
 Open access Book Chapter DOI:10.1007/978-3-642-35261-4_55

Finger Search in the Implicit Model — Source link

Gerth Stølting Brodal, Jesper Sindahl Nielsen, Jakob Truelsen

Institutions: Aarhus University

Published on: 19 Dec 2012 - International Symposium on Algorithms and Computation

Topics: Finger search

Related papers:

 Finger Search in Grammar-Compressed Strings

 Optimal Top-k Document Retrieval ∗

 A data structure with movable fingers and deletions

 Weighted dynamic finger in binary search trees

 Dynamic entropy-compressed sequences and full-text indexes

Share this paper:

View more about this paper here: https://typeset.io/papers/finger-search-in-the-implicit-model-
3j9w98vlih

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-35261-4_55
https://typeset.io/papers/finger-search-in-the-implicit-model-3j9w98vlih
https://typeset.io/authors/gerth-stolting-brodal-2s14gbln8w
https://typeset.io/authors/jesper-sindahl-nielsen-2904ec4ww6
https://typeset.io/authors/jakob-truelsen-5g7g1t75x6
https://typeset.io/institutions/aarhus-university-2s1zo7wa
https://typeset.io/conferences/international-symposium-on-algorithms-and-computation-3kxkx2vx
https://typeset.io/topics/finger-search-2i8s6zrr
https://typeset.io/papers/finger-search-in-grammar-compressed-strings-22cxe6s8yd
https://typeset.io/papers/optimal-top-k-document-retrieval-ojbycczt64
https://typeset.io/papers/a-data-structure-with-movable-fingers-and-deletions-1b5nm82e5y
https://typeset.io/papers/weighted-dynamic-finger-in-binary-search-trees-4smjxhay6o
https://typeset.io/papers/dynamic-entropy-compressed-sequences-and-full-text-indexes-1l0brp5omv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/finger-search-in-the-implicit-model-3j9w98vlih
https://twitter.com/intent/tweet?text=Finger%20Search%20in%20the%20Implicit%20Model&url=https://typeset.io/papers/finger-search-in-the-implicit-model-3j9w98vlih
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/finger-search-in-the-implicit-model-3j9w98vlih
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/finger-search-in-the-implicit-model-3j9w98vlih
https://typeset.io/papers/finger-search-in-the-implicit-model-3j9w98vlih

Finger Search in the Implicit Model

Gerth Stølting Brodal, Jesper Sindahl Nielsen, Jakob Truelsen

MADALGO⋆, Department of Computer Science, Aarhus University, Denmark.
{gerth,jasn,jakobt}@madalgo.au.dk

Abstract. We address the problem of creating a dictionary with the
finger search property in the strict implicit model, where no information
is stored between operations, except the array of elements. We show that
for any implicit dictionary supporting finger searches in q(t) = Ω(log t)
time, the time to move the finger to another element is Ω(q−1(log n)),
where t is the rank distance between the query element and the fin-
ger. We present an optimal implicit static structure matching this lower
bound. We furthermore present a near optimal implicit dynamic struc-
ture supporting search, change-finger, insert, and delete in times
O(q(t)), O(q−1(log n) log n), O(log n), and O(log n), respectively, for any
q(t) = Ω(log t). Finally we show that the search operation must take
Ω(log n) time for the special case where the finger is always changed to
the element returned by the last query.

1 Introduction

We consider the problem of creating an implicit dictionary [4] that supports
finger search. A dictionary is a data structure storing a set of elements with
distinct comparable keys such that an element can be located efficiently given
its key. It may also support predecessor and successor queries where given a
query k it must return the element with the greatest key less than k or the
element with smallest key greater than k. A dynamic dictionary also supports
insertion the and deletion of elements.

A dictionary has the finger search property if the time for searching is de-
pendent on the rank distance t between a specific element f , called the finger,
and the query key k. In the static case O(log t) search can be achieved by ex-
ponential search on a sorted array of elements starting at the finger. Dynamic
finger search data structures have been widely studied, e.g. some of the famous
dynamic structures that support finger searches are splay trees, randomized skip
lists and level linked (2-4)-trees. These all support finger search in O(log t) time,
respectively in the amortized, expected and worst case sense. For an overview of
data structures that support finger search see [3].

