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Abstract

In storage systems, delta compression is often used as a
complementary data reduction technique for data deduplica-
tion because it is able to eliminate redundancy among the
non-duplicate but highly similar chunks. Currently, what
we call ‘N-transform Super-Feature’ (N-transform SF) is
the most popular and widely used approach to computing
data similarity for detecting delta compression candidates.
But our observations suggest that the N-transform SF is
compute-intensive: it needs to linearly transform each Rabin
fingerprint of the data chunks N times to obtain N features,
and can be simplified by exploiting the fine-grained feature
locality existing among highly similar chunks to eliminate
time-consuming linear transformations. Therefore, we pro-
pose Finesse, a fine-grained feature-locality-based fast re-
semblance detection approach that divides each chunk into
several fixed-sized subchunks, computes features from these
subchunks individually, and then groups the features into
super-features. Experimental results show that, compared
with the state-of-the-art N-transform SF approach, Finesse
accelerates the similarity computation for resemblance de-
tection by 3.2×∼3.5× and increases the final throughput of
a deduplicated and delta compressed prototype system by
41%∼85%, while achieving comparable compression ratios.

1 Introduction
Data deduplication, a popular data reduction technique, usu-
ally identifies duplicate data at the chunk level (e.g., 8KB
size) by using secure fingerprints (e.g., SHA1) to uniquely
and globally represent data chunks in storage systems [34,
44]. Hence, deduplication-based storage systems only store
one physical instance referred to by any other duplicates,
which helps improve storage space efficiency [18, 25, 44]
or network bandwidth efficiency [26, 29].

Recently, delta compression has also gained increasing at-
tention due to its ability to eliminate data redundancy among
non-duplicate but highly similar chunks, which can be used
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Figure 1: An example of delta compression on two similar
chunks with the three typical steps: 1⃝ computing similarity,
2⃝ indexing, and 3⃝ delta encoding.

post-deduplication as a complementary technique to further
eliminate redundancy. For example, if chunk A2 is similar to
chunk A1 (the base chunk), the delta compression approach
only stores or transfers the differences (delta) and the map-
ping relation between A2 and A1, removing the redundant
data to improve storage space efficiency [21, 30, 36, 37, 41]
or network bandwidth efficiency [8, 29, 42, 43]. Several
studies [29, 30, 37, 38] suggest that delta compression is
able to achieve about 2× additional compression ratio be-
yond deduplication and local compression in backup storage
workloads.

For delta compression in deduplication-based storage sys-
tems, resemblance detection is the first key step in its work-
flow, which identifies delta compression candidates. This is
because a higher similarity degree in the detected chunks
implies more space savings from delta compression. Cur-
rently, the most commonly used chunk-level resemblance
detection approach computes the ‘super-features’ (SF for
short) [5, 17, 29] based on the Rabin fingerprints [28] of
data contents, to detect highly similar chunks. Figure 1
gives an example of the general workflow for this SF-based
delta compression approach: 1⃝ computing the similarity of
chunks, namely, computing features and grouping features
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into SFs (detailed in Section 3), 2⃝ detecting similar chunks
according to their SFs (any two chunks having a SF in com-
mon are considered highly similar [6]), 3⃝ delta encoding the
two similar chunks, i.e., calculating their differences, also
called ‘delta’. For decompression, the input chunk is recov-
ered by decoding the ‘delta’ with the base chunk.

To achieve high delta compression efficiency, some recent
works on delta compression [17, 19, 29] recommend group-
ing four or more features into one SF to reduce false positives
in resemblance detection, and using three or more SFs to de-
tect more highly similar chunks for delta compression. But
according to observations in our delta compressed prototype
system, computing the similarity of data chunks, namely,
generating their SFs, is quite time-consuming. Specifically,
to ensure high similarity detection efficiency, Rabin finger-
prints are calculated byte-by-byte on data chunks (similar to
Content-Defined Chunking [26, 40, 43]), and are each then
linearly transformed N times to calculate N-dimensional
hash value sets. Finally the N maximal values, one from
each of the N dimensions, are selected as features. Thus, the
traditional SF approach needs to linearly transform each Ra-
bin fingerprint of data chunks N times, which we refer to as
‘N-transform SF’ to distinguish it from our approach in the
remainder of the paper.

