
This paper is included in the Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST ’19).

February 25–28, 2019 • Boston, MA, USA

978-1-939133-09-0

Open access to the Proceedings of the
17th USENIX Conference on File and

Storage Technologies (FAST ’19)
is sponsored by

Finesse: Fine-Grained Feature Locality based
Fast Resemblance Detection for

Post-Deduplication Delta Compression
Yucheng Zhang, Hubei University of Technology; Wen Xia, Harbin Institute of Technology,

Shenzhen & Peng Cheng Laboratory; Dan Feng, WNLO, School of Computer, Huazhong
University of Science and Technology; Hong Jiang, University of Texas at Arlington; Yu Hua

and Qiang Wang, WNLO, School of Computer, Huazhong University of Science and Technology

https://www.usenix.org/conference/fast19/presentation/zhang

Finesse: Fine-Grained Feature Locality based Fast Resemblance Detection
for Post-Deduplication Delta Compression

Yucheng Zhang†, Wen Xia‡,⋆, Dan Feng§,⋆, Hong Jiang¶, Yu Hua§, Qiang Wang§

†
Hubei University of Technology

‡
Harbin Institute of Technology, Shenzhen & Peng Cheng Laboratory

§
WNLO, School of Computer, Huazhong University of Science and Technology

¶
University of Texas at Arlington

⋆
Corresponding authors: xiawen@hit.edu.cn and dfeng@hust.edu.cn

Abstract

In storage systems, delta compression is often used as a
complementary data reduction technique for data deduplica-
tion because it is able to eliminate redundancy among the
non-duplicate but highly similar chunks. Currently, what
we call ‘N-transform Super-Feature’ (N-transform SF) is
the most popular and widely used approach to computing
data similarity for detecting delta compression candidates.
But our observations suggest that the N-transform SF is
compute-intensive: it needs to linearly transform each Rabin
fingerprint of the data chunks N times to obtain N features,
and can be simplified by exploiting the fine-grained feature
locality existing among highly similar chunks to eliminate
time-consuming linear transformations. Therefore, we pro-
pose Finesse, a fine-grained feature-locality-based fast re-
semblance detection approach that divides each chunk into
several fixed-sized subchunks, computes features from these
subchunks individually, and then groups the features into
super-features. Experimental results show that, compared
with the state-of-the-art N-transform SF approach, Finesse
accelerates the similarity computation for resemblance de-
tection by 3.2×∼3.5× and increases the final throughput of
a deduplicated and delta compressed prototype system by
41%∼85%, while achieving comparable compression ratios.

1 Introduction
Data deduplication, a popular data reduction technique, usu-
ally identifies duplicate data at the chunk level (e.g., 8KB
size) by using secure fingerprints (e.g., SHA1) to uniquely
and globally represent data chunks in storage systems [34,
44]. Hence, deduplication-based storage systems only store
one physical instance referred to by any other duplicates,
which helps improve storage space efficiency [18, 25, 44]
or network bandwidth efficiency [26, 29].

Recently, delta compression has also gained increasing at-
tention due to its ability to eliminate data redundancy among
non-duplicate but highly similar chunks, which can be used

Data

Chunk1

Data

Chunk2

 Detecting similar

chunks by their SFs

Regions of

Difference

Extracted

Feature1

Extracted

Feature2

Chunk2 = Base Chunk
(chunk1)

Extracted

Feature3

Extracted

Feature4

delta(chunk1,chunk2)

Rabinj

 Computing features

and SFs according to

rolling hashes (Rabin)

 Delta Encoding

Position j

Figure 1: An example of delta compression on two similar
chunks with the three typical steps: 1⃝ computing similarity,
2⃝ indexing, and 3⃝ delta encoding.

post-deduplication as a complementary technique to further
eliminate redundancy. For example, if chunk A2 is similar to
chunk A1 (the base chunk), the delta compression approach
only stores or transfers the differences (delta) and the map-
ping relation between A2 and A1, removing the redundant
data to improve storage space efficiency [21, 30, 36, 37, 41]
or network bandwidth efficiency [8, 29, 42, 43]. Several
studies [29, 30, 37, 38] suggest that delta compression is
able to achieve about 2× additional compression ratio be-
yond deduplication and local compression in backup storage
workloads.

For delta compression in deduplication-based storage sys-
tems, resemblance detection is the first key step in its work-
flow, which identifies delta compression candidates. This is
because a higher similarity degree in the detected chunks
implies more space savings from delta compression. Cur-
rently, the most commonly used chunk-level resemblance
detection approach computes the ‘super-features’ (SF for
short) [5, 17, 29] based on the Rabin fingerprints [28] of
data contents, to detect highly similar chunks. Figure 1
gives an example of the general workflow for this SF-based
delta compression approach: 1⃝ computing the similarity of
chunks, namely, computing features and grouping features

USENIX Association 17th USENIX Conference on File and Storage Technologies 121

into SFs (detailed in Section 3), 2⃝ detecting similar chunks
according to their SFs (any two chunks having a SF in com-
mon are considered highly similar [6]), 3⃝ delta encoding the
two similar chunks, i.e., calculating their differences, also
called ‘delta’. For decompression, the input chunk is recov-
ered by decoding the ‘delta’ with the base chunk.

