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Abstract

Over the past few years, the evaluation of Electrocardio-

graphic (ECG) signals as a prospective biometric modality

has revealed promising results. Given the vital and contin-

uous nature of this information source, ECG signals offer

several advantages to the field of biometrics; yet, several

challenges currently prevent the ECG from being adopted

as a biometric modality in operational settings. These arise

partially due to ECG signal’s clinical tradition and intru-

siveness, but also from the lack of evidence on the perma-

nence of the ECG templates over time. The problem of in-

trusiveness has been recently overcome with the “off-the-

person” approach for capturing ECG signals. In this paper

we provide an evaluation of the permanence of ECG sig-

nals collected at the fingers, with respect to the biometric

authentication performance. Our experimental results on a

small dataset suggest that further research is necessary to

account for and understand sources of variability found in

some subjects. Despite these limitations, ”off-the-person”

ECG appears to be a viable trait for multi-biometric or

standalone biometrics, low user throughput, real-world sce-

narios.

1. Introduction

The study of Electrocardiographic (ECG) signals as a

potential biometric trait can be traced back to the ground

breaking works by Biel et al. [2] and Kyoso & Uchiyama

[10]. Although many authors have continued to contribute

to the field [8, 16, 17, 24], a limiting aspect of this modality

has been the intrusiveness of the sensor device, which most

often requires a multi-lead placement at the chest and limbs

of the subject. The work on ECG biometrics has seen a new

dawn through the introduction of “off-the-person” sensing

[20], which makes the acceptability of the ECG comparable

to that found in more established modalities such as the iris,

palmprint, fingerprint, among others [11, 18].

In principle, the ECG is quite appealing for biometrics

[18]; in light of the seven factors defined in Jain et al. [9],

the ECG modality is admissible given that it can be found

in virtually all living humans (Universality), its authenti-

cation capabilities for circumscribed groups of individuals

has been shown (Uniqueness), it can be easily acquired us-

ing suitable devices (Measurability), it has been shown to

perform accurately for subsets of the population (Perfor-

mance), the “off-the-person” approach has made it accept-

able (Acceptability), and it’s not easily spoofed as it depends

on an internal body organ, the heart (Circumvention).

Furthermore, ECG signals provide intrinsic aliveness de-

tection and are continuously available, which are also highly

desirable properties in biometrics. One of the open ques-

tions in ECG biometrics has been permanence, that is, the

temporal invariance of the templates with respect to the match-

ing algorithms. In this paper, we present the first small-

scale study on the permanence of ECG signals collected

under an “off-the-person” approach for biometric authen-

tication, by comparing records collected at an interval of

several months.

The use of ECG signals as a biometric modality can be

quite useful in low security verification (1:1 matching). Also,

the sensing device presented in this paper is more natural to

the user, given that there is no need for an explicit interac-

tion with the device. Our work provides two main specific

contributions for the field of ECG biometrics: a) Further

insight regarding the performance of “off-the-person” ECG

data; and b) Across session data matching.



Figure 1. Waveforms collected from each of the specialized cells

found in the heart, and their contribution to the prototypical heart-

beat waveform (reprinted with permission from [13]).

The rest of the paper is organized as follows: Section 2

provides an introduction to key concepts within ECG bio-

metrics; Section 3 describes the methodology adopted in

our study; Section 4 describes the tested matching approaches;

Section 5 summarizes the experimental results on real-world

data; and Sections 6 and 7 present the discussion and con-

clusions.

2. Background

The human heart is characterized by a complex bioelec-

trical system, at the core of which are a set of myogenic

cells whose main property is the periodic self-stimulation

capability, which ultimately generates the cardiac cycle and

rhythm. Today, both the heart cycle and rhythm are per-

fectly well-known concepts, extensively studied in the health-

care domain; the cycle is characterized by the typical heart-

beat waveform (Figure 1), while the rhythm is commonly

known as the heart rate. We refer the reader to the book by

Malmivuo & Plonsey [13] for a detailed description of the

physiological, and electrical properties of the heart.