Consistent with the backup stream locality observed by
many studies on deduplication [13, 16, 18, 22, 33, 35, 44],
we observe that there also exists fine-grained locality among
similar chunks. This locality refers to the fact that the cor-
responding subregions (subchunks) of chunks and their fea-
tures also appear in the same order among the similar chunks
with a very high probability, which is referred to as feature
locality in this paper. Based on this key observation, we ar-
gue that a collection of features, exactly one extracted from
each subchunk of a chunk, can also be used for represent-
ing the similarity of a chunk for generating SFs, which is
much less compute-intensive than the N-transform SF since
it eliminates the time-consuming linear transformations.

In this paper, we propose Finesse, a fast resemblance-
detection approach that exploits the fine-grained feature
locality of similar chunks. Specifically, Finesse simplifies
computing the similarity by first dividing each chunk into
several subchunks and then quickly computing features from
each subchunk, finally grouping these features into SFs. Ex-
perimental results based on six datasets show that, compared
with the baseline N-transform SF approach, Finesse acceler-
ates the similarity computation by 3.2×∼3.5× and increases
the throughput of a delta compression prototype system by
41%∼85%, while achieving comparable and even higher
compression ratios.

2 Background and Related Work
Data reduction has gained increasing attention and popular-
ity in storage and file-transfer systems due to the explosive
growth of digital data. Compared with local compression

(e.g., LZ [34]), data deduplication is able to identify and
eliminate redundancy globally at at a much larger granular-
ity (i.e., chunk- or file-level) in large-scale storage systems.
Thus it is widely studied and used in large-scale backup stor-
age [18, 29, 33, 44], primary storage [10, 24, 31], and HPC
storage [23].

Meanwhile, delta compression, another data reduction
technique that removes redundancy among non-duplicate but
highly similar chunks, is able to help maximize the comp-
ression ratio when combined with deduplication and local
compression in backup storage [30], storage replication [29],
database storage [41], etc. Shilane et al. [29, 30] suggest that
delta compression can achieve an additional 2× compression
ratio beyond data deduplication in their production backup
storage systems. Similar results are also observed in other
scenarios, such as, database storage [41, 42] and migratory
compression [19].

While greatly improving storage efficiency, delta comp-
ression also introduces extra compute and I/O overheads.
SIDC [29] suggests that the issue of on-disk large-sized sim-
ilarity indexing faced by delta compression can be addressed
by exploiting (caching) backup stream locality, in a way sim-
ilar to data deduplication systems [44]. Ddelta [38] and
Edelta [39] have been proposed to accelerate the delta en-
coding process by using the idea of CDC-based deduplica-
tion and exploiting fine-grained locality of the backup data
streams.

3 Super-Feature based Approach
Resemblance detection is the first step needed for delta
compression to compute the similarity of data chunks and
find compression candidates. As mentioned earlier, the
‘N-transform SF’ approach is currently the most popular
method for chunk-level resemblance detection. It was first
proposed by Broder [6] and is based on “Broder’s theo-
rem” [5], which evaluates the resemblance between two sets,
as detailed below:

Theorem 1 Consider two sets A and B, with H(A) and H(B)
being the corresponding sets of the hashes of the elements
of A and B respectively, where H is chosen uniformly and
randomly from a min-wise independent family of permuta-
tions [2, 7]. An element in the set is mapped to an integer.
Let min(S) denote the smallest element of the set of integers
S. Then:

Pr[min(H(A))) = min(H(B))] =
|A∩B|
|A∪B|

.

Broder’s theorem states that the probability of the two
sets A and B having the same minimum hash element is
the same as their Jaccard similarity coefficient [14]. Based
on this theorem, Broder proposed a resemblance detection
approach called super-features [6, 29] that extracts a fixed
number of features from a chunk. Specifically, this SF-based
approach [29] (referred to as N-transform SF in this paper)
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Algorithm 1 Extracting features in N-transform SF.
Require: chunk content, Str; length of the chunk, L; randomly

value pair for linear transformation, mi and ai;
Ensure: N features, Feature[N];

1: function FEATURE-EXTRACT-N-TRANSFORM SF(Str, L)
2: Feature[0, · · · ,N – 1]← 0;
3: for m = 0 to L – 1 do
4: FP← RabinFunction(Str,m);
5: for i = 0 to N – 1 do
6: Transform[i]← (mi*FP + ai) mod 232;
7: if Feature[i]≤ Transform[i] then
8: Feature[i]← Transform[i];
9: end if