We consider two variants of finger search structures. The first variant is the
finger search dictionary where the search operation also changes the finger
to the returned element. The second variant is the change finger dictionary

⋆ Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

where the change-finger operation is separate from the search operation. We
consider the two problems in the strict implicit model where we are only allowed
to explicitly store the elements and the number of elements n between operations
as defined in [1, 6]. Note that the static sorted array solution does not fit into
this model, since we are not allowed to use additional space to store the index
of f between operations. Other papers allow O(1) additional words [4, 5, 8]. We
call this the weak implicit model. In both models almost all structure has to be
encoded in the order of the elements. In either model the only allowed operations
on elements are comparisons and swaps. As there is no agreement on the exact
definition of the implicit model, it is interesting to study the limits of the strict
model. We show that for a static dictionary in the strict model, if we want a
search time of O(log t), then change-finger must take time Ω(nǫ), while in
the weak model a sorted array achieves O(1) change-finger time.

Much effort has gone into finding a worst case optimal implicit dictionary.
Among the first [7] gave a dictionary supporting insert, delete and search in
O(log2 n) time. In [5] an implicit B-tree is presented, and finally in [4] a worst
case optimal and cache oblivious dictionary is presented. To prove our dynamic
upper bounds we use the movable implicit dictionary presented in [2], supporting
insert, delete, predecessor, successor, move-left and move-right. The
operation move-right moves the dictionary laid out in cells i through j to i+ 1
through j + 1 and move-left moves the dictionary the other direction.

Preliminaries. A common implicit data structure technique is the pair encoding
of bits. When we have two distinct consecutive elements x and y, then they
encode a 1 if x ≤ y and 0 otherwise. The running time of the search operation
is hereafter denoted by q(t, n). Throughout the paper we require that q(t, n)
is non decreasing in both t and n, q(t, n) ≥ log t and that q(0, n) < log n

2 . We
define Zq(n) = min{t ∈ N | q(t, n) ≥ log n

2 }, i.e. Zq(n) is the smallest rank
distance t, such that q(t, n) > log n

2 . Note that Zq(n) ≤
n
2 (since by assumption

q(t, n) ≥ log t), and if q is a function of only t, then Zq is essentially equiv-
alent to q−1(log n

2). As an example q(t, n) = 1
ε log t, gives Zq(n) =

⌈

(n2)
ε
⌉

,
for 0 < ε ≤ 1. We require that for a given q, Zq(n) can be evaluated in constant
time, and that Zq(n+ 1)− Zq(n) is bounded by a fixed constant for all n.

We will use set notation on a data structure when appropriate, e.g. |X| will
denote the number of elements in the structure X and e ∈ X will denote that
the element e is in the structure X. Given two data structures or sets X and Y ,
we say that X ≺ Y ⇔ ∀(x, y) ∈ X × Y : x < y. We use d(e1, e2) to denote
the rank distance between two elements, that is the difference of the index of e1
and e2 in the sorted key order of all elements in the structure. At any time f

will denote the current finger element and t the rank distance between this and
the current search key.

Our results. In Section 2 we present a static change-finger implicit dictio-

nary supporting predecessor in time O(q(t, n)), and change-finger in time
O(Zq(n)+log n), for any function q(t, n). Note that by choosing q(t, n) = 1

ε log t,

we get a search time of O(log t) and a change finger time of O(nε) for
any 0 < ε ≤ 1.

In Section 3 we prove our lower bounds. First we prove (Lemma 1) that
for any algorithm A on a strict implicit data structure of size n that runs in
time at most τ , whose arguments are keys or elements from the structure, there
exists a set XA,n of at most O(2τ) array entries, such that A touches only array
entries from XA,n, no matter the arguments to A or the content of the data
structure. We use this to show that for any change-finger implicit dictionary

with a search time of q(t, n), change-finger will take time Ω(Zq(n) + log n)
for some t (Theorem 1). We prove that for any change-finger implicit dictionary

search will take time at least log t (Theorem 2). A similar argument applies for
predecessor and successor. This means that the requirement q(t, n) ≥ log t is
necessary. We show that for any finger-search implicit dictionary search must
take at least log n time as a function of both t and n, i.e. it is impossible to create
any meaningful finger-search dictionary in the strict implicit model (Theorem 3).