Throughout the years, several authors have argued about

the properties of the ECG as it pertains to biometric recog-

nition [1, 14, 18]. This research has mostly focused on:

a) Recognition Methods; b) Template Extraction; c) and

Sensing Devices. Figure 2 shows an overlay of heartbeat

waveforms from two subjects, illustrating intra- and inter-

class diferences that can be found in the ECG.

In terms of Recognition Methods, authors have mostly

explored instance based learners [11, 16], neural networks

[3, 16], statistical pattern recognition [8], and information

theoretical approaches [6]; wavelets, support vector machines,

and adaptive filtering techniques can also be found [5, 12].

Figure 2. ECG heartbeat waveforms for two different users, illus-

trating the intra- and inter-class variability. In light gray we show

the individual heartbeat waveforms, the solid black line depicts the

mean of all heartbeat waveforms belonging to the subject, and the

dashed black lines highlight the standard deviation.

To date, benchmarking of ECG recognition methods has

been mostly based on single-session data from clinical sources

or public repositories (e.g. Physionet [7]) [2, 8, 24], or ac-

quired using custom free-living protocols [1, 17].

Regarding Template Extraction, existing approaches can

be defined as fiducial, partially fiducial and non-fiducial.

Fiducial methods use latency, slope, angle and other mea-

surements derived from anchor points within the signal (e.g.

P-QRS-T complexes), to create feature vectors that are used

as input to the recognizer [2, 8, 17]. Partially-fiducial meth-

ods typically only use the R-peak to perform heartbeat wave-

form segmentation, adopting either the full waveform or a

subset of it as input to the recognizer [11, 19, 24]. Non-

fiducial methods extract information from the structure of

the signals, without the need for any reference points [4, 5,

6]; these methods are especially advantageous given that the

process of identifying fiducial points can be challenging.

Finally, several variations of the Sensor Devices can be

found. Most of the work has been focused on signals col-

lected through “on-the-person” approaches, which include

multi- and single-lead clinical-grade ECG acquisition de-

vices [2, 6, 8, 16, 17]. More recently, researchers have piv-

oted towards “off-the-person” approaches, enabling unob-

trusive data acquisition at the hands and/or fingers [4, 11,

15, 19, 20, 26]. In this approach, methods have evolved

from a 3-electrode setup (positive, negative, and ground)

[11, 15, 26], to a 2-electrode setup [4, 19]. The former

has been used in short- [11, 15] and long-term performance

evaluation studies [26], while in the later, only short-term

validation has been performed [4, 20] (i.e. using data col-

lected over a period of a few minutes or over the whole day).



The experimental evaluation reported for ECG biometric

recognition when using this non-standard electrode place-

ment is mostly comprised of data collected in a single ses-

sion, from which training and test data are extracted. Few

references are found in the literature to permanence stud-

ies, and no known previous studies have addressed the issue

of permanence in the context of the 2-electrode “off-the-

person” approach’; this being the motivation for our work.

3. Methodology

3.1. Database

Following the recent trend towards the “off-the-person”

sensing approach, we focused our study on ECG data ac-

quired at the fingers with dry Ag/AgCl electrodes, which is

closer to an ubiquitous and real-world deployment scenario.

Electrocardiographic (ECG) data acquisition was performed

using the custom, two lead differential sensor design with

virtual ground, found in Silva et al. [20]; for improved

comfort and greater efficiency, the ECG electrodes were fit-

ted to a supporting base, with the intended finger placement

marked in an unequivocal way. Raw biosignals were ac-

quired using a bioPLUX research Bluetooth wireless biosig-

nal acquisition unit; this device was setup in a 12-bit reso-

lution, 1kHz sampling frequency configuration.

A total of 63 subjects were enrolled in the experiment,

which involved two acquisition sessions separated by a 4-

month interval. The demographics of the subjects included

14 males and 49 females, with subject age ranging between

18 and 50 years (20.68 ± 2.83). None of the participants

reported any health problems, and all of them signed an in-

formed consent form in order to participate in the experi-

ment. In each of the sessions the subjects were asked to sit

for 2 minutes in a resting position, with two fingers, one

from the left and another from the right hand, placed on

each of the dry electrodes.

