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ABSTRACT Owing to the complexity of finger vein patterns in shape and spatial dependence, the existing

methods suffer from an inability to obtain accurate and stable finger vein features. This paper, so as to

compensate this defect, proposes an end-to-end model to extract vein textures through integrating the fully

convolutional neural network (FCN) with conditional random field (CRF). Firstly, to reduce missing pixels

during ROI extraction, the method of sliding window summation is employed to filter and adjusted with

self-built tools. In addition, the traditional baselines are endowed with different weights to automatically

assign labels. Secondly, the deformable convolution network, through replacing the plain counterparts in

the standard U-Net mode, can capture the complex venous structural features by adaptively adjusting the

receptive fields according to veins’ scales and shapes. Moreover, the above features can be further mined

and accumulated by combining the recurrent neural network (RNN) and the residual network (ResNet). With

the steps mentioned above, the fully convolutional neural network is constructed. Finally, the CRF with

Gaussian pairwise potential conducts mean-field approximate inference as the RNN, and then is embedded

as a part of the FCN, so that the model can fully integrate CRF with FCNs, which provides the possibility to

involve the usual back-propagation algorithm in training the whole deep network end-to-end. The proposed

models in this paper were tested on three public finger vein datasets SDUMLA, MMCBNU and HKPU with

experimental results to certify their superior performance on finger-vein verification tasks compared with

other equivalent models including U-Net.

INDEX TERMS CRF, FCN, finger-vein verification, U-Net.

I. INTRODUCTION

In recent years, biometric technology has been gaining more

and more attention from the public due to the ascendingly

demanding requirement in safety and accuracy of biometric

system. At present, various biological characteristics such as

fingerprints [1], palm-print [2], finger-vein [3], [4], hand-vein

[5], palm-vein [6], face [7], iris [8], voice [9], gait [10], signa-

The associate editor coordinating the review of this manuscript and

approving it for publication was Chenguang Yang .

ture [11] have been included in recognition and verification.

Among these choices, finger vein proves to be the current

research hotspot due to its enticing strengths, such as non-

contact collection, liveness detection, anticounterfeit and low

cost. Nevertheless, finger vein verification is simultaneously

confronted with rigorous challenges. In practice, variables

such as environmental illumination [12], [13], ambient tem-

perature [3], [13], [14], light scattering [15] and user behavior

[12] and so on can abate the contrast of finger vein images,

and thus creating ambiguous areas between vein and non-vein
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regions. Generally, veins and backgrounds in these regions

show worse separation. Therefore, it is extremely hard to

extract accurate vein features with mathematical model, even

with manual label on the actual veins.

Recent studies [16] have shown that the depth features

learned from the deep convolutional neural network (DCNN)

possess better generalization and expression ability, which

prompts us to utilize the DCNN to extract the features of

finger vein patterns. Therefore, this paper proposes a new

fully convolutional neural network, which makes full use of

the advantages of recurrent neural network [17], residual net-

work [18], deformable convolution network [19], U-Net [20]

and conditional random field [21], also with comprehensive

consideration for the label consistency, spatial dependence

of pixel prediction and complex venous shapes, to achieve

accurate and effective segmentation in vein textures.

The main contributions of this paper are as follows:

(i). We proposed an improved ROI extraction method and

venous pixel labeling approach. For the image with missing

pixels, the method of sliding window summation is employed

to filter and adjusted manually with self-built tools. Besides,

the traditional baselines are endowed with different weights

to automatically assign labels.

(ii). We presented a new fully convolutional neural net-

work. Deformable convolution and residual recurrent convo-

lution are introduced based on the fundamental structure of

U-Net model, through which, not only the receptive fields can

be adjusted adaptively according to the size and shape of the

veins, but also the model can provide better depth features

through effective feature accumulation.

(iii). We integrated the fully convolutional neural network

with conditional random field, embedded as a part of fully

convolutional neural network to realize end-to-end training,

which aims to refine the rough pixel level label prediction in

the fully convolutional neural network.

The remainder of this paper is organized as follows:

Section 2 grants an introduction to the related work and

motivation while Section 3 elaborates the proposed methods.