By Theorem 1 and 2 the static data structure presented in Section 2 is opti-
mal w.r.t. search and change-finger time trade off, for any function q(t, n) as
defined above. In the special case where the restriction q(0, n) < log n

2 does not
hold [4] provides the optimal trade off.

Finally in Section 4 we outline a construction for creating a dynamic change-
finger implicit dictionary , supporting insert and delete in time O(log n),
predecessor and successor in time O(q(t, n)) and change-finger in time
O(Zq(n) log n). Note that by setting q(t, n) = 2

ε log t, we get a search time of

O(log t) and a change-finger time of O(nε/2 log n) = O(nε) for any 0 < ε ≤ 1,
which is asymptotically optimal in the strict model. It remains an open problem
if one can get better bounds in the dynamic case by using O(1) additional words.

2 Static finger search

In this section we present a simple change-finger implicit dictionary , achieving
an optimal trade off between the time for search and changer-finger.

Given some function q(t, n), as defined in Section 1, we are aiming for a
search time of O(q(t, n)). Let ∆ = Zq(n). Note that we are allowed to use
O(log n) time searching for elements with rank-distance t ≥ ∆ from the finger,
since q(t, n) = Ω(log n) for t ≥ ∆.

Intuitively, we start with a sorted list of elements. We cut the 2∆ + 1 ele-
ments closest to f (f being in the center), from this list, and swap them with the
first 2∆+ 1 elements, such that the finger element is at position ∆+1. The ele-
ments that were cut out form the proximity structure P , the rest of the elements
are in the overflow structure O (see Figure 2). A search for x is performed by
first doing an exponential search for x in the proximity structure, and if x is not
found there, by doing binary searches for it in the remaining sorted sequences.

The proximity structure consists of sorted lists XS ≺ S ≺ {f} ≺ L ≺ XL.
The list S contains the up to∆ elements smaller then f that are closest to f w.r.t.
rank distance. The list L contains the up to ∆ closest to f , but larger than f .

XL S f L XS l1 l2 l3

P O

∆ ∆

Fig. 1. Memory layout of the static dictonary.

Both are sorted in ascending order. XL contains a possibly empty sorted sequence
of elements larger than elements from L, and XS contains a possibly empty
sorted sequence of elements smaller than elements from S. Here |XL| + |S| =
∆ = |L|+ |XS |, |S| = min{∆, rank(f)− 1} and |L| = min{∆,n− rank(f)}. The
overflow structure consists of three sorted sequences l2 ≺ l1 ≺ {f} ≺ l3, each
possibly empty.

To perform a change-finger operation, we first revert the array back to one
sorted list and the index of f is found by doing a binary search. Once f is found
there are 4 cases to consider, as illustrated in Figure 2. Note that in each case, at
most 2|P | elements have to be moved. Furthermore the elements can be moved
such that at most O(|P |) swaps are needed. In particular case 2 and 4 can be
solved by a constant number of list reversals.

For reverting to a sorted array and for doing search, we need to compute
the lengths of all sorted sequences. These lengths uniquely determine the case
used for construction, and the construction can thus be undone. To find |S| a
binary search for the split point between XL and S, is done within the first ∆

elements of P . This is possible since S ≺ {f} ≺ XL. Similarly |L| and |XS | can
be found. The separation between l2 and l3, can be found by doing a binary
search for f in O, since l1 ∪ l2 ≺ {f} ≺ l3. Finally if |l3| < |O|, the separation
between l1 and l2 can be found by a binary search, comparing candidates against
the largest element from l2, since l2 ≺ l1.