10: end for
11: end for
12: end function

computes data similarity by extracting features from Rabin
fingerprints (a rolling hash algorithm [28]) and then group-
ing these features into SFs to detect resemblance for data
reduction. For example, Featurei of a chunk (length = L), is
uniquely generated with a randomly pre-defined value pair
mi & ai (i.e., linear transformation) and L Rabin fingerprints
(as used in Content-Defined Chunking [26, 40, 43] with a
sliding window size of 48 bytes as follows:

Featurei = MaxL
j=1{(mi ·Rabinj + ai)mod232} (1)

Where Rabinj is the Rabin fingerprint of the sliding win-
dow located at position j) Thus chunks that have one or more
such features (maximal values) in common are likely to be
very similar, but small changes to the data are unlikely to
perturb the maximal values [5, 29]. Algorithm 1 provides a
detailed pseudo-code implementation of extracting features
by N-transform SF. Then a super-feature of this chunk, SFx,
can be calculated by several such features as follows:

SFx = Rabin(Featurex·k, ...,Featurex·k+k–1) (2)

For example, to generate three SFs with k=4 features each,
we must first generate N=12 features, namely, features 0...3
for SF0, features 4...7 for SF1, etc. For similar chunks that
differ only in a tiny fraction of bytes, most of their features
will be identical and thus so are their SFs [6]. More specifi-
cally, this N-transform SF approach is able to maximally de-
tect the highly similar chunks for two reasons. 1⃝ The match-
ing of one SF means that almost all the features grouped in
this SF are identical and thus grouping features into SFs re-
duces false positives for resemblance detection. 2⃝ Multi-
ple SFs are computed to increase the probability of detecting
highly similar chunks. Meanwhile, this N-transform SF ap-
proach needs to linearly transform Rabin fingerprints of the
data chunks N times, which is time-consuming and slows the
whole post-deduplication delta compression process.

It is worth noting that there are also some other coarse-
grained resemblance detection approaches [4, 9, 11, 15, 27,
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Figure 2: An example of the existence of fine-grained loca-
lity among two similar chunks. Here each chunk is divided
into N fixed-sized subchunks. The corresponding subchunks
in chunk B are largely similar (one-by-one) to subchunks in
chunk A, and thus their features are largely identical.

41] for matching similar files or large data blocks (e.g.,
size of 16MB), which extract features from non-overlapped
strings (or chunks) and thus may suffer from high false
positives. In this paper, we focus on improving the most
popular N-transform SF approach for the chunk-level re-
semblance detection in post-deduplication delta compression
scenario [30].

4 Finesse Design and Implementation

4.1 Observations
As analyzed above, the root cause of the relatively high com-
putation overhead of the N-transform SF approach is its lin-
early transforming the whole chunk’s Rabin fingerprints N
times (i.e., compute multiple rounds of transformations on
each fingerprint) to extract N features. According to our ob-
servation of delta compression on backup workloads, the fea-
tures extracted from the subchunks inside individual chunks
can also be used for resemblance detection, which means that
we eliminate the linear transformations and thus simplify the
feature computation.

Computing features from subchunks is motivated by our
observation that the fine-grained stream locality widely ex-
ists in the detected similar chunks. Figure 2 provides an
example of this locality: the subregions (subchunks) of in-
dividual chunks also appear in the same order among their
highly similar chunks with a very high probability, meaning
that these subchunks are also very similar to each other.

Table 1 studies this locality on six deduplicated backup
datasets (the detailed experimental environment and work-
load characteristics can be found in Section 5), which
demonstrates that most of the corresponding subchunk pairs
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Table 1: A study of the repeatability of subchunks and their
features (i.e., the fine-grained locality) in the identified sim-
ilar chunks in six deduplicated backup datasets. Here the
identified chunks are all divided into 12 equal-sized sub-
chunks and then we verify the locality shown in Figure 2.

Datasets WEB TAR RDB SYN VMA VMB
Avg. # of subchunks

(identical) 8.27 9.19 6.86 5.78 5.99 6.34

Avg. # of subchunks
(own the same features) 10.82 10.97 10.23 10.10 10.04 10.64

Here identical is judged by checking SHA-1 fingerprints of subchunks.