We highlight that the acquisition conditions and proce-

dure were the same for all of the subjects, and for both ses-

sions. Also, given the fact that a voltage potential differen-

tial is being measured, the signals measured at the fingers

have exactly the same morphology as the signals measured

at the hand palms due to the anatomical proximity of both

areas. Figure 3 illustrates the application of the acquisition

setup to the use case of interacting with a PC.

3.2. Pre-processing

The ECG signals are affected by multiple noise sources

such as motion artifacts, power line and/or electromyogra-

phy interference. Figure 4 presents the pre-processing steps

followed by our approach for extracting the templates from

the raw ECG signal. We designed a digital zero-phase for-

ward and reverse Butterworth band pass filter with 5−20Hz

cutoff frequencies, to limit the bandwidth of the raw data.

Note that while for clinical applications, a larger pass band

is required to preserve additional information1, for biomet-

ric authentication applications we can optimize the filtering

taking into account the recognition accuracy.

For experimental analysis, we followed a partially-fiducial

approach, where the classifier is based on template match-

ing, using the information content of the heartbeat wave-

forms, and as such, a compatible segmentation algorithm

was adopted, following the work described by Lourenço et

al. [12]. This procedure determines the time instant of the

R-peak, and the heartbeat waveform is considered to be the

[−200; 400] milliseconds interval around that instant, for a

template size of 900 bytes.

Furthermore, in our study we considered that the tem-

plates can be computed based on 5 consecutive heartbeat

waveforms, that is, we perform a filtering step in the tem-

plate space. Two different approaches were evaluated for

this step: a) the mean wave (x), which creates a smoothed

version of the template; and b) the median wave (x̃), which

is more robust to possible outliers.

3.3. Outlier Removal

Even after these pre-processing and feature extraction

steps, the signals collected at the fingers are much more

prone to noise than the regular ECG data obtained at the

chest. As such, we discard spurious heartbeats using an

outlier detection scheme based on the cosine distance to the

mean heartbeat waveform in each recording session. Let

X = {x1, ..., xn} denote the set of n individual heartbeat

waveforms obtained after pre-processing; xmin
i and xmax

i

are the minimum and the maximum absolute values of each

individual heartbeat; the mean heartbeat waveform for a

session is given by µx = 1
N

∑n

1 xi. Our outlier removal

step is performed as follows:

1. Compute the cosine distance, Dcos (xi, µx), of each

individual heartbeat waveform xi ∈ X to µx;

2. Compute the 1st and 2nd order statistical moments of

the distances Dcos (xi, µx): mean value, µDcos(xi,µx)

and standard deviation, σDcos(xi,µx);

3. Compute the median of xmin
i and xmax

i , denoted as

x̃min and x̃max, respectively;

4. Scan the set of heartbeat waveforms X for the condi-

tions below, and if any is met for a given xi ∈ X , xi

is considered an outlier and discarded:

(a) xmax
i does not correspond to the R-peak posi-

tion (determined from the segmentation step);

(b) xmax
i > 1.5 · x̃max and xmin

i < 1.5 · x̃min;

1The recommended bandwidth proposed by the AHA and ANSI asso-

ciations for diagnostics purpose is [0.05, 150] Hz



(a) Sensor pad applied to a keyboard (b) Interaction with the sensor pad, with the ECG shown on screen.

Figure 3. ECG sensor pad arrangement (left) and interaction with the sensor (right); the two light gray circular areas in Figure 3(a) are the

dry hand palm/finger pads.

Figure 4. ECG pre-processing and template extraction process. Raw data is acquired from the “off-the-person” sensor and then bandpass

filtered; the individual heartbeat waveforms are segmented by their R-peaks, and finally a template is produced as the mean or median of

consecutive individual heartbeat waveforms.