To achieve high delta compression efficiency, some recent
works on delta compression [17, 19, 29] recommend group-
ing four or more features into one SF to reduce false positives
in resemblance detection, and using three or more SFs to de-
tect more highly similar chunks for delta compression. But
according to observations in our delta compressed prototype
system, computing the similarity of data chunks, namely,
generating their SFs, is quite time-consuming. Specifically,
to ensure high similarity detection efficiency, Rabin finger-
prints are calculated byte-by-byte on data chunks (similar to
Content-Defined Chunking [26, 40, 43]), and are each then
linearly transformed N times to calculate N-dimensional
hash value sets. Finally the N maximal values, one from
each of the N dimensions, are selected as features. Thus, the
traditional SF approach needs to linearly transform each Ra-
bin fingerprint of data chunks N times, which we refer to as
‘N-transform SF’ to distinguish it from our approach in the
remainder of the paper.

Consistent with the backup stream locality observed by
many studies on deduplication [13, 16, 18, 22, 33, 35, 44],
we observe that there also exists fine-grained locality among
similar chunks. This locality refers to the fact that the cor-
responding subregions (subchunks) of chunks and their fea-
tures also appear in the same order among the similar chunks
with a very high probability, which is referred to as feature
locality in this paper. Based on this key observation, we ar-
gue that a collection of features, exactly one extracted from
each subchunk of a chunk, can also be used for represent-
ing the similarity of a chunk for generating SFs, which is
much less compute-intensive than the N-transform SF since
it eliminates the time-consuming linear transformations.

In this paper, we propose Finesse, a fast resemblance-
detection approach that exploits the fine-grained feature
locality of similar chunks. Specifically, Finesse simplifies
computing the similarity by first dividing each chunk into
several subchunks and then quickly computing features from
each subchunk, finally grouping these features into SFs. Ex-
perimental results based on six datasets show that, compared
with the baseline N-transform SF approach, Finesse acceler-
ates the similarity computation by 3.2×∼3.5× and increases
the throughput of a delta compression prototype system by
41%∼85%, while achieving comparable and even higher
compression ratios.

2 Background and Related Work
Data reduction has gained increasing attention and popular-
ity in storage and file-transfer systems due to the explosive
growth of digital data. Compared with local compression

(e.g., LZ [34]), data deduplication is able to identify and
eliminate redundancy globally at at a much larger granular-
ity (i.e., chunk- or file-level) in large-scale storage systems.
Thus it is widely studied and used in large-scale backup stor-
age [18, 29, 33, 44], primary storage [10, 24, 31], and HPC
storage [23].

Meanwhile, delta compression, another data reduction
technique that removes redundancy among non-duplicate but
highly similar chunks, is able to help maximize the comp-
ression ratio when combined with deduplication and local
compression in backup storage [30], storage replication [29],
database storage [41], etc. Shilane et al. [29, 30] suggest that
delta compression can achieve an additional 2× compression
ratio beyond data deduplication in their production backup
storage systems. Similar results are also observed in other
scenarios, such as, database storage [41, 42] and migratory
compression [19].

While greatly improving storage efficiency, delta comp-
ression also introduces extra compute and I/O overheads.
SIDC [29] suggests that the issue of on-disk large-sized sim-
ilarity indexing faced by delta compression can be addressed
by exploiting (caching) backup stream locality, in a way sim-
ilar to data deduplication systems [44]. Ddelta [38] and
Edelta [39] have been proposed to accelerate the delta en-
coding process by using the idea of CDC-based deduplica-
tion and exploiting fine-grained locality of the backup data
streams.

3 Super-Feature based Approach
Resemblance detection is the first step needed for delta
compression to compute the similarity of data chunks and
find compression candidates. As mentioned earlier, the
‘N-transform SF’ approach is currently the most popular
method for chunk-level resemblance detection. It was first
proposed by Broder [6] and is based on “Broder’s theo-
rem” [5], which evaluates the resemblance between two sets,
as detailed below:

Theorem 1 Consider two sets A and B, with H(A) and H(B)
being the corresponding sets of the hashes of the elements
of A and B respectively, where H is chosen uniformly and
randomly from a min-wise independent family of permuta-
tions [2, 7]. An element in the set is mapped to an integer.
Let min(S) denote the smallest element of the set of integers
S. Then:

Pr[min(H(A))) = min(H(B))] =
|A∩B|
|A∪B|

.

Broder’s theorem states that the probability of the two
sets A and B having the same minimum hash element is
the same as their Jaccard similarity coefficient [14]. Based
on this theorem, Broder proposed a resemblance detection
approach called super-features [6, 29] that extracts a fixed
number of features from a chunk. Specifically, this SF-based
approach [29] (referred to as N-transform SF in this paper)

122 17th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1 Extracting features in N-transform SF.
Require: chunk content, Str; length of the chunk, L; randomly

value pair for linear transformation, mi and ai;
Ensure: N features, Feature[N];

1: function FEATURE-EXTRACT-N-TRANSFORM SF(Str, L)
2: Feature[0, · · · ,N – 1]← 0;
3: for m = 0 to L – 1 do
4: FP← RabinFunction(Str,m);
5: for i = 0 to N – 1 do
6: Transform[i]← (mi*FP + ai) mod 232;
7: if Feature[i]≤ Transform[i] then
8: Feature[i]← Transform[i];
9: end if