Algorithm 2 Extracting features in Finesse.
Require: chunk content, Str; length of the chunk, L;
Ensure: N features, Feature[N];

1: function FEATURE-EXTRACT-FINESSE(Str, L)
2: subChunkSize← L

N ;
3: Feature[0, · · · ,N – 1]← 0;
4: for m = 0 to N – 1 do
5: for i = 0 to subChunkSize – 1 do
6: FP← RabinFunction(Str,m*subChunkSize + i);
7: if Feature[m]≤ FP then
8: Feature[m]← FP;
9: end if

10: end for
11: end for
12: end function

in the detected similar chunks have the same features, ac-
counting for 87.22% on average, although many of them are
non-duplicate, accounting for 41.07% on average. There-
fore, grouping some of these features into SFs by exploiting
this fine-grained locality of similar chunks may also poten-
tially enable maximal detection of highly similar chunks.

More importantly, this fine-grained locality-based resem-
blance detection approach has the potential to greatly reduce
the execution time of computing features while achieving
comparable resemblance detection efficiency relative to the
N-transform SF approach, which is comprehensively evalu-
ated and demonstrated in in Section 5.

4.2 Implementation
In this subsection, we discuss some implementation issues of
Finesse, including the feature extraction and grouping strate-
gies, overhead analysis, and other design considerations.

Feature Extraction. To exploit the fine-grained feature
locality of similar chunks for extracting features, Finesse
first divides a chunk into several fixed-sized subchunks,
and then computes features on each subchunk based on the
Rabin fingerprints of the data contents, in the same way
as the traditional N-transform SF approach, which is de-
tailed in Algorithm 2. Note that a chunk can be divided
into variable-sized subchunks, similar to Content-Defined
Chunking [26, 40, 43], but the feature grouping process will
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Figure 3: A concrete example of the grouping strategy in
Finesse with actual values for the features and SFs.

become very complicated since the subchunks’ sizes and the
number of features will become unknown. In addition, our
preliminary results suggest that extracting features on fixed-
sized subchunks is able to achieve nearly the same comp-
ression ratio as N-transform SF, and thus we use the fixed-
sized subchunks for feature extraction.

Feature Grouping. The grouping strategy in Finesse is
different from traditional N-transform SF since the way fea-
tures are extracted is changed in Finesse. Specifically, Fi-
nesse first divides the subchunks and their corresponding fea-
tures into several contiguous sets of the same size. Then the
biggest features (with the largest hash values from each of
the sets) are grouped to constitute the first SF, the second-
biggest features of the sets are grouped to form the second
SF, and so on and so forth. This grouping strategy in Finesse
ensures that the grouped features in each SF are selected uni-
formly and consistently all over the chunks, which achieves
grouping efficiency similar to N-transform SF.

To better illustrate this grouping strategy, we provide a
detailed example with three SFs and four features per SF
in Finesse as shown in Figure 3. We first divide the chunk
into twelve subchunks to extract 12 features F0...F11. These
features are further divided into four sets and sorted by
their values, {F0<F2<F1}...{F11<F10<F9}. Finally, SF0
is composed of the maximal values from the above four sets,
namely, {F1, F5, F7, F9}, SF2 of the 2nd biggest values {F2,
F3, F8, F10}, and SF2 of the 3rd biggest values {F0, F4, F6,
F11}. Therefore, compared with feature extraction, feature
grouping is fast since it only processes a small amount of
features instead of the whole data chunk.

Note that we tried other grouping strategies for Finesse but
the performance differences were small or ever worse. And
our final evaluation result suggests Finesse using this group-
ing strategy achieves nearly the same delta-compression ra-
tio as the classic N-transform SF.

Computational Overhead. As discussed above, the com-
putational overhead of grouping features in Finesse is in-
significant compared with computing features. Thus, we
only analyze the computational overhead on computing fea-
tures. Specifically, to generate N features from one chunk,
for each Rabin fingerprint on the data chunk contents:
• N-transform SF needs at least 3×N operations, includ-
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Table 2: Workload characteristics of the tested datasets.
Name Size DR Workload descriptions

WEB 367 GB 4.21
135 days’ snapshots of the website:
news.sina.com.