When performing the search operation for some key k, we first determine
if k < f . If this is the case, an exponential search for k in S is performed. We
can detect if we have crossed the boundary to XL, since S ≺ {f} ≺ XL. If the

Case 1l1

Case 2

Case 3

Case 4

2∆ + 1 O

f f

f

ff

f f

n − (2∆ + 1) P

l1

l3

l3

l3l2

l2

l2

f

Fig. 2. Cases for the change-finger operation. The left side is the sorted array. In all
cases the horizontally marked segment contains the new finger element and must be
moved to the beginning. In the final two cases, there are not enough elements around f

so P is padded with what was already there. The emphasized bar in the array is
the 2∆+ 1 break point between the proximity structure and the overflow structure.

element is found it can be returned. If k > f we do an identical search in L.
Otherwise the element is neither located in S nor L, and therefore d(k, f) > ∆.
All lengths are reconstructed as above, and the element is searched for using
binary search in Xl and l3 if k > f and, otherwise in Xs, l1 and l2.

Analysis The change-finger operation first computes the lengths of all lists in
O(log n) time. The case used for constructing the current layout is then identified
and reversed in O(∆) time. We locate the new finger f ′ by binary search in
O(log n) time and afterwards the O(∆) elements closest to f ′ are moved to P .
We get O(∆+ log n) time for change-finger.

For searches there are two cases to consider. If t ≤ ∆, it will be located by
the exponential search in P in O(log t) = O(q(t, n)) time, since by assumption
q(t, n) ≥ log t. Otherwise the lengths of the sorted sequences will be recovered
in O(log n) time, and a constant number of binary searches will be performed in
O(log n) time total. Since t ≥ ∆ ⇒ q(t, n) ≥ log n

2 , we again get a search time
of O(q(t, n)).

3 Lower bounds

To prove our lower bounds we use an abstracted version of the strict implicit
model. The strict model requires that nothing but the elements and the number
of elements are stored between operations, and that during computation elements
can only be used for comparison. With these assumptions a decision tree can be
formed for a given n, where nodes correspond to element comparisons and loads
and leaves contain the answers. Note that in the weak model a node could probe
a cell containing an integer, giving it a degree of n, which prevents any of our
lower bound arguments.

Lemma 1. Let A be an operation on an implicit data structure of length n,

running in time τ worst case, that takes any number of keys as arguments. Then

there exists a set XA,n of size 2τ , such that executing A with any arguments will

touch only cells from XA,n no matter the content of the data structure.

Proof. Before loading any elements from the data structure, A can reach only a
single state which gives rise to a root in a decision tree. When A is in some node s,
the next execution step may load some cell in the data structure, and transition
into another fixed node, or A may compare two previously loaded elements or
arguments, and given the result of this comparison transition into one of two
distinct nodes. It follows that the total number of nodes A can enter within its τ
steps is

∑τ−1
i=0 2i < 2τ . Now each node can access at most one cell, so it follows

that at most 2τ different cells can be probed by any execution of A within τ

steps. ⊓⊔

Observe that no matter how many times an operation that take at most τ

time is performed they will only be able to reach the same set of cells, since the
decision tree is the same for all invocations.

Theorem 1. For any change-finger implicit dictionary with a search time

of q(t, n) as defined in Section 1, change-finger requires Ω(Zq(n)+log n) time.

Proof. Let e1 . . . en be a set of elements in sorted order with respect to the
keys k1 . . . kn. Let t = Zq(n) − 1. By definition q(t + 1, n) ≥ log n

2 > q(t, n).
Consider the following sequence of operations:

for i = 0 . . . n
t :

change-finger(kit)
for j = 0 . . . t− 1: search(kit+j)

Since the rank distance of any query element is at most t from the current
finger and q is non-decreasing each search operation takes time at most q(t, n).
By Lemma 1 there exists a set X of size 2q(t,n) such that all queries only touch
cells in X . We note that |X | ≤ 2q(t,n) ≤ 2log(n/2) = n

2 .
Since all n elements were returned by the query set, the change-finger op-

erations, must have copied at least n−|X | ≥ n
2 elements into X . We performed n

t
change-finger operations, thus on average the change-finger operations must
have moved at least t

2 = Ω(Zq(n)) elements into X .
For the log n term in the lower bound, we consider the sequence of operations

change-finger(ki) followed by search(ki) for i between 1 and n. Since the rank
distance of any search is 0 and q(0, n) < log n