10: end for
11: end for
12: end function

computes data similarity by extracting features from Rabin
fingerprints (a rolling hash algorithm [28]) and then group-
ing these features into SFs to detect resemblance for data
reduction. For example, Featurei of a chunk (length = L), is
uniquely generated with a randomly pre-defined value pair
mi & ai (i.e., linear transformation) and L Rabin fingerprints
(as used in Content-Defined Chunking [26, 40, 43] with a
sliding window size of 48 bytes as follows:

Featurei = MaxL
j=1{(mi ·Rabinj + ai)mod232} (1)

Where Rabinj is the Rabin fingerprint of the sliding win-
dow located at position j) Thus chunks that have one or more
such features (maximal values) in common are likely to be
very similar, but small changes to the data are unlikely to
perturb the maximal values [5, 29]. Algorithm 1 provides a
detailed pseudo-code implementation of extracting features
by N-transform SF. Then a super-feature of this chunk, SFx,
can be calculated by several such features as follows:

SFx = Rabin(Featurex·k, ...,Featurex·k+k–1) (2)

For example, to generate three SFs with k=4 features each,
we must first generate N=12 features, namely, features 0...3
for SF0, features 4...7 for SF1, etc. For similar chunks that
differ only in a tiny fraction of bytes, most of their features
will be identical and thus so are their SFs [6]. More specifi-
cally, this N-transform SF approach is able to maximally de-
tect the highly similar chunks for two reasons. 1⃝ The match-
ing of one SF means that almost all the features grouped in
this SF are identical and thus grouping features into SFs re-
duces false positives for resemblance detection. 2⃝ Multi-
ple SFs are computed to increase the probability of detecting
highly similar chunks. Meanwhile, this N-transform SF ap-
proach needs to linearly transform Rabin fingerprints of the
data chunks N times, which is time-consuming and slows the
whole post-deduplication delta compression process.

It is worth noting that there are also some other coarse-
grained resemblance detection approaches [4, 9, 11, 15, 27,

subchunk A1 subchunk A2

FA1 FA2
FAN

subchunk AN

FB1 FB2 FBN

chunk A

chunk B

identical similar

Region of

difference

Extracted

feature

Subchunk B1 Subchunk B2 Subchunk BN

similar

FB1 = 0xffc35b5e

FB2 = 0xffed1921

FBN = 0xffa23dc4

FA1 = 0xffc35b5e

FA2 = 0xffed1921

FAN = 0xffa23dc4

FA1 = FB1

FA2 = FB2

FAN = FBN c
h

u
n

k
 A

c
h

u
n

k
 B

Figure 2: An example of the existence of fine-grained loca-
lity among two similar chunks. Here each chunk is divided
into N fixed-sized subchunks. The corresponding subchunks
in chunk B are largely similar (one-by-one) to subchunks in
chunk A, and thus their features are largely identical.

41] for matching similar files or large data blocks (e.g.,
size of 16MB), which extract features from non-overlapped
strings (or chunks) and thus may suffer from high false
positives. In this paper, we focus on improving the most
popular N-transform SF approach for the chunk-level re-
semblance detection in post-deduplication delta compression
scenario [30].

4 Finesse Design and Implementation

4.1 Observations
As analyzed above, the root cause of the relatively high com-
putation overhead of the N-transform SF approach is its lin-
early transforming the whole chunk’s Rabin fingerprints N
times (i.e., compute multiple rounds of transformations on
each fingerprint) to extract N features. According to our ob-
servation of delta compression on backup workloads, the fea-
tures extracted from the subchunks inside individual chunks
can also be used for resemblance detection, which means that
we eliminate the linear transformations and thus simplify the
feature computation.

Computing features from subchunks is motivated by our
observation that the fine-grained stream locality widely ex-
ists in the detected similar chunks. Figure 2 provides an
example of this locality: the subregions (subchunks) of in-
dividual chunks also appear in the same order among their
highly similar chunks with a very high probability, meaning
that these subchunks are also very similar to each other.

Table 1 studies this locality on six deduplicated backup
datasets (the detailed experimental environment and work-
load characteristics can be found in Section 5), which
demonstrates that most of the corresponding subchunk pairs

USENIX Association 17th USENIX Conference on File and Storage Technologies 123

Table 1: A study of the repeatability of subchunks and their
features (i.e., the fine-grained locality) in the identified sim-
ilar chunks in six deduplicated backup datasets. Here the
identified chunks are all divided into 12 equal-sized sub-
chunks and then we verify the locality shown in Figure 2.

Datasets WEB TAR RDB SYN VMA VMB
Avg. # of subchunks

(identical) 8.27 9.19 6.86 5.78 5.99 6.34

Avg. # of subchunks
(own the same features) 10.82 10.97 10.23 10.10 10.04 10.64

Here identical is judged by checking SHA-1 fingerprints of subchunks.