Section 4 explains the experiments conducted, followed by

the experimental results and analysis presented in section 5.

Ultimately, a conclusion of this paper and future work in this

field are summarized in section 6.

II. RELATED WORK AND MOTIVATION

In 2000, Japanese scholar Kono et al. pioneered with an

effective feature extractionmethod of finger vein recognition,

which could gather finger vein images with near-infrared

light [22]. However, because of the uneven distribution of

the brightness, the subtle contrast between the vein and the

background, the high complexity of the venous structures, the

noise pollution in the obtained finger vein images, coupled

with the inevitable influence of individual differences [23],

the finger vein verification remains a challenging task. There-

fore, researchers are faced with the task to develop effective

methods to extract appropriate features.

In response to this problem, segmentation-based methods

frommyriad of researchers consecutively sprung up to extract

vein texture features for finger-vein recognition. It can be

roughly divided into the following two categories.

(1) Handcraft-based segmentation approaches. The sim-

ilarity among these approaches lies in the employment of

the existing mathematical models, serving to detect vein fea-

tures based on various assumptions. For example, assuming

that vein patterns can be approximated to linear textures in

predefined neighborhood region, with the descriptors such

as Gabor filter to extract the vein pattern. The representa-

tive methods in this category include the wide line detector

[12], the Gabor filters [3], [24], [25] and the matched filters

[26]. In addition, part of scholars discovered that the cross-

sectional section of the vein pattern featured with valley

shape, which stimulated the establishment of a large number

of models to specialize in valley [27]–[30] detection during

vein pattern extraction. However, in view of the sensitiv-

ity of curvature to valley, experts also devoted efforts into

enhancing the vein patterns by calculating the mean curvature

[13], difference curvature [31], maximum curvature points

[14], and enhanced maximum curvature [32] of pixels in

an image. In recent years, the advancement in anatomy has

urged the inclusion of finger-vein structure characteristics

such as continuity, directionality, smoothness and variability

for finger-vein texture extraction in [33].

(2) Deep learning-based segmentation approaches. Dif-

ferent from handcraft approaches, deep learning-based

approaches can draw vein patterns from a original image

without assuming vein features distribution. More impor-

tantly, during medical image segmentation, these approaches

verify splendid performance as in cell segmentation [20],

pancreas segmentation [34], and retinal vessel segmenta-

tion [35]–[38]. In work [39], a feature extraction and recovery

network, which outperformed manual feature extraction in

terms of verification errors, was proposed. As an extension

of this work, [40] was engaged with an novel method to

extract the depth feature of vein based on both short-term

and long-term memory recurrent neural network, while Yang

et al. [41] introduced a finger vein segmentation model in

light of the generative adversarial networks, which stands

astonishing robustness to outliers and vessel breaks. Refer-

ring to [42]–[44], semantic segmentation convolutional neu-

ral network was optimized to directly abstract the actual

finger-vein patterns from NIR finger images while Jalilian

and Uhl [43] investigated the effects of fusion and combina-

tion training with different labels on finger vein recognition.

The above approaches, doubtlessly, have achieved com-

paratively sound performance in finger-vein recognition

tasks, and yet the existed problems as follows remain to

be countered. For instance, the assumptions in handcrafted

approaches may fail to detect vein textures, for some pixel

values are created by more complex distribution than that

of valley or straight-line. Furthermore, the manual meth-

ods need to endure the lack of any prior knowledge from

other images because of its independent segmentation. And
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the final prediction results for handcrafted approaches are

closely related to the selected features, which is empirical

with artificial interference and possibly results in deviation.

For the deep learning-based approaches [39], [42]–[44], these

problems are alleviated to some extent since the vein features

are directly acquired from raw images, thus minimizing the

decision errors of the texture extraction without the attribute

distribution assumptions. Meanwhile, via conducting train-

ing on a large number of patches based data from different

images, abundant prior knowledge can be fully obtained to

settle the class imbalance problem. However, the edges of the

methods discussed above can only be testified in building the

large and unknown models, which can mainly be attributed to

the fact that the fixed structure of convolution neural network

deprives itself the internal mechanism to deal with complex

geometric transformation. Also, without considering the spa-

tial dependencies of finger vein pixels, each pixel will only

be segmented independently based on a predefined neighbor-

hood region. Consequently, the existing approaches of finger

vein segmentation are still engaged with an enormous space

to improve themselves.