TAR 112 GB 1.70
258 versions of Linux kernel source
code [1]. Each version is packaged
as a tar file.

RDB 540 GB 12.25
100 backups of the redis key-value
store database.

SYN 330 GB 13.07
176 synthetic backups by simulating
file create/delete/modify operations [32].

VMA 117 GB 1.61
78 virtual machine images of different
OS release versions, including Fedora,
CentOS, Debian, etc [3].

VMB 321 GB 10.45
20 backups of an Ubuntu 12.04 VM
image in use by a research group.

Deduplication Ratio (DR) is measured by total data size before deduplication
total data size after deduplication .

ing N multiply, N add, and N conditional branch oper-
ations, to select N maximal values (i.e., features) after
linear transformation as discussed in Section 3.

• Finesse only needs one operation, i.e., one ‘conditional
branch’, to select one maximal value (one feature) in
each subchunk.

Therefore, Finesse greatly reduces the computation over-
head for feature extraction and thus accelerates the whole
resemblance-detection process.

Limitations. Note that Finesse has one limitation in that
it does not detect “similar” chunks with very different sizes.
This is because Finesse divides a chunk into several equal-
sized subchunks and the features will be totally different if
the two “similar” chunks are of very different sizes. But in
the delta-compression scenario, detecting chunks with simi-
lar sizes is reasonable since “similar” chunks with very dif-
ferent sizes (detected by the N-transform SF approach) may
result in a low delta-compression ratio [17]. For example,
two non-similar chunks that only have a small region in com-
mon may have many features and SFs in common and thus
be considered to be similar chunks by the N-transform SF
approach.

5 Performance Evaluation
5.1 Evaluation Setup
Experimental Platform. We implement delta compression
in an open-source deduplication prototype system called
Destor [12, 13] on the Ubuntu 12.04.2 operating system run-
ning on a quad-core Intel i7-4770 processor at 3.4 GHz and
two 1TB 7200RPM hard disks. Another Intel E5-2620 pro-
cessor at 2.4 GHz is also used for performance comparison.
Data Reduction Configurations. In our prototype system,
deduplication is configured with Rabin-based chunking with
the expected chunk size of 8KB as used in LBFS [26] and an
in-memory SHA1 fingerprint table for duplicate detection.

For the post-deduplication delta compression, the non-
duplicate chunks are processed in three steps: resemblance

detection, base chunk reading, and delta encoding. The re-
semblance detection step for both Finesse and N-transform
SF is configured to compute 3 SFs and 4 features per SF for
matching highly similar chunks as suggested by SIDC [29]
and MC [19] (to trade off the space savings and the com-
putation & indexing overheads). In addition, a chunk may
have multiple similar chunks, and our prototype system se-
lects the first matched chunk as its base, which is also known
as “FirstFit” [17]. For the base chunk reading step, delta
compression needs to read for each matched similar chunk
its base chunk from the disk for delta encoding. Here we use
a base chunk cache with LRU and a size of 400MB to reduce
base chunk I/Os. For delta encoding, we employ the classic
Xdelta [20] to calculate the delta of the similar chunks for
space saving.
Performance Metrics. We evaluate resemblance detection
performance of Finesse using two metrics, Delta Compre-
ssion Ratio (DCR) and Delta Compression Efficiency (DCE).
DCR is measured by total size before delta compression

total size after delta compression , reflect-
ing the total space saved by resemblance detection and then
delta compression. DCE is used to estimate the similarity
degree between the similar chunks detected by Finesse, i.e.,

the chunk data size after delta compression
the chunk data size before delta compression . It is worth noting that
DCR focuses on the overall space savings while DCE em-
phasizes the detected resembling chunks themselves. Thus
higher DCE means lower probability of false positives for
detecting similar chunks.

In addition, Similarity Computing Speed is measured by
the processing speed at which the input data are calculated
to obtain SFs for resemblance detection. System Throughput
is measured by the throughput with which the input data are
deduplicated and then delta compressed. We run each exper-
iment five times to get the stable and the average results of
the deduplication throughput.
Evaluated Datasets. Six datasets are used for evaluation as
shown in Table 2. These datasets represent various typical
workloads, including website snapshots, tarred source code
files, database snapshots, and virtual machine images.

