocynin (10–4 mol L–1), and the catalase inhibitor, 3-amino-1,2,4-
triazole (5 × 10–3 mol L–1), respectively.

Statistical Analysis
Number of animals per group was n = 10 to reach a signifi-

cance level of 5% (p < 0.05), with a required power of 80% and a 
difference to be detected of 1.6 typical deviation. Student t tests 
or ANOVA followed by Newman-Keuls post hoc test was used 
as appropriate. Correlation analysis was performed through lin-
ear regression as well as analyzed by Pearson’s correlation. AUC 

was calculated from each individual concentration-response 
curve plot (GraphPadSoftware). Statistical analysis was per-
formed with GraphPad Prism 7.0 (GraphPad Software, La Jolla, 
CA, USA).

Results

FIN Significantly Reduced Albuminuria and SBP in 
MWF
FIN treatment leads to a significant reduction in UAE 

and SBP in MWF rats with no effect on the W group (Ta-
ble 1). No differences were observed in body or kidney 
weight, urinary volume, and heart rate of pulse wave ve-
locity between strains and treatments (Table 1).

FIN Reduced Arterial Stiffness in MA from MWF
In MA from W-FIN rats, vascular stress (Fig. 1a) and 

strain (Fig. 1b) were significantly higher compared with 
the W-C group. No differences were observed in incre-
mental distensibility (Fig.  1c), in the stress/strain rela-
tionship, or in β-index (Fig. 1d). Vascular stress (Fig. 1a), 
strain (Fig. 1b), and incremental distensibility (Fig. 1c) 
were similar between MWF-C and W-C. However, in 
MA from MWF-C, the stress/strain relationship was sig-
nificantly shifted to the left with a significantly larger 
β-index compared with W-C (βW-C = 6.4 ± 0.4 vs. βMWF-C = 
9.2 ± 0.5; Fig. 1d).

FIN treatment significantly shifted the stress/strain re-
lationship curve to the right, reducing β-index in MWF-
FIN (βMWF-FIN = 7.7 ± 0.4 vs. βMWF-C = 9.2 ± 0.5, p < 0.05; 
Fig. 1d). There was a significant correlation between UAE 
and β-index in MWF rats (r = 0.44; p < 0.05; Fig. 1e).

Table 1. Characteristics of the animal model and treatment

W W-FIN MWF MWF-FIN

Body weight, g 391.8±17.2 392.5±12.7 362.8±12.8 350.3±9.0
Kidney weight, mg/cm tibia 1.1±0.1 1.1±0.04 1.1±0.04 1.0±0.03
Tibial length, cm 4.0±0.1 4.3±0.1 4.2±0.1 4.1±0.1
Urine volume, mL/24 h 11.1±1.3 12.1±1.8 10.1±0.4 10.5±0.2
Urinary albumin excretion, mg/24 h 0.17±0.01 0.22±0.04 64.4±5.6* 37.8±3.8#

SBP, mm Hg 126.9±4 127.5±5 151.5±9* 133.9±3#

HR, bpm 355.3±9.7 351.9±8.9 352.3±7.3 353.7±6.1
PWV, ms–1 5.4±0.5 5.3±0.5 5.6±0.5 5.6±0.5

Data are expressed as mean ± SEM, n = 10.
* p < 0.05 compared to the W-C group.
# p < 0.05 compared to the MWF-C group.
W, Wistar; FIN, finerenone; MWF, Munich Wistar Frömter; C, control; MMP, matrix metalloproteinase; SBP, 

systolic blood pressure.
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FIN Induced Changes in Elastin Organization in 
Mesenteric Resistance Arteries from MWF
In order to assess if the improvement in arterial elastic-

ity is related to changes in elastin organization, MA were 
analyzed by confocal microscopy. Elastin organization in 
the IEL was altered in MA from MWF-C animals, show-
ing a significant reduction in elastin content (Fig. 2a). FIN 
significantly increased both elastin content (Fig. 2b) and 
fenestrae area in MWF-FIN (Fig. 2c) without changes in 

the total number of fenestrae (Fig. 2d). No differences in 
elastin content were observed in the external elastic lam-
ina of MA (Fig. 2e).