Recurrent neural network [17], which has been success-

fully applied to many domains such as speech recogni-

tion [45] and handwriting recognition [46], is able to obtain

better feature representation through effective feature accu-

mulation. Residual network [18] enables itself to train a

deeper network model after solving the problem of gradient

disappearance. Research has certificated the stronger suitabil-

ity of deeper network for recognition and segmentation tasks.

The improved residual networks in [48] can be used for math-

ematical proof of residual recurrent convolutional operations.

The segmentationmethod based on fully convolutional neural

network provides advanced results for image semantic seg-

mentation [49]. The most popular network frameworks, U-

Net [20], can achieve excellent segmentation results with only

a few training samples thanks to its simultaneous use of global

location and context information. In addition, the deformable

convolution was proved to be effective for complex semantic

segmentation or target detection tasks by adding an offset

to the conventional grid sampling location of the standard

convolution layer, helping free deform of the sampling grid

in [19].

With the development of deep learning technology, prob-

abilistic graphical models have become an interpretable

modeling method for many real-world tasks with depen-

dencies, proving to be an effective pixel-level labeling

method. The conditional random field of semantic anno-

tation, as one of the most successful graphical models in

computer vision [21], [50]–[52], owns its kernel concept to

transform the label assignment problem into a probabilistic

inference problem, which includes the hypothesis of label

consistency among similar pixels. The specific example can

be referred to [21], in which an end-to-end training seman-

tic segmentation model was obtained through embedding

the conditional random field into the convolutional neural

network.

Inspired by recurrent neural network [17], residual net-

work [18], deformable convolution network [19], U-Net [20]

and conditional random field [21], we propose a new fully

convolutional neural network for finger vein segmentation.

The network takes the classic U-Net as its basic structure,

the randomly cropped venous patches as the input, and the

complete segmentation map acquired by reasoning as the out-

put. The U-shaped structure utilizes up-sampling to improve

the output resolution for the purpose of extracting context

information and combining the down-sampling features to

achieve more precise localization. After normal convolu-

tion operation, deformable convolution and residual recur-

rent convolution are introduced to extract and retain deeper

and more complex features. The fully convolutional neural

network of this paper constructed through the above process

is termed as FCN. Following the former step, we draw the

output of FCN as the unary energy of the conditional random

field to refine the rough output, and formulate mean-field

approximate inference for the conditional random fields with

Gaussian pairwise potentials as recurrent neural network.

We name the network as CRF-RNN designed by this process.

The whole structure optimizes the advantages of fully convo-

lutional neural network and probabilistic graphical models,

successfully realizing an end-to-end training by employing

back-propagation algorithm and random gradient descent

process.

III. PROPOSED METHOD

To study the complex feature representations of finger vein

patterns and spatial dependencies information, this paper sug-

gests a new finger vein segmentation model for finger-vein

feature extraction. Above all, the ROI areas are extracted from

original finger vein images, with the improved ROI extrac-

tion method to lessen the plausible pixel missing. Mean-

while, six baselines are endued with different weights to

label vein pixels from training sets and test sets, followed by

inputting the randomly cropped patches of ROI images into

fully convolutional neural networks (FCN) so as to acquire

rough segmentation outputs. For one thing, via engaging

the FCN, the deformable convolution replaces the standard

convolution in the traditional U-Net to adaptively adjust the

receptive fields, enabling the capture of veins characteris-

tics in different shapes, sizes and directions. For another,

the introduction of residual recurrent convolution effectuates

depth mining and feature accumulation. Next, fed with the

ROI images and the outputs of the FCNs, the conditional

random field (CRF-RNN), embedded as a part of the fully

convolutional neural network rather than the traditional post-

processing process, realizes the refinement of the previous

rough outputs, in which the conventional back-propagation

algorithm can be deployed for end-to-end training. Finally,

after reasoning the image of the test set, we recombine

all the outputs to produce a complete segmentation map.