Algorithm 2 Extracting features in Finesse.
Require: chunk content, Str; length of the chunk, L;
Ensure: N features, Feature[N];

1: function FEATURE-EXTRACT-FINESSE(Str, L)
2: subChunkSize← L

N ;
3: Feature[0, · · · ,N – 1]← 0;
4: for m = 0 to N – 1 do
5: for i = 0 to subChunkSize – 1 do
6: FP← RabinFunction(Str,m*subChunkSize + i);
7: if Feature[m]≤ FP then
8: Feature[m]← FP;
9: end if

10: end for
11: end for
12: end function

in the detected similar chunks have the same features, ac-
counting for 87.22% on average, although many of them are
non-duplicate, accounting for 41.07% on average. There-
fore, grouping some of these features into SFs by exploiting
this fine-grained locality of similar chunks may also poten-
tially enable maximal detection of highly similar chunks.

More importantly, this fine-grained locality-based resem-
blance detection approach has the potential to greatly reduce
the execution time of computing features while achieving
comparable resemblance detection efficiency relative to the
N-transform SF approach, which is comprehensively evalu-
ated and demonstrated in in Section 5.

4.2 Implementation
In this subsection, we discuss some implementation issues of
Finesse, including the feature extraction and grouping strate-
gies, overhead analysis, and other design considerations.

Feature Extraction. To exploit the fine-grained feature
locality of similar chunks for extracting features, Finesse
first divides a chunk into several fixed-sized subchunks,
and then computes features on each subchunk based on the
Rabin fingerprints of the data contents, in the same way
as the traditional N-transform SF approach, which is de-
tailed in Algorithm 2. Note that a chunk can be divided
into variable-sized subchunks, similar to Content-Defined
Chunking [26, 40, 43], but the feature grouping process will

F0: 0xff9ab74e

F1: 0xfff82845

F2: 0xfff1da26

F3: 0xff7f156c

F4: 0xff12c814

F5: 0xffe3735c

F6: 0xff32bd8e

F7: 0xfff9b8d2

F8: 0xffe87e52

F9: 0xfff93729

F10: 0xffe2fcaf

F11: 0xff16ecf3

F0 < F2 < F1

F4 < F3 < F5

F6 < F8 < F7

F11 < F10 < F9

SF0: hashing {F1, F5, F7, F9} = 0xf794de5e

SF1: hashing{F2, F3, F8, F10} = 0x4b6f535e

SF2: hashing{F0, F4, F6, F11} = 0xd07267d6

Figure 3: A concrete example of the grouping strategy in
Finesse with actual values for the features and SFs.

become very complicated since the subchunks’ sizes and the
number of features will become unknown. In addition, our
preliminary results suggest that extracting features on fixed-
sized subchunks is able to achieve nearly the same comp-
ression ratio as N-transform SF, and thus we use the fixed-
sized subchunks for feature extraction.

Feature Grouping. The grouping strategy in Finesse is
different from traditional N-transform SF since the way fea-
tures are extracted is changed in Finesse. Specifically, Fi-
nesse first divides the subchunks and their corresponding fea-
tures into several contiguous sets of the same size. Then the
biggest features (with the largest hash values from each of
the sets) are grouped to constitute the first SF, the second-
biggest features of the sets are grouped to form the second
SF, and so on and so forth. This grouping strategy in Finesse
ensures that the grouped features in each SF are selected uni-
formly and consistently all over the chunks, which achieves
grouping efficiency similar to N-transform SF.

To better illustrate this grouping strategy, we provide a
detailed example with three SFs and four features per SF
in Finesse as shown in Figure 3. We first divide the chunk
into twelve subchunks to extract 12 features F0...F11. These
features are further divided into four sets and sorted by
their values, {F0<F2<F1}...{F11<F10<F9}. Finally, SF0
is composed of the maximal values from the above four sets,
namely, {F1, F5, F7, F9}, SF2 of the 2nd biggest values {F2,
F3, F8, F10}, and SF2 of the 3rd biggest values {F0, F4, F6,
F11}. Therefore, compared with feature extraction, feature
grouping is fast since it only processes a small amount of
features instead of the whole data chunk.

Note that we tried other grouping strategies for Finesse but
the performance differences were small or ever worse. And
our final evaluation result suggests Finesse using this group-
ing strategy achieves nearly the same delta-compression ra-
tio as the classic N-transform SF.

Computational Overhead. As discussed above, the com-
putational overhead of grouping features in Finesse is in-
significant compared with computing features. Thus, we
only analyze the computational overhead on computing fea-
tures. Specifically, to generate N features from one chunk,
for each Rabin fingerprint on the data chunk contents:
• N-transform SF needs at least 3×N operations, includ-

124 17th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: Workload characteristics of the tested datasets.
Name Size DR Workload descriptions

WEB 367 GB 4.21
135 days’ snapshots of the website:
news.sina.com.

TAR 112 GB 1.70
258 versions of Linux kernel source
code [1]. Each version is packaged
as a tar file.

RDB 540 GB 12.25
100 backups of the redis key-value
store database.

SYN 330 GB 13.07
176 synthetic backups by simulating
file create/delete/modify operations [32].

VMA 117 GB 1.61
78 virtual machine images of different
OS release versions, including Fedora,
CentOS, Debian, etc [3].

VMB 321 GB 10.45
20 backups of an Ubuntu 12.04 VM
image in use by a research group.

Deduplication Ratio (DR) is measured by total data size before deduplication
total data size after deduplication .

ing N multiply, N add, and N conditional branch oper-
ations, to select N maximal values (i.e., features) after
linear transformation as discussed in Section 3.