FIN Reduced Both MMP-2 and MMP-9 Activity in 
Plasma from MWF 
Gelatinase pro-MMP-2, MMP-2, and MMP-9 activities 

were analyzed by zymography. Pro-MMP-2 (72 kDa) ac-
tivity was significantly lower in plasma samples from 

p < 0.05
r = 0.44
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Fig. 1. Characterization of mechanical parameters in second-order 
mesenteric resistance arteries. a Wall stress-pressure. b strain-
pressure. c incremental distensibility-pressure curves and (d) 
stress-strain relationships with β-values obtained from fully re-
laxed (Ca2+-free PSS) in MA segments from C and FIN-treated W 

and MWF rats. e Correlation between UAE and β-values in MWF 
rats. Data are expressed as mean ± SEM of n = 10. * p < 0.05 com-
pared with W. # p < 0.05 compared with MWF. MWF, Munich 
Wistar Frömter; W, Wistar; FIN, finerenone; C, control.
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MWF-C rats compared with W-C rats, paralleled by high-
er levels of active MMP-2 (62 kDa). Active MMP-9 (82 kDa) 
activity was also higher in MWF-C compared to W-C rats. 
FIN treatment restored pro-MMP-2, MMP-2, and MMP-9 
activities in MWF to control levels (Fig. 3). No differences 
between groups were observed in TIMP-1 levels (Fig. 3). 
Pro-MMP-2 showed a negative correlation with β-index, 
whereas correlation between β-index and MMP-2 or 
MMP-9 activities was positive (Fig.  3). Moreover, there 
was a positive correlation between UAE and MMP-2/9 ac-
tivities in the MWF groups (online suppl. Fig. 1).

FIN Did Not Modify Structural Parameters in MA 
from MWF 
No differences were observed between groups in struc-

tural parameters, that is, external diameter (online suppl. 
Fig. 2a), internal diameter (online suppl. Fig. 2b), wall-to-
lumen ratio (online suppl. Fig.  2c), and cross-sectional 
area (online suppl. Fig. 2d) from MA at all intraluminal 
pressures tested. Confocal microscopy analyses in pres-
sure-fixed segments at 70 mm Hg showed that adventi-
tial, medial, and wall thicknesses were also similar be-
tween groups (online suppl. Table 1).
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Fig. 2. Elastin content and organization in second-order mesen-
teric resistance arteries. Representative confocal projections of the 
IEL (a) of MA from C and FIN-treated W and MWF rats. Projec-
tions were obtained from serial optical sections captured with a 
fluorescence confocal microscope (×63 oil immersion objective. 
zoom ×2). Bars show quantification of elastin proportion in IEL 

(b), fenestrae area (c), fenestrae number (d), and quantification of 
elastin proportion in EEL (e). Results are expressed as mean ± SEM 
of n = 5. * p < 0.05 compared with W. # p < 0.05 compared with 
MWF. MWF, Munich Wistar Frömter; W, Wistar; FIN, finere-
none; C, control; IEL; internal elastic lamina; EEL, external elastic 
lamina.
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FIN Reduces Oxidative Stress in MA from MWF Rats
NO bioavailability showed a significant increase in 

MWF-FIN compared to MWF-C rings (∆AUCMWF-C = 
83.1 ± 19.2; ∆AUCMWF-FIN = 197.5 ± 11.4; p < 0.001). No 
differences were observed between W groups (∆AUCW-C = 
95.4 ± 13.4; ∆AUCW-FIN = 64.3 ± 7.9; online suppl. Fig. 3c). 