The framework of the proposed approach above can refer

to Fig. 1.
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FIGURE 1. The framework of the proposed approach.

FIGURE 2. ROI extraction flow chart in this paper.

A. ROI EXTRATION

To ensure less time consumption and incremental accuracy in

the process, we extract the ROI areas from original images

according to [53], with the algorithm flow chart presented

in Fig. 2. The original finger vein images are sequentially

subject to four steps to cut the ROI areas: which are detecting

edges, correcting rotation, intercepting the inscribed area of

the finger, and locating the finger joint position. However,

special intrinsic weakness in this method that fails to detect

the edge of the images with missing pixels precisely is far

from satisfaction. Thus, this paper presents a sliding window

summation method to further screen the extracted inaccurate

ROI regions by comparing with the set threshold. For the

filtered images, this paper also provides a tool that can crop

ROI at will to conduct manual adjustments. Eventually, we

normalize the extracted ROI areas to a specific size.

B. LABEL VEIN PATTERNS

Following the pattern in [39], [43], we begin with image

enhancement for each input finger vein image to detect vein

patterns more precisely. Then six baselines, such as Repeated

line tracking [27] (REP), Wide line detector [12] (WLD),

Gabor filter [25] (Gabor), Maximum curvature points [14]

(MC), Mean curvature [13] (MMC), Enhanced maximum

curvature [32] (EMC) are employed to divide vein pattern

into segments, resulting in six binary images. Each binary

image’s values (0 and 1 represent background and vein pixels

accordingly) are viewed as labels of corresponding pixels in

the input image. The difference between work [39] and the

discussed method lies in that the six baselines are comple-

mentary to each other. For example, the enhanced maximum

curvature can well segment the trunk of the vein, while

the wide line detector can decollate the details of the vein.

To mitigate primary and secondary influences and enhance

the effects of the benchmark segmentation, we give different

weights for each baseline by experience. The probability

of each pixel (x, y) becoming vein feature P (x, y) can be

calculated by: (1), as shown at the bottom of this page,

where i is the number of baselines. Then the binary image

is acquired by the adaptive thresholding operation. The label

L(x, y) of pixel (x, y) is assigned as follows:

L (x, y) =

{

1 if P (x, y) = 1

0 if P (x, y) = 0
(2)

C. NETWORK ARCHITECTURE

The network architecture of our model which adopts a u-

shaped structure with encoders and decoders on both sides,

is elaborated in Fig. 3. After a normal convolution operation,

the deformable convolution and residual recurrent convolu-

tion are carried out. Deformable convolution adapts to the

size and shape of veins by training the receiving field and

sampling locations. The feature accumulation with different

time steps in the residual recurrent convolution ensures a

stronger feature representation, facilitating the extraction of

deeper features. The copying and cropping unit in the classic

U-Net is replaced by cascading operation, which allows this

method to fully absorb the context information and achieve

precise localization. The internal details of the model are

described below.

We take the first repetitive structure as an example to illus-

trate the components of deformable convolution and residual

recurrent convolution. Fig. 4(a) shows the components of

deformable convolution each of which is composed of a

convolution offset layer, a convolution layer, a batch normal-

ization layer [52] and an activation layer. Convolution offset

layer is the core concept of deformable convolution. In each

code stage, the local, dense and adaptive receptive fields are

learned by deformable convolutions to establish models for

finger veins of various shapes and scales. Fig. 5 visualizes the

detailed design. Offsets, generated by additional convolution

layers are added to grid positions commonly used in standard

convolution. We deploy a 3 × 3 kernel with grid size 1;there-

fore, the conventional convolution grid R can be expressed

as:

R = {(−1,−1) , (−1, 0) , . . . , (0, 1) , (1, 1)} (3)

P(x, y)=
1.5 ∗ EMC+0.8 ∗MC+0.6 ∗MMC+0.5 ∗ REP+1 ∗ Gabor+0.5 ∗WLD

i
(1)

VOLUME 8, 2020 65405



J. Zeng et al.: Finger Vein Verification Algorithm Based on FCN and CRF

FIGURE 3. Network architecture of the proposed method.