2 (by assumption), we know from
Lemma 1 that there exists a set Xs of size at most 2log(n/2), such that search
only touches cells from Xs. Assume that change-finger runs in time c(n), then
from Lemma 1 we get a set Xc of size at most 2c(n) such that change-finger only
touches cells from Xc. Since every element is returned, the cell initially containing
the element must be touched by either change-finger or search at some point,
thus |Xc|+|Xs| ≥ n. We see that 2c(n) ≥ |Xc| ≥ n−|Xs| ≥ n−2log(n/2) = 2log(n/2),
i.e. c(n) ≥ log n

2 . ⊓⊔

Theorem 2. For a change-finger implicit dictionary with search time q′(t, n),
where q′ is none decreasing in both t and n, it holds that q′(t, n) ≥ log t.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order.
Let t ≤ n be given. First perform change-finger(k1), then for i between 1
and t perform search(ki). From Lemma 1 we know there exists a set X of
size at most 2q

′(t,n), such that any of the search operations touch only cells
from X (since any element searched for has rank distance at most t from the
finger). The search operations return t distinct elements so t ≤ |X | ≤ 2q

′(t,n),
and q′(t, n) ≥ log t. ⊓⊔

Theorem 3. For finger-search implicit dictionary, the finger-search opera-

tion requires at least g(t, n) ≥ log n time for any rank distance t > 0 where

g(t, n) is non decreasing in both t and n.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order. First
perform finger-search(k1), then perform finger-search(ki) for i between 1
and n. Now for all queries except the first, the rank distance t ≤ 1 and by

C1
· · · · · ·

f

D1 Ci Di Cℓ Dℓ O

B1 Bi Bℓ

2i+1 22
i

P

Fig. 3. Memory layout.

Lemma 1 there exists a set of memory cells X of size 2g(1,n) such that all these
queries only touch cells in X . Since all elements are returned by the queries we
have |X | = n, so g(1, n) ≥ log n, since this holds for t = 1 it holds for all t. ⊓⊔

We can conclude that it is not possible to achieve any form of meaningful finger-
search in the strict implicit model. The static change-finger implicit dictionary

from Section 2 is by Theorem 1 optimal within a constant factor, with respect
to the search to change-finger time trade off, assuming the running time of
change-finger depends only on the size of the structure.

4 A dynamic structure

For any function q(t, n), as defined in the introduction, we present a dynamic
change-finger implicit dictionary that supports change-finger, search, insert
and delete in O(∆ log n),O(q(t, n)),O(log n) and O(log n) time respectively,
where ∆ = Zq(n) and n is the number of elements when the operation was
started.

The data structure consists of two parts: a proximity structure P which con-
tains the elements near f and an overflow structure O which contains elements
further from f w.r.t. rank distance. We partition P into several smaller structures
B1, . . . , Bℓ. Elements in Bi are closer to f than elements in Bi+1. The overflow
structure O is an implicit movable dictionary [2] that supports move-left and
move-right as described in the Section 1. See Figure 3 for the layout of the data
structure. During a change-finger operation the proximity structure is rebuilt
such that B1, . . . , Bℓ correspond to the new finger, and the remaining elements
are put in O.

The total size of P is 2∆ + 1. The i’th block Bi consists of a counter Ci

and an implicit movable dictionary Di. The counter Ci contains a pair encoded
number ci, where ci is the number of elements in Di smaller than f . The sizes
within Bi are |Ci| = 2i+1 and |Di| = 22

i

, except in the final block Bℓ where they
might be smaller (Bℓ might be empty). In particular we define:

ℓ = min
{

ℓ′ ∈ N

∣

∣

∣

ℓ′
∑

i=0

(

2i+1 + 22
i
)

> 2∆
}

.