(c) Dcos (xi, µx) > (µDcos(xi,µx)+0.5·σDcos(xi,µx)).

For performance evaluation we tested an instance-based

learning, template matching approach (through a k-NN clas-

sifier), and also a Support Vector Machine (SVM) approach,

as will be described next. The templates, xi, are formed us-

ing individual heartbeat waveforms, acquired typically in

less than 1s (considering a heart rhythm of 60 bpm)2, and

obtained either by calculating their mean x, or median x̃.

4. Matching

We call a given dataset used for enrollment the training

set Dtrain. Considering x
(wj)
i to be the ith instance of the

m available training templates for subject wj (x
(wj)
i being

2The typical heart rate ranges from 60-100 bpm

the mean or median of 5 consecutive heartbeat waveforms),

Dtrain is defined as:

Dtrain = {x
(wj)
i ∈ R

p, wj ∈ 1, · · · ,#W, i ∈ 1, · · · ,m},
(1)

where W is the set of class labels or users.

4.1. Instance-based Learning

For the template matching approach, given an unknown

template, xu, an estimated class prediction, ŵu, is obtained

by determining the most represented class or grouping wj

among the neighborhood of the k nearest patterns from the

data set Dtrain (k-NN classifier), according to a distance

metric, D(xu, xj), ∀xj ∈ Dtrain. We compared the clas-

sical Euclidean distance, Deucl, with the Cosine distance,

Dcos, defined as:



Deucl

(

xu, x
(wl)
j

)

=

√

√

√

√

p
∑

k=1

(xu[k]− x
(wl)
j [k])2, (2)

Dcos

(

xu, x
(wl)
j

)

= 1−

∑p

k=1 xu[k]x
(wl)
j [k]

√

∑p

k=1 xu[k]2
∑p

k=1 x
(wl)
j [k]2

.

(3)

A distance matrix was computed, describing distances

between each instance from the test set and each of the

training templates in Dtrain. For experimental purposes,

a 3-NN classifier was used, in which the class ŵu of a given

unknown template, xu, is defined as the most represented

class among the 3 nearest templates of the training set with

the lowest distance D(, ) to xu:

ŵu = arg max
u=1,··· ,#W

k
∑

i=1

V ote
(

xu, x
(wu)
i

)

(4)

where each vote assigned to xu, corresponds to the label

obtained from the closest training templates.

For authentication, the number of falsely accepted and

falsely rejected patterns is determined, verifying if the ma-

jority of the neighbors has a distance smaller than a prede-

fined threshold.

4.2. Support Vector Machines

Consider the binary classification setup with training set

DSVM , composed of l instances, to be a subset of the com-

plete training set Dtrain, comprising only the training sam-

ples of two classes, here denoted as w = −1 or w = 1:

DSVM = {(xi, wxi
)|xi ∈ R

p, wxi
∈ −1, 1}ni=1. (5)

Support Vector Machines (SVM) find the separating hy-

perplane (v · x = b), maximizing the margin. In order to

deal with the case where the hyperplane splitting introduces

misclassifications, the concept of “soft” margin is used. The

method introduces slack variables, ξi, which measure the

degree of misclassification of sample xi, weighted by the

parameter C, leading to the following primal formulation:

min
w,ξ,b

1

2
||v||2 + C

n
∑

i=1

ξi (6)

s.t. wxi
(v · x− b) ≥ 1− ξi. (7)

The learning process is assumed to be performed offline.

Once the model is estimated (v and b), the class prediction,

wxu
, for an unknown object, xu, is determined by

wxu
= sgn(v · x+ b). (8)

Table 1. EER (%) for the “dove-like” population across T1 − T2

when using the 3−NN classifier with the Dcos distance metric and

the mean waves x as template.