• Finesse only needs one operation, i.e., one ‘conditional
branch’, to select one maximal value (one feature) in
each subchunk.

Therefore, Finesse greatly reduces the computation over-
head for feature extraction and thus accelerates the whole
resemblance-detection process.

Limitations. Note that Finesse has one limitation in that
it does not detect “similar” chunks with very different sizes.
This is because Finesse divides a chunk into several equal-
sized subchunks and the features will be totally different if
the two “similar” chunks are of very different sizes. But in
the delta-compression scenario, detecting chunks with simi-
lar sizes is reasonable since “similar” chunks with very dif-
ferent sizes (detected by the N-transform SF approach) may
result in a low delta-compression ratio [17]. For example,
two non-similar chunks that only have a small region in com-
mon may have many features and SFs in common and thus
be considered to be similar chunks by the N-transform SF
approach.

5 Performance Evaluation
5.1 Evaluation Setup
Experimental Platform. We implement delta compression
in an open-source deduplication prototype system called
Destor [12, 13] on the Ubuntu 12.04.2 operating system run-
ning on a quad-core Intel i7-4770 processor at 3.4 GHz and
two 1TB 7200RPM hard disks. Another Intel E5-2620 pro-
cessor at 2.4 GHz is also used for performance comparison.
Data Reduction Configurations. In our prototype system,
deduplication is configured with Rabin-based chunking with
the expected chunk size of 8KB as used in LBFS [26] and an
in-memory SHA1 fingerprint table for duplicate detection.

For the post-deduplication delta compression, the non-
duplicate chunks are processed in three steps: resemblance

detection, base chunk reading, and delta encoding. The re-
semblance detection step for both Finesse and N-transform
SF is configured to compute 3 SFs and 4 features per SF for
matching highly similar chunks as suggested by SIDC [29]
and MC [19] (to trade off the space savings and the com-
putation & indexing overheads). In addition, a chunk may
have multiple similar chunks, and our prototype system se-
lects the first matched chunk as its base, which is also known
as “FirstFit” [17]. For the base chunk reading step, delta
compression needs to read for each matched similar chunk
its base chunk from the disk for delta encoding. Here we use
a base chunk cache with LRU and a size of 400MB to reduce
base chunk I/Os. For delta encoding, we employ the classic
Xdelta [20] to calculate the delta of the similar chunks for
space saving.
Performance Metrics. We evaluate resemblance detection
performance of Finesse using two metrics, Delta Compre-
ssion Ratio (DCR) and Delta Compression Efficiency (DCE).
DCR is measured by total size before delta compression

total size after delta compression , reflect-
ing the total space saved by resemblance detection and then
delta compression. DCE is used to estimate the similarity
degree between the similar chunks detected by Finesse, i.e.,

the chunk data size after delta compression
the chunk data size before delta compression . It is worth noting that
DCR focuses on the overall space savings while DCE em-
phasizes the detected resembling chunks themselves. Thus
higher DCE means lower probability of false positives for
detecting similar chunks.

In addition, Similarity Computing Speed is measured by
the processing speed at which the input data are calculated
to obtain SFs for resemblance detection. System Throughput
is measured by the throughput with which the input data are
deduplicated and then delta compressed. We run each exper-
iment five times to get the stable and the average results of
the deduplication throughput.
Evaluated Datasets. Six datasets are used for evaluation as
shown in Table 2. These datasets represent various typical
workloads, including website snapshots, tarred source code
files, database snapshots, and virtual machine images.

5.2 Evaluation of Finesse vs. N-transform SF
Resemblance Detection Efficiency. Table 3 provides the
delta compression results of all the similar chunks detected
(i.e., they have a super-feature in common) by Finesse and
N-transform SF respectively. Generally, evaluation results
in Table 3 suggest that Finesse achieves comparable comp-
ression ratio (with difference of -3.21%∼+7.36%) to the N-
transform SF approach in the metrics of DCR and DCE. In
addition, the resemblance detection performance of Finesse
is sensitive to the datasets due to the different ways in which
the files of each workload are evolved (i.e., modified) during
backups. Thus the six workloads have different levels of the
fine-grained locality as studied in Table 1 (see Section 4.1).
For example, Finesse achieves higher DCR on datasets TAR

USENIX Association 17th USENIX Conference on File and Storage Technologies 125

Table 3: Comparison of resemblance detection efficiency of
N-transform SF and Finesse on the six datasets.

Dataset Approaches DCR DCE

WEB
N-transform SF 7.60 0.8749

Finesse 7.52 (–1.05%) 0.8795 (+0.53%)

TAR
N-transform SF 15.00 0.9516

Finesse 15.34 (+2.27%) 0.9846 (+3.47%)

RDB
N-transform SF 3.67 0.9129

Finesse 3.94 (+7.36%) 0.9448 (+3.49%)

SYN
N-transform SF 1.75 0.9326

Finesse 1.70 (–2.86%) 0.9640 (+3.37%)

VMA
N-transform SF 1.56 0.9088

Finesse 1.51 (–3.21%) 0.9161 (+0.80%)

VMB
N-transform SF 1.30 0.9093

Finesse 1.28 (–1.54%) 0.9193 (+1.10%)