Superoxide anion bioavailability showed a significant 
decrease in MWF-FIN compared to MWF-C rings 
(∆AUCMWF-C = 102.4 ± 9.1; ∆AUCMWF-FIN = 33.9 ± 7.5; p < 
0.001). No differences were observed between W groups 
(∆AUCW-C = 41.5 ± 11.3; ∆AUCW-FIN = 47.1 ± 6.4; online 
suppl. Fig. 4a, b). A similar reduction was observed for hy-
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Fig. 3. MMPs (2 and 9) activities and TIMP-1 levels in plasma. a 
Representative gelatinase zymography and quantification of pro- 
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drogen peroxide availability (∆AUCMWF-C = 87.7 ± 12.2; 
∆AUCMWF-FIN = 47.8 ± 13.6; p < 0.05; ∆AUCW-C = 50 ± 
11.2; ∆AUCW-FIN = 63.6 ± 8.1; online suppl. Fig. 4c, d).

Discussion

This study demonstrates the efficacy of FIN to reduce 
intrinsic arterial stiffness in MA from MWF, associated 
with a reduction in UAE. The reduction in arterial stiff-
ness correlates with the increase in plasma pro-MMP-2 
together with the reduction in plasma MMP-2 and MMP-
9 activities, as well as with an increase in elastin amount 
and in the IEL fenestrae area. FIN also increases NO bio-
availability and a reduction in superoxide and hydrogen 
peroxide levels in MA.

Albuminuria has been suggested as an early marker for 
vascular damage including arterial stiffness [42] since 
both phenotypes are linked in patients with hypertension 
[14, 15] or diabetes [16–18, 42]. We have previously 
shown that spontaneous albuminuria in MWF rats is as-
sociated with an increased intrinsic arterial stiffness as 
determined by the β-index of the stress-strain relation-
ship in MA [32]. Here we show that FIN leads to a sig-
nificant reduction of arterial stiffness in these vessels of 
MWF rats as evidenced by the rightward shift of the 
stress-strain relationship and the lower β-index, regard-
less of the small effect observed separately on stress and 
strain. Interestingly, there is a significant correlation be-
tween UAE and β-index in MWF rats.

The changes observed in elastin organization are es-
sential for the change in elastic properties and reduc-
tion of arterial stiffness by FIN. It is well known that 
alterations in elastin content and organization deter-
mine mechanical properties of the vascular wall and 
compromise arterial elasticity contributing to arterial 
stiffness [44, 45]. In fact, we previously showed a nega-
tive correlation between IEL fenestrae size and β-values 
in MA from spontaneously hypertensive rats (SHR) [44, 
45] and from MWF [32]. Changes in elastin structure 
associated to arterial stiffness reduction have been dem-
onstrated for atorvastatin [46]. However, this is the first 
report showing that MRA treatment leads to enlarged 
elastin fenestrae area in the IEL associated to reduced 
intrinsic arterial stiffness in resistance arteries.

MMPs are important markers of the deleterious re-
modeling in the progression of CVD and CKD [47–49]. 
Although MMPs were classically viewed as antifibrotic 
tissue components, it is now accepted that a defective ex-
tracellular matrix (ECM) turnover managed by MMPs is 

associated with inflammation, deleterious remodeling, 
and oxidative stress [49, 50]. The increase in pro-MMP-2/
MMP-2 ratio and the decrease in MMP-9 elicited by FIN 
treatment correlate with the reduction in arterial stiff-
ness. Previous studies by the group showed that plasma 
MMP-9 activation is specifically linked to albuminuria 
and not to hypertension development and that increased 
plasma MMP-9 activity parallels increased renal MMP-9 
activity [33]. This is also highlighted in this study by the 
positive correlation between albuminuria and both 
MMP-2 and MMP-9 plasma activities. Moreover, we pre-
viously demonstrated that arterial stiffness found in 
MWF was completely restored by albuminuria suppres-
sion in both consomic  MWF-6SHR and MWF-8SHR rats 
correlating with elastin changes [32]. In this regard, a 
study performed in Asiatic patients with Type-2 diabetes 
has recently suggested arterial stiffness as a potential pre-
dictor for albuminuria progression [51]. Therefore, FIN 
could contribute to reducing arterial stiffness by prevent-
ing the development of albuminuria. In fact, since UAE 
at treatment start, that is, 12 week-old MWF, is around 40 
mg/24 h [32], FIN seems to prevent a further increase in 
albuminuria but does not reverse already established 
UAE levels before treatment.