For each position n0 on the output feature map y, we have

y (n0) =
∑

niǫR
w (ni) ∗ x(n0 + ni) (4)

where x represents the input feature map, w means the

weights of sampled value and ni denotes the locations in R.

While in deformable convolution, the offset 1ni is ultilized

to augment the regular gridR. So the Eq. (4) evolves into

y (n0) =
∑

niǫR
w (ni) ∗ x(n0 + ni +1ni) (5)

The positions of the sampling points are also changed into

ni + 1ni, which is usually not an integer. Thus we utilize

bilinear interpolation to determine the non-integer sampling

values. Comparedwith conventional convolution, deformable

convolution may result in some computational cost aiming to

perform in a more local and adaptive manner.

The output of deformable convolution is transferred for-

ward as the input of residual recurrent convolution. The

detailed operation of residual recurrent convolution is dis-

played in the dotted box on the right of Fig. 4 (b), where

the recurrent convolution operation includes a convolution

layer and three subsequence convolutions layers. Suppose

that the input sample in the l th layer of the residual recurrent

convolution is xl , and that the network output of the pixel (i, j)

in the k th feature map of the recurrent convolution layer at the

time step t is Olijk (t), the output can be formalized as:

Olijk (t) = (wsk )
T

∗ x
s(i,j)
l (t)+

(

wrk
)T

∗ x
r(i,j)
l (t − 1)+ bk

(6)

x
s(i,j)
l (t), x

r(i,j)
l (t − 1) are the inputs of the standard and

recurrent convolutions of the l th layer respectively. wsk , w
r
k

proves the weights of the standard and recurrent convolutions

of the k th feature map respectively, and bk denotes the bias.

A ReLU activation function f will follow each recurrent

FIGURE 4. The components of the deformable convolution (a) and the
residual recurrent convolution (b).

FIGURE 5. Detailed design of the deformable convolution.

convolution layer, so we have:

F (xl,wl) = f
(

Olijk (t)
)

= max(0,Olijk (t)) (7)

F (xl,wl) represents the outputs from the l th recurrent con-

volution layer. The final outputs xl+1 of the residual recurrent

convolution are transferred through the residual units shown

in Fig. 4(b) and can be calculated following the formula

below:

xl+1 = xl + F (xl,wl) (8)
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In (8), xl stands for the input of the residual recurrent

convolution, i.e., the output from the deformable convolution

mentioned above. In the encoding and decoding convolution

unit of the network, the xl+1 sample is employed as the input

for the instant subsequent down-sampling or up-sampling

layers.

After the last residual recurrent convolution operation of

the up-sampling in the network, we take its output as the

unary potential energy of the dense conditional random field,

and finally the objective function of label assignment x can

be calculated as:

E (x) =
∑

i

ψµ (xi)+
∑

i<j

ψp
(

xi, xj
)

(9)

ψµ (xi) is a unary potential function for measuring the

probability of the pixel point i pertaining to the category label

xi when the pixel point i equals to yi, which is provided by the

fully convolutional neural network shown in Fig. 3.ψp
(

xi, xj
)

is a pairwise potential function, employed to compute the

probability of simultaneous occurrence of xi and xj. The pair-

wise potential function furnishes a smoothing term associated

with image features that encourages the assignment of similar

labels to pixels with similar attributes. Consistent with the

work of [48], the pairwise potential function is modeled as a

weighted Gaussian function:

ψp
(

xi, xj
)

= µ(xi, xj)
∑M

m=1
w(m)k

(m)
G (fi, fj) (10)

k
(m)
G proves a Gaussian weight term used to measure the

similarity between the feature vectors fi and fj of pixel points

i and j. The function µ(xi, xj) is helpful in capturing the

compatibility between different pairs of labels. Minimizing

the objective function E (x) produces the most probable label

predictions.