WEB TAR RDB SYN VMA VMB
0

100

200

300

400

S
im

ila
ri
ty

 C
o

m
p

u
ti
n

g
 S

p
e

e
d

 (
M

B
/s

)

Datasets

 N-trip SF Finesse

(a) Intel i7-4770

WEB TAR RDB SYN VMA VMB
0

40

80

120

160

200

240

S
im

ila
ri
ty

 C
o

m
p

u
ti
n

g
 S

p
e

e
d

 (
M

B
/s

)

Datasets

 N-trip SF Finesse

(b) Intel E5-2620

Figure 4: Similarity computing speed.

and RDB, and lower DCR on datasets SYN and VMB.
Meanwhile, Finesse achieves higher DCE than N-

transform SF on all the six datasets. There are two reasons.
1⃝ The N-transform SF approach may obtain all the features
from one subregion of the chunk, which can lead to possi-
ble false positive resemblance detection and thus lower DCE.
In contrast, Finesse’s SF grouping strategy ensures that the
features grouped for each SF are coming from multiple sub-
chunks of a chunk. 2⃝ N-transform SF may detect “similar”
chunks with the very different sizes, which can result in poor
delta compression efficiency as discussed in Section 4.2.

Speed of Computing SFs. While Finesse achieves compa-
rable compression ratios to that of N-transform SF, it greatly
accelerates the similarity computation as shown in Figure 4.
Finesse improves this speed by an average of 3.5× and 3.2×
respectively on the i7-4770 and E5-2620 CPUs. This is be-
cause it requires much fewer operations on computing fea-
tures as discussed in Section 4. Note that the SF comput-
ing speed is not sensitive to the datasets because the time on
computing features is decided by the size of the data chunks
(i.e., scan all the bytes to calculate features and SFs).

System Throughput. To understand the impact of the
resemblance detection approaches on the total throughput
of the composite data reduction system combining dedup-
lication and delta compression, we construct and evaluate

WEB TAR RDB SYN VMA VMB
0

50

100

150

200

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Datasets

 N-trip SF Finesse

(a) Intel i7-4770

WEB TAR RDB SYN VMA VMB
0

40

80

120

160

S
y
s
te

m
 T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Datasets

 N-trip SF Finesse

(b) Intel E5-2620

Figure 5: Throughputs of the Finesse based and N-transform
SF based delta compression prototype systems.

the throughputs of two such systems with Finesse and N-
transform SF as their delta compression components respec-
tively. In our prototype system of both Finesse and N-
transform SF, we pipeline the deduplication subtasks (i.e.,
chunking, fingerprinting, and indexing) and delta compre-
ssion subtasks (i.e., resemblance detection, reading base
chunk, and delta encoding) for high system throughput.

Figure 5 shows the evaluation results comparing these two
systems. The system based on the Finesse approach outper-
forms the one based on N-transform SF by 41%-85% in total
system throughput. This is because in the delta compression
phase after deduplication, Finesse is running 3× faster than
N-transform SF for resemblance detection.

6 Conclusion

In this paper, we propose Finesse, a much faster resemblance
detection approach than the state-of-the-art N-transform SF
approach. The key idea behind Finesse is to exploit the fine-
grained feature locality of highly similar chunks by dividing
data chunk into multiple subchunks and extract features from
each subchunk, thus reducing the computation overhead of
resemblance detection. Our experimental results based on
six datasets demonstrate the superior performance of Finesse
in terms of delta compression ratio, delta compression effi-
ciency, speed of computing SFs, and throughput of the com-
posite data reduction prototype system combining deduplica-
tion and delta compression.

Acknowledgments

We are grateful to our shepherd Geoff Kuenning and the
anonymous reviewers for their insightful comments and
feedback on this work. This research was partly supported
by NSFC No.61821003, No.61502190, No.U1705261,
No.61832007, No.61772222, No.61772212, No.61772180
and No.61672010; The Scientific Research Fund of Hubei
Provincial Department of Education B2017042; US NSF un-
der Grants CCF-1704504 and CCF-1629625.

126 17th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Linux archives. https://www.kernel.org.

[2] Minhash. https://en.wikipedia.org/wiki/MinHash.

[3] VMs archives. http://www.thoughtpolice.co.uk.

[4] ARONOVICH, L., ASHER, R., BACHMAT, E., BITNER, H., HIRSCH,
M., AND KLEIN, S. T. The design of a similarity based deduplication
system. In the 2th Annual International Systems and Storage Confer-
ence (SYSTOR’09) (Haifa, Israel, 2009), ACM Association, pp. 1–14.

[5] BRODER, A. Z. On the resemblance and containment of documents.
In Compression and Complexity of Sequences (SEQUENCES’97)
(Washington, DC, USA, 1997), IEEE, pp. 21–29.

[6] BRODER, A. Z. Identifying and filtering near-duplicate documents. In
Combinatorial Pattern Matching (Montreal, Canada, 2000), Springer,
pp. 1–10.

[7] BRODER, A. Z., CHARIKAR, M., FRIEZE, A. M., AND MITZEN-
MACHER, M. Min-wise independent permutations. Journal of Com-
puter and System Sciences 60, 3 (2000), 630–659.