Studies performed with other MRAs such as spirono-
lactone have also shown a significant reduction of arte-
rial stiffness in animal models of obesity [52] or hyperten-
sion as well as in patients with early CKD [35]. Eplere-
none has shown to reduce arterial stiffness in hypertensive 
patients or in subjects with CKD as well [34, 53]. How-
ever, steroidal MRAs are currently often underused, not 
approved, or even contraindicated in patients with CKD 
because of their risk of hyperkalemia and worsening of 
renal function [54]. In contrast, administration of FIN in 
diabetic kidney disease patients with albuminuria already 
receiving RAS blockade resulted in dose-dependent, sig-
nificant reductions in albuminuria at doses of 7.5, 10, 15, 
and 20 mg after 90 days of treatment [54]. Hyperkalemia 
leading to discontinuation was not observed in the pla-
cebo and FIN 10 mg groups and the incidences in the 
other groups were only between 1.7 and 3.2% [54].

In nonhypertensive and nondiabetic conditions, there 
is an association between albuminuria and pulse wave ve-
locity (PWV) [25]. Despite the increase of intrinsic stiff-
ness of MA from MWF rats, there are still no changes in 
PWV, probably because the age of 16 weeks is too early to 
detect the overall impact of functional and mechanic 
changes on PWV. Since arterial stiffness is influenced by 
arterial blood pressure, its reduction normally decreases 
the “pressure-dependent” component of PWV. In this 
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context, it must be noted that FIN is impacting the me-
chanical component of the blood vessel wall indepen-
dently of blood pressure reduction.

We and others have shown an association between 
vascular alterations and increased vascular oxidative 
stress both in patients with albuminuria [55–57] and in 
MWF rats [32, 58–60], suggesting a pathophysiological 
link between cardiovascular and renal injury. This strain 
shows an increased vascular and renal oxidative stress 
[32, 61]. The current beneficial effect of FIN on the in-
crease in NO availability and reductions in superoxide 
anion availability adds to recent findings from our group 
[38], demonstrating that FIN normalizes endothelial dys-
function in conductance vessels of MWF rats, such as the 
aorta. In the aortic wall, FIN decreased O2

– and H2O2 
levels due to an upregulation in peNOS, Mn-SOD and 
Cu, Zn-SOD expression at a blood pressure-lowering 
dosage [38]. In accordance, MA show an improvement 
of endothelial relaxations associated to lower O2

– and 
H2O2 levels, higher NO availability, and a decrease in al-
buminuria (online suppl. Fig. 3, 4, Table 2). Similar re-
sults have been observed with other MRAs. Spironolac-
tone [62] or eplerenone [62, 63] normalizes endothelial 
function by reducing O2

– and oxidative stress in several 
models of hypertension [64]. Spironolactone reduces 
moreover urinary H2O2 levels in recipients of a kidney 
transplant [65].

In conclusion, the current study shows that FIN elicits 
a beneficial effect on both arterial distensibility and albu-
minuria in the MWF CKD model. These effects are thus 
contributing to an overall improvement of vascular func-
tion in this setting. Thus, our beneficial experimental 
findings support further clinical translational studies 
with FIN to explore its therapeutic potential on decreas-
ing arterial stiffness and improving overall vascular func-
tion in patients with albuminuria and CKD. FIN at daily 

doses of 10 and 20 mg has currently been investigated in 
2 large outcome trials in patients with CKD in T2DM 
(FIGARO-DKD, NCT02545049 [66] and FIDELIO-
DKD, NCT02540993 [67]).
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