Same as the work [21], the iterative process of the mean-

field in dense condition random fields is decomposed into

common CNN operations by conveying message, weight-

ing filter outputs, transforming compatibility, adding unary

potentials and normalization shown in Fig. 6. Given an image

I, unary potential energy U obtained by the fully convolu-

tional neural network and the edge probability Qin from the

previous iteration, the output Qout can be expressed by:

Qout = fθ (U ,Qin, I ) (11)

where fθ represents the above decomposition operation, θ =

{w(m), µ(xi, xj) stands for the above Gaussian kernel weight

and compatibility function.

Multiple mean-fields iterations are reasoned as a recurrent

neural network shown in Fig. 7, which is implanted in as a

part of the fully convolutional neural network. We define the

RNN-like structure obtained by this process as CRF-RNN,

and the network behavior is given by:

H1 (t) =

{

softmax (U) , t = 0

H2 (t − 1) , 0 < t ≤ T
(12)

H2 (t) = fθ (U ,H1 (t) , I ) , 0 ≤ t < T (13)

FIGURE 6. Visualization process of the deformable convolution.

FIGURE 7. The CRF-RNN Network. Gating functions G1 and G2 are given
by the above formula.

Y (t) =

{

0, 0 ≤ t < T

H2 (t) , t = T
(14)

Here T denotes the number of mean-field iterations.

In the fully convolutional neural network phase, the pixel

level labels are predicted without taking vein structures and

spatial dependencies into account. Then, probabilistic graph-

ical model is established during the CRF-RNN phase based

on conditional random fields. Consequently, the whole model

draws the advantages of fully convolutional neural network

and conditional random field, effectuating an end-to-end

training by utilizing back-propagation algorithm and stochas-

tic gradient process. During the forward propagation of the

network, as soon as the calculation ingresses the CRF-RNN

through FCN, the data need to take T iterations before leaving

the loop created by the RNN, so the refinement of vein pixels

only occurs in this loop. The error differentials, during the

backward pass, are passed forward once the output departs

from the cycle. In addition, in the whole training process of

the network, the weight of Gauss kernel, the compatibility

function of label and other CRF parameters can be optimized

automatically.

IV. EXPERIMENT

A. DATASETS

The experiment was conducted on three public finger vein

datasets. The first one was the SDUMLA-HMT dataset [55]

created by the School of Computer Science and Technol-

ogy, Shandong University in China. The dataset contains

3,816 finger images from 106 individuals, including 61males

and 45 females, with their age ranging from 17 to 31. Data

from the index finger, middle finger and ring finger of each

person’s left and right hands were collected separately, and

each finger was repeatedly collected for 6 times. Each image

has a resolution of 320 × 240 pixels stored in bmp format.

The second finger vein image dataset, theMMCBNU_6000

[3], was constructed by the Chonbuk National University,

VOLUME 8, 2020 65407



J. Zeng et al.: Finger Vein Verification Algorithm Based on FCN and CRF

which contains 6,000 finger images from 83 males and

17 females, 100 individuals in total. Subjects at the age

of 16 to 72 come frommore than 20 countries in Asia, Europe,

Africa and Americas, most of whom are between the age

of 21 to 32. Images from the index finger, middle finger

and ring finger of each person’s left and right hands were

collected, and each finger was repeatedly collected for 10

times. The original finger vein image provided by the dataset

stays with a pixel resolution of 640 × 480, while the ROI

images provided with a resolution of 128 × 60.

The third dataset was the Hong Kong Polytechnic Uni-

versity finger vein image dataset, HKPU [56], which con-

tains 3,132 finger images from 156 individuals, with images

from each person’s index finger and middle finger collected

6 times separately. Among them, the first 105 people provided

2,520 finger images (105 people × 2 fingers × 6 images

× 2 phrases), which were collected in two separate phases,

engaging intervals from one month to six months (an average

of 66.8 days). The rest of the subjects only offered image data

once. Each image possesses a resolution of 513 × 256 pixels

stored in bmp format. Moreover, masks and enhanced images

by local histogram equalization in 488 × 218 pixels can also

be found in the dataset.

B. ROI EXTRACTION

SDUMLA dataset extracts directly from the original image

while HKPU from the enhanced image. Nonetheless, results

shows that some collected images from HKPU dataset suffer

from pixel deficiency, which can be explained in Fig. 8(a).