[8] CUI, Y., LAI, Z., WANG, X., DAI, N., AND MIAO, C. Quicksync:
Improving synchronization efficiency for mobile cloud storage ser-
vices. In International Conference on Mobile Computing and NET-
WORKING (MobiCom’15) (Paris, France, 2015), ACM Association,
pp. 592–603.

[9] DOUGLIS, F., AND IYENGAR, A. Application-specific delta-
encoding via resemblance detection. In USENIX Annual Technical
Conference, General Track (San Antonio, TX, USA, 2003), USENIX
Association, pp. 113–126.

[10] EL-SHIMI, A., KALACH, R., KUMAR, A., AND ET AL. Primary
data deduplication-large scale study and system design. In the 2012
conference on USENIX Annual Technical Conference (Boston, MA,
USA, 2012), USENIX Association, pp. 1–12.

[11] FORMAN, G., ESHGHI, K., AND CHIOCCHETTI, S. Finding sim-
ilar files in large document repositories. In the 11th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing (KDD’05) (Chicago, Illinois, USA, 2005), ACM Association,
pp. 394–400.

[12] FU, M. Destor: An experimental platform for chunk-level data de-
duplication. https://github.com/fomy/destor, 2014.

[13] FU, M., FENG, D., HUA, Y., HE, X., CHEN, Z., XIA, W., ZHANG,
Y., AND TAN, Y. Design tradeoffs for data deduplication perfor-
mance in backup workloads. In the 13th USENIX Conference on File
and Storage Technologies (FAST’15) (Santa Clara, CA, USA, 2015),
vol. 9, USENIX Association, pp. 331–345.

[14] JACCARD, P. Etude de la distribution florale dans une portion des
alpes et du jura. Bulletin De La Societe Vaudoise Des Sciences Na-
turelles 37, 142 (1901), 547–579.

[15] JAIN, N., DAHLIN, M., AND TEWARI, R. TAPER: Tiered Ap-
proach for Eliminating Redundancy in Replica Synchronization. In
the USENIX Conference on File and Storage Technologies (FAST’05)
(San Francisco, CA, USA, 2005), USENIX Association, pp. 281–294.

[16] KAISER, J., MEISTER, D., AND BRINKMANN, A. Deriving and
comparing deduplication techniques using a model-based classifica-
tion. In the 10th European Conference on Computer Systems (Eu-
roSys’15) (Bordeaux, France, 2015), ACM Association, pp. 1–13.

[17] KULKARNI, P., DOUGLIS, F., LAVOIE, J. D., AND TRACEY, J. M.
Redundancy elimination within large collections of files. In the 2004
USENIX Annual Technical Conference (ATC’04) (Boston, MA, USA,
2004), USENIX Association, pp. 1–14.

[18] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., AND ET AL. Sparse
indexing: Large scale, inline deduplication using sampling and loca-
lity. In the 7th USENIX Conference on File and Storage Technolo-
gies (FAST’09) (San Jose, CA, 2009), vol. 9, USENIX Association,
pp. 111–123.

[19] LIN, X., LU, G., DOUGLIS, F., SHILANE, P., AND WALLACE, G.
Migratory compression: Coarse-grained data reordering to improve
compressibility. In the 12th USENIX Conference on File and Stor-
age Technologies (FAST’14) (Santa Clara, CA, USA, 2014), USENIX
Association, pp. 257–271.

[20] MACDONALD, J. File system support for delta compression. PhD
thesis, Masters thesis. Department of Electrical Engineering and Com-
puter Science, University of California at Berkeley, 2000.

[21] MEISTER, D., JÜRGEN, AND BRINKMANN. Multi-level comparison
of data deduplication in a backup scenario. In the 2th Annual Inter-
national Systems and Storage Conference (SYSTOR’09) (Haifa, Israel,
2009), ACM Association, pp. 1–12.

[22] MEISTER, D., KAISER, J., AND BRINKMANN, A. Block locality
caching for data deduplication. In the 6th International Systems and
Storage Conference (Systor’13) (Haifa, Israel, 2013), ACM Associa-
tion, pp. 1–12.

[23] MEISTER, D., KAISER, J., BRINKMANN, A., AND ET AL. A Study
on Data Deduplication in HPC Storage Systems. In the International
Conference on High Performance Computing, Networking, Storage
and Analysis (SC’12) (Salt Lake City, Utah, USA, 2012), IEEE Com-
puter Society Press, pp. 1–11.

[24] MEYER, D., AND BOLOSKY, W. A study of practical deduplica-
tion. In the 9th USENIX Conference on File and Storage Technolo-
gies (FAST’11) (San Jose, CA, USA, 2011), USENIX Association,
pp. 229–241.

[25] MIN, J., YOON, D., AND WON, Y. Efficient deduplication techniques
for modern backup operation. IEEE Transactions on Computers 60, 6
(2011), 824–840.

[26] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. A Low-
Bandwidth Network File System. In the ACM Symposium on Op-
erating Systems Principles (SOSP’01) (Banff, Canada, 2001), ACM
Association, pp. 1–14.

[27] PUCHA, H., ANDERSEN, D. G., AND KAMINSKY, M. Exploiting
similarity for multi-source downloads using file handprints. In the 4th
USENIX Symposium on Networked Systems Design & Implementation
(NSDI’07) (Cambridge, MA, 2007), USENIX Association, pp. 15–28.