D(, ) Dcos Deucl

T x̃ x x̃ x

Session T1-T2 4.7 4.5 5.2 5.3

# Subjects 42 37 34 32

In our approach we built N − 1 models for each indi-

vidual, each model enabling the comparison of individual j

with another of the N − 1 remaining models. As an exam-

ple, the model fjk, trained for individuals j and k,

fjk(xu) : xu ∈ R
p → wxjk

∈ j, k, (9)

estimates a decision over instance x, classifying it as in-

dividual j or k. In authentication, we test all the N − 1
trained models, fj·, where j is the class of the claimed iden-

tity, and accept it as genuine only when all the models pos-

itively classify the testing instance.

5. Experimental Results

We evaluated the permanence of the ECG templates us-

ing two independent sets of heartbeat waveforms acquired

according to the methodology described in Section 3; we

refer to the first and second acquisition sessions as T1 and

T2, respectively. The T1− T2 & T2− T1 tests were con-

ducted over the entire database, using T1 for training and

T2 for test (and vice versa), while the tests for the T1− T1
and T2− T2 consider Dtrain to have 30% of the templates

available within a given session.

In [25] Yanger and Dunstone introduced the concept of

zooplot, a tool that helps in the analysis of different bio-

metric traits, allowing the categorization of different types

of users based on their separability. Figure 5 presents the

zooplot obtained using the 3-NN classifier with Dcos as the

metric and x as the template, where each point represents a

single subject.

A majority of the population (59%, or 37 users) has a

“dove-like” behavior, while the remaining subjects are mainly

distributed through the “chameleon-like” category. In our

case, this last group is composed of users for which the

heartbeat waveform changed significantly between T1 and

T2, this change being due to: a) different heart rates be-

tween both recording sessions; and b) drastic morphological

changes that require clinical validation.

Table 1 summarizes the Equal Error Rate (EER) for the

“dove-like” subjects using the template matching approach.

The best performance was achieved by using Dcos, with x

as the templates, where the EER = 4.5%. Figure 6 repre-

sents the distribution of genuine and impostors distances by



Figure 5. Zooplot [25]. The x axis represents the Genunine Per-

formance, and the y axis the Impostor Performance, when using

the 3−NN classifier with the Dcos distance metric and the mean

waves x as template.

Figure 6. Empirical distance distribution when using the 3−NN

classifier with the Dcos distance metric and the mean waves x as

the template for between-session matching (T1 − T2). The gen-

uine distribution is shown in green, while the impostor distribution

is shown in red.

using the 3−NN classifier with Dcos as distance metric and

x as templates. The overlap of the genuine and imposter

curves in this situation is small, showing that for the “dove-

like” population the separability is apparent, even when us-

ing data from multiple sessions (T1 − T2). In Table 2, we

present the results for the entire population, showing the

performance within-session (T1 − T1 and T2 − T2), and

for T1− T2 & T2− T1. The ROC curves for the best case

classifier configuration, in which the median wave is used

as the template and SVM classifier is used, are presented in

Figure 7.

Figure 7. ROC curves for the entire population (63 subjects; T1−

T2) using SVMs with the median wave as template.

6. Discussion

The performance across recording sessions (T1− T2 &

T2−T1) revealed that the heartbeat waveform changed sig-

nificantly for several subjects. Figure 8 shows an example

of two subjects, where a large variation in the templates was

found; the black and dashed lines correspond, respectively,

to the mean wave and standard deviation (excluding the out-

liers). The first example shows a template morphing due to

different heart rates in T1 and T2. The P and the T com-

plexes are affected by the heart rate, and as one can observe,

their latencies can really change. The second case shows an

example of a heartbeat waveform shape shift between T1
and T2, where the R and S complexes changed their mor-

phology significantly.

Our methodology depends on the segmentation and align-

ment of the heartbeats, and heart rate changes will bias the

alignment between heartbeat waveforms, since several com-

plexes change their latencies. In the literature there are sev-

eral approaches focusing on extraction of features that are

invariant to the heart rate, or that try to normalize heartbeats

[21, 22, 23], which is also the topic of ongoing work in our

group. In this paper, we focused on the use of latency and

amplitude features, in which the template morphing is di-

rectly expressed. Regarding the classifier, we adopted tem-

plate matching and SVMs, which, as shown by the prelim-

inary results given in this work, are quite sensitive to mor-

phological changes in the templates.