We will maintain the following invariants for the structure:

I.1 ∀i < j, e1 ∈ Bi, e2 ∈ Bj : d(f, e1) < d(f, e2)
I.2 ∀e1 ∈ B1 ∪ · · · ∪Bℓ, e2 ∈ O : d(f, e1) ≤ d(f, e2)
I.3 |P | = 2∆+ 1
I.4 |Ci| ≤ 2i+1

I.5 |Di| > 0 ⇒ |Ci| = 2i+1

I.6 |Dℓ| < 22
ℓ

and ∀i < ℓ : |Di| = 22
i

I.7 |Di| > 0 ⇒ ci = |{e ∈ Di | e < f}|

We observe that the above invariants imply:

O.1 ∀i < ℓ : |Bi| = 2i+1 + 22
i

(From I.5 and I.6)

O.2 |Bℓ| < 2ℓ+1 + 22
ℓ

(From I.4 and I.6)

O.3 d(e, f) ≤ 22
k−1 ≤ ∆ ⇒ e ∈ Bj for some j ≤ k (From I.1 – I.6)

4.1 Block operations

The following operations operate on a single block and are internal helper func-
tions for the operations described in Section 4.2.

block delete(k, Bi): Removes the element e with key k from the block Bi.
This element must be located in Bi. First we scan Ci to find e. If it is not found
it must be in Di, so we delete it from Di. If e < f we decrement ci. In the case
where e ∈ Ci and Di is nonempty, an arbitrary element g is deleted from Di and
if g < f we decrement ci. We then overwrite e with g, and fix Ci to encode the
new number ci. In the final case where e ∈ Ci and Di is empty, we overwrite e

with the last element from Ci.
block insert(e, Bi): Inserts e into block Bi. If |Ci| < 2i+1, e is inserted

into Ci and we return. Else we insert e into Di. If Di was empty we set ci = 0.
In either case if e < f we increment ci.

block search(k, Bi): Searches for an element e with key k in the block Bi.
We scan Ci for e, if it is found we return it. Otherwise if Di is nonempty we
perform a search on it, to find e and we return it. If the element is not found
nil is returned.

block predecessor(k, Bi): Finds the predecessor element for the key k

in Bi. Do a linear scan through Ci and find the element l1 with largest key less
than k. Afterwards do a predecessor search for key k on Di, call the result l2.
Return max(l1, l2), or that no element in Bi has key less than k.

4.2 Operations

In order to maintain correct sizes of P and O as the entire structure expands
or contracts a rebalance operation is called in the end of every insert and
delete operation. This is an internal operation that does not require I.3 to be
valid before invocation.

rebalance(): Balance Bℓ such that the number of elements in P less than f

is as close to the number of elements greater than f as possible. We start by

evaluating ∆ = Zq(n), the new desired proximity size. Let s be the number of
elements in Bℓ less than f which can be computed as cℓ + |{e ∈ Cℓ | e < f}|.
While 2∆+ 1 > |P | we move elements from O to P . We move the predecessor
of f from O to Bℓ if O ≺ {f} ∨ (s < |Bℓ|

2 ∧ ¬({f} ≺ O)) and otherwise we move
the successor of f to O. While 2∆ + 1 < |P | we move elements from Bℓ to O.
We move the largest element from Bℓ to O if s < Bℓ

2 . Otherwise we move the
smallest element.

change-finger(k): To change the finger of the structure to k, we first insert
every element of Bℓ . . . B1 into O. We then remove the element e with key k

from O, and place it at index 1 as the new f , and finish by performing rebalance.
insert(e): Assume e > f . The case e < f can be handled similarly. Find the

first block Bi where e is smaller than the largest element li from Bi (which can
be found using a predecessor search) or li < f . Now if li > f for all blocks j ≥ i,
block delete the largest element and block insert it into Bj+1. In the other
case where li < f for all blocks j ≥ i, block delete the smallest element and
block insert it into Bj+1. The final element that does not have a block to go
into, will be put into O, then we put e into Bi. In the special case where e did
not fit in any block, we insert e into O. In all cases we perform rebalance.

delete(k): We perform a block search on all blocks and a search in O

to find out which structure the element e with key k is located in. If it is in O

we just delete it from O. Otherwise assume k < f (the case k > f can be
handled similarly), and assume that e is in Bi, then block delete e from Bi. For
each j > i we block delete the predecessor of f in Bj , and insert it into Bj−1

(in the case where there is no predecessor, we block delete the successor of f
instead). We also delete the predecessor of f from O and insert it in Bℓ. The
special case where k = f , is handled similarly to k < f , we note that after this
the predecessor of f will be the new finger element. In all cases we perform a
rebalance.

search(k), predecessor(k) and successor(k), all follow the same general
pattern. For each block Bi starting from B1, we compute the largest and the
smallest element in the block. If k is between these two elements we return the
result of block search, block predecessor or block successor respectively
on Bi, otherwise we continue with the next block. In case k is not within the
bounds of any block, we return the result of search(k), predecessor(k) or
successor(k) respectively on O.