[28] RABIN, M. O. Fingerprinting by Random Polynomials. Center
for Research in Computing Techn., Aiken Computation Laboratory,
Univ., 1981.

[29] SHILANE, P., HUANG, M., WALLACE, G., AND ET AL. WAN op-
timized replication of backup datasets using stream-informed delta
compression. In the 10th USENIX Conference on File and Storage
Technologies (FAST’12) (San Jose, CA, USA, 2012), USENIX Asso-
ciation, pp. 49–63.

[30] SHILANE, P., WALLACE, G., HUANG, M., AND HSU, W. Delta
Compressed and Deduplicated Storage Using Stream-Informed Loca-
lity. In the 4th USENIX conference on Hot Topics in Storage and File
Systems (HotStorage’12) (Boston, MA, USA, 2012), USENIX Asso-
ciation, pp. 201–214.

[31] TARASOV, V., JAIN, D., KUENNING, G., MANDAL, S.,
PALANISAMI, K., SHILANE, P., TREHAN, S., AND ZADOK, E.
Dmdedup: Device mapper target for data deduplication. In Ottawa
Linux Symposium (OLS’14) (2014), pp. 1–10.

[32] TARASOV, V., MUDRANKIT, A., BUIK, W., SHILANE, P., KUEN-
NING, G., AND ZADOK, E. Generating realistic datasets for dedup-
lication analysis. In Proceedings of the 2012 conference on USENIX
Annual technical conference (2012), USENIX Association, p. 24C34.

[33] WALLACE, G., DOUGLIS, F., QIAN, H., AND ET AL. Characteris-
tics of backup workloads in production systems. In the 10th USENIX
Conference on File and Storage Technologies (FAST’12) (San Jose,
CA, 2012), USENIX Association, pp. 33–48.

USENIX Association 17th USENIX Conference on File and Storage Technologies 127

[34] XIA, W., JIANG, H., FENG, D., DOUGLIS, F., SHILANE, P., HUA,
Y., FU, M., ZHANG, Y., AND ZHOU, Y. A comprehensive study of
the past, present, and future of data deduplication. Proceedings of the
IEEE 104, 9 (2016), 1681–1710.

[35] XIA, W., JIANG, H., FENG, D., AND HUA, Y. SiLo: A similarity-
locality based near-exact deduplication scheme with low ram over-
head and high throughput. In the 2011 conference on USENIX Annual
Technical Conference (ATC’11) (Portland, OR, 2011), USENIX As-
sociation, pp. 285–298.

[36] XIA, W., JIANG, H., FENG, D., AND TIAN, L. Combining dedup-
lication and delta compression to achieve low-overhead data reduction
on backup datasets. In Data Compression Conference (DCC), 2014
(2014), IEEE, pp. 203–212.

[37] XIA, W., JIANG, H., FENG, D., AND TIAN, L. DARE: A
deduplication-aware resemblance detection and elimination scheme
for data reduction with low overheads. IEEE Transactions on Com-
puters 65, 6 (2016), 1692–1705.

[38] XIA, W., JIANG, H., FENG, D., TIAN, L., FU, M., AND ZHOU,
Y. Ddelta: A deduplication-inspired fast delta compression approach.
Performance Evaluation 79 (2014), 258–272.

[39] XIA, W., LI, C., JIANG, H., FENG, D., HUA, Y., QIN, L., AND
ZHANG, Y. Edelta: A word-enlarging based fast delta compression
approach. In the 7th USENIX conference on Hot Topics in Storage and
File Systems (Santa Clara, CA, 2015), USENIX Association, pp. 1–5.

[40] XIA, W., ZHOU, Y., JIANG, H., FENG, D., HUA, Y., HU, Y.,
LIU, Q., AND ZHANG, Y. FastCDC: A fast and efficient content-
defined chunking approach for data deduplication. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16) (Denver, CO, 2016),
USENIX Association, pp. 101–114.

[41] XU, L., PAVLO, A., SENGUPTA, S., AND GANGER, G. R. On-
line deduplication for databases. In ACM International Conference on
Management of Data (SIGMOD’17) (Chicago, IL, USA, 2017), ACM
Association, pp. 1355–1368.

[42] XU, L., PAVLO, A., SENGUPTA, S., LI, J., AND GANGER, G. R.
Reducing replication bandwidth for distributed document databases.
In the 6th ACM Symposium on Cloud Computing (SoCC’15) (Big Is-
land, Hawaii, USA, 2015), ACM Association, pp. 222–235.

[43] ZHANG, Y., JIANG, H., FENG, D., XIA, W., FU, M., HUANG, F.,
AND ZHOU, Y. AE: An asymmetric extremum content defined chunk-
ing algorithm for fast and bandwidth-efficient data deduplication. In
Proceedings of the IEEE INFOCOM (2015), IEEE, pp. 1337–1345.

[44] ZHU, B., LI, K., AND PATTERSON, R. H. Avoiding the disk bottle-
neck in the data domain deduplication file system. In the 6th USENIX
Conference on File and Storage Technologies (FAST’08) (San Jose,
CA, USA, 2008), vol. 8, USENIX Association, pp. 269–282.

128 17th USENIX Conference on File and Storage Technologies USENIX Association