Possible mitigation procedures for the morphing effects

detected in our study may involve the use of feature spaces



Table 2. EER (µ±σ%) for the entire population (63 subjects) for the cases where the train and test sets belong to the same session (T1−T1

and T2− T2) and to different sessions (T1− T2 & T2− T1).

D(, ) Dcos Deucl SVM

T x̃ x x̃ x x̃ x

Session

T1-T1 3.00 ± 0.19 2.63 ± 0.13 2.87 ± 0.17 2.99 ± 0.18 1.07 ± 0.23 0.99 ± 0.20

T2-T2 4.49 ± 0.13 4.53 ± 0.18 3.32 ± 0.14 3.38 ± 0.18 1.92 ± 0.13 2.01 ± 0.17

T1-T2 13.26 13.31 11.79 12.16 9.10 9.47

T2-T1 13.00 13.30 14.40 14.15 9.68 9.37

(a) Template morphing due to different heart rates in T1 and T2

(b) Heartbeat waveform shape shift between to T1 and T2

Figure 8. Examples of two non-dove-like cases, where a different

heart rate between recording sessions leads to different waveform

morphologies (a), and a shape shifting occurs due to reasons that

require clinical validation (b).

based on spectral components of the heartbeat waveform.

Another mitigation procedure is the periodic update and/or

increase of the knowledge base and enrollment data, so that

the system can have templates that are representative of dif-

ferent states that the subject typically undergoes through.

Furthermore, we believe that additional work can be done at

the sensor level targeting ECG multibiometrics to improve

permanence across time, by increasing the analog-to-digital

conversion resolution, and/or by increasing the sampling

rate.

7. Conclusions

Research on Electrocardiographic (ECG) signals has ad-

vanced a long way from it’s clinical roots, to novel appli-

cation domains in areas so diverse as biometric recogni-

tion. Given the intrinsic properties of the ECG, it can be

particularly useful for low security verification (1:1 match-

ing), especially given that the sensor device does not re-

quire an explicit interaction procedure, and is more natural

to the user, as the “off-the-person” approach followed in this

work. The short-term performance of ECG signals has been

extensively demonstrated in the literature, which is already

very promising in a multibiometrics context. If combined

with other modalities, there are several scenarios where the

ECG modality can serve as an important add-on.

For example, in multibiometrics applications, a periodic

recognition with a hard biometrics (e.g. fingerprint) could

be required, which would then be continuously confirmed

by the ECG (considering that ECG data would be collected

simultaneously with the fingerprint template). We refer the

reader to the work by Silva et al. [18] for a discussion of the

potential outreach and role of the ECG in biometrics.

However, the field is severely lacking studies that demon-

strate the permanence of ECG biometric templates, which

would greatly increase the added-value and applicability of

this new modality. As such, in this paper we have performed

a preliminary study based on data collected in two separate

time instants. Experimental results have shown the ECG to

be reasonably different across individuals, even when train-

ing the recognition system with data collected at a first time

instant to classify the data collected several months later.

Our work has shown that the ECG exhibits promising

recognition rates for biometric authentication both in short-

term (minutes apart) and long-term data (months apart). With

respect to the taxonomy in [25], within the “dove-like” pop-

ulation we obtained matching rates for authentication with

Equal Error Rates (EER) of 4.5%. Regarding the perfor-

mance for the entire population, the best results for long-

term data were achieved using a SVM classifier, with which

an EER of 9.1% was obtained. Our main contributions are:

a) Further insight regarding the performance of “off-the-

person” ECG data;



b) Recognition results for data collected with several months

apart are presented.

Future work will focus on the characterization of sources

of variability such as heart rate and morphological shape

shifts in the templates. Our results, together with the latest

advances in recognition methods, template extraction, and

sensor devices, can reinforce that ECG is a viable trait for

multibiometric or standalone biometrics, low user through-

put, real-world scenarios.
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