4.3 Analysis

By the invariants, we see that every Ci and Di except the last, have fixed size.
Since O is a movable dictionary it can be moved right or left as this final Ci or
Di expands or contracts. Thus the structure can be maintained in a contiguous
memory layout.

The correctness of the operations follows from the fact that I.1 and I.2,
implies that elements in Bj or O are further away from f than elements from Bi

where i < j. We now argue that search runs in time O(q(t, n)). Let e be
the element we are searching for. If e is located in some Bi then at least half

the elements in Bi−1 will be between f and e by I.1. We know from O.1 that
t = d(f, e) ≥ |Bi−1|

2 ≥ 22
i−1−1. The time spent searching is O(

∑i
j=1 log |Bj |) =

O(2i) = O(log t) = O(q(t, n)). If on the other hand e is in O, then by I.3
there are 2∆ + 1 elements in P , of these at least half are between f and e

by I.2, so t ≥ ∆, and the time used for searching is O(log n +
∑k

j=1 log |Bj |) =
O(log n) = O(q(t, n)). The last equality follows by the definition of Zq. The same
arguments work for predecessor and successor.

Before the change-finger operation the number of elements in the proximity
structure by I.3 is 2∆+ 1. During the operation all these elements are inserted
into O, and the same number of elements are extracted again by rebalance.
Each of these operations are just insert or delete on a movable dictionary or
a block taking time O(log n). In total we use time O(∆ log n).

Finally to see that both Insert and Delete run in O(log n) time, notice that
in the proximity structure doing a constant number of queries in every block is
asymptotically bounded by the time to do the queries in the last block. This is
because their sizes increase double-exponentially. Since the size of the last block
is bounded by n we can guarantee O(log n) time for doing a constant number of
queries on every block (this includes predecessor/successor queries). In the worst
case, we need to insert an element in the first block of the proximity structure,
and “bubble” elements all the way through the proximity structure and finally
insert an element in the overflow structure. This will take O(log n) time. At this
point we might have to rebalance the structure, but this merely requires deleting
and inserting a constant number of elements from one structure to the other,
since we assumed Zq(n) and Zq(n + 1) differ by at most a constant. Deletion
works in a similar manner.

References

1. Borodin, A., Fich, F.E., Meyer auf der Heide, F., Upfal, E., Wigderson, A.: A
tradeoff between search and update time for the implicit dictionary problem. In:
Proc. 13th ICALP, LNCS, vol. 226, pp. 50–59. Springer (1986)

2. Brodal, G.S., Kejlberg-Rasmussen, C., Truelsen, J.: A cache-oblivious implicit dic-
tionary with the working set property. In: Proc. 21st ISAAC, Part II. LNCS, vol.
6507, pp. 37–48. Springer (2010)

3. Brodal, G.S.: Finger search trees. In: Mehta, D., Sahni, S. (eds.) Handbook of Data
Structures and Applications, chap. 11. CRC Press (2005)

4. Franceschini, G., Grossi, R.: Optimal worst case operations for implicit cache-
oblivious search trees. In: Proc. 8th, WADS, LNCS, vol. 2748, pp. 114–126. Springer
(2003)

5. Franceschini, G., Grossi, R., Munro, J.I., Pagli, L.: Implicit B-Trees: New results
for the dictionary problem. In: Proc. 43rd FOCS. pp. 145–154. IEEE (2002)

6. Frederickson, G.N.: Implicit data structures for the dictionary problem. JACM
30(1), 80–94 (1983)

7. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in O(log2 n) time. JCSS 33(1), 66–74 (1986)

8. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update. JCSS
21(2), 236–250 (1980)