5.2 Evaluation of Finesse vs. N-transform SF
Resemblance Detection Efficiency. Table 3 provides the
delta compression results of all the similar chunks detected
(i.e., they have a super-feature in common) by Finesse and
N-transform SF respectively. Generally, evaluation results
in Table 3 suggest that Finesse achieves comparable comp-
ression ratio (with difference of -3.21%∼+7.36%) to the N-
transform SF approach in the metrics of DCR and DCE. In
addition, the resemblance detection performance of Finesse
is sensitive to the datasets due to the different ways in which
the files of each workload are evolved (i.e., modified) during
backups. Thus the six workloads have different levels of the
fine-grained locality as studied in Table 1 (see Section 4.1).
For example, Finesse achieves higher DCR on datasets TAR
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Table 3: Comparison of resemblance detection efficiency of
N-transform SF and Finesse on the six datasets.

Dataset Approaches DCR DCE

WEB
N-transform SF 7.60 0.8749

Finesse 7.52 (–1.05%) 0.8795 (+0.53%)

TAR
N-transform SF 15.00 0.9516

Finesse 15.34 (+2.27%) 0.9846 (+3.47%)

RDB
N-transform SF 3.67 0.9129

Finesse 3.94 (+7.36%) 0.9448 (+3.49%)

SYN
N-transform SF 1.75 0.9326

Finesse 1.70 (–2.86%) 0.9640 (+3.37%)

VMA
N-transform SF 1.56 0.9088

Finesse 1.51 (–3.21%) 0.9161 (+0.80%)

VMB
N-transform SF 1.30 0.9093

Finesse 1.28 (–1.54%) 0.9193 (+1.10%)
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Figure 4: Similarity computing speed.

and RDB, and lower DCR on datasets SYN and VMB.
Meanwhile, Finesse achieves higher DCE than N-

transform SF on all the six datasets. There are two reasons.
1⃝ The N-transform SF approach may obtain all the features
from one subregion of the chunk, which can lead to possi-
ble false positive resemblance detection and thus lower DCE.
In contrast, Finesse’s SF grouping strategy ensures that the
features grouped for each SF are coming from multiple sub-
chunks of a chunk. 2⃝ N-transform SF may detect “similar”
chunks with the very different sizes, which can result in poor
delta compression efficiency as discussed in Section 4.2.

Speed of Computing SFs. While Finesse achieves compa-
rable compression ratios to that of N-transform SF, it greatly
accelerates the similarity computation as shown in Figure 4.
Finesse improves this speed by an average of 3.5× and 3.2×
respectively on the i7-4770 and E5-2620 CPUs. This is be-
cause it requires much fewer operations on computing fea-
tures as discussed in Section 4. Note that the SF comput-
ing speed is not sensitive to the datasets because the time on
computing features is decided by the size of the data chunks
(i.e., scan all the bytes to calculate features and SFs ).

System Throughput. To understand the impact of the
resemblance detection approaches on the total throughput
of the composite data reduction system combining dedup-
lication and delta compression, we construct and evaluate
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Figure 5: Throughputs of the Finesse based and N-transform
SF based delta compression prototype systems.

the throughputs of two such systems with Finesse and N-
transform SF as their delta compression components respec-
tively. In our prototype system of both Finesse and N-
transform SF, we pipeline the deduplication subtasks (i.e.,
chunking, fingerprinting, and indexing) and delta compre-
ssion subtasks (i.e., resemblance detection, reading base
chunk, and delta encoding) for high system throughput.

Figure 5 shows the evaluation results comparing these two
systems. The system based on the Finesse approach outper-
forms the one based on N-transform SF by 41%-85% in total
system throughput. This is because in the delta compression
phase after deduplication, Finesse is running 3× faster than
N-transform SF for resemblance detection.

6 Conclusion

In this paper, we propose Finesse, a much faster resemblance
detection approach than the state-of-the-art N-transform SF
approach. The key idea behind Finesse is to exploit the fine-
grained feature locality of highly similar chunks by dividing
data chunk into multiple subchunks and extract features from
each subchunk, thus reducing the computation overhead of
resemblance detection. Our experimental results based on
six datasets demonstrate the superior performance of Finesse
in terms of delta compression ratio, delta compression effi-
ciency, speed of computing SFs, and throughput of the com-
posite data reduction prototype system combining deduplica-
tion and delta compression.
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