The upper half of Fig. 8(c) gives evidence that the ROI

extraction results obtained by the method of [53] are in an

undesirable situation. Thus, after imitating [53] to preliminar-

ily extract the finger circumscribed regions (in order to keep

more information for the images with missing pixels), sliding

window summation method is engaged to filter the finger

vein images so that the mentioned pixel deficiency above can

be favorably eliminated. As shown in Fig. 8(b), we fix the

size of sliding window to 20 × 20, the stride to 20, and the

threshold to 20 × 20 × 40 based on our previous experience.

On the condition that the sum of pixels in the sliding window

is smaller than that of the threshold, it is assertive that pixel

missing areas exist in images. Moreover, a tool capable of

freely cropping and normalizing is provided for these images

with inaccurate ROI extraction, with its final extraction result

as an example exhibited at the bottom half of Fig. 8(c).

At length, the ROI resolutions of SDUMLA and HKPU are

adjusted to 270 × 120 and 130 × 70 respectively, while

MMCBNU_6000 dataset adopts the ROI images provided in

its own dataset with a resolution of 128 × 60.

C. LABEL VEIN PATTERNS

The extracted ROI (Fig. 9(a)) is initially processed by Con-

trast Limited Adaptive Histogram Equalization (CLAHE)

(Fig. 9(b)) to facilitate vein patterns labeling. Fig. 9(c) explic-

itly presents from the top to the bottom the vein binary images

obtained from the six baseline segmentation methods respec-

FIGURE 8. ROI extraction example of pixel missing images.

FIGURE 9. Example of vein pattern labeling.

tively, which are repetitive line tracking [27], wide line detec-

tor [12], Gabor filter [25], maximum curvature point [14],

mean curvature [13] and enhanced maximum curvature [32].

Subsequently, we take an operation to compare the dif-

ferences between the literature [39] and our method, which

are demonstrated in Fig. 9(d-f), with the upper images deriv-

ing from our proposed labeling method, and the lower part

from the labeling method of work [46]. In the selection of

weights, as described in Section 3.2, some baselines possess

the strength in detecting the trunk of veins while the other

excel in recognizing the details of veins. To fully exploit

each baseline’s specialty, different initial weights are assigned

for different baselines to obtain rough labels, which will be

utilized to do the finger vein segmentation experiment and

to fine-tune the weight of the label in the light of the seg-

mentation experiment results in the following step. The seg-

mentation experiment will be repeated unless an acceptable

segmentation effect has occured. According to this principle,

we can acquire the image (Fig. 9 (d)) after superimposing

and averaging the different weights assigned to each baseline

and ultimately obtain the binary image (Fig. 9(e)) through the

adaptive binarization operation. Fig. 9(f) refers to the vein

image of the original image covered by the labeled pixel,

according to which, a fact that setting different weights for

different benchmarks can produce more accurate labeling

results than simply stacking and averaging do is readily
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observed. What is more, the adaptive binarization operation

also takes on its effectiveness in filtering out redundant noise.

D. EXPERIMENTAL CONFIGURATION

We compared the proposed model with array of equivalent

models including U-Net, trained these models from scratch,

and initialized the weights randomly. In order to ensure a

rapid convergence and prevent overfitting, for one thing,

we engaged a dynamic method to automatically change the

learning rate (with the default initial one at 0.001) according

to the loss value in the training process. The learning rate

would decrease by tenfold when the lost value remained

stable after pe epochs, and the training process would cease

when the lost value barely changed after qe epochs. Here

pe and qe were empirically set to 4 and 20 separately. For

another, we trained the model with the randomly cropped

patches. We set different training strategies according to

different resolutions of ROI image in three datasets. For

SDUMLA, MMCBNU_6000 and HKPU datasets, to reduce

computational complexity and guarantee local characteris-

tics, the sizes of the patches were set to 48 × 48, 24 ×

24 and 24 × 24 respectively. It has been mentioned in [42]

that when manual labels are employed in network training,

the network outperforms other ones when the number of

labels is 20. Benefited from this discovery, we fix the number

of images and labels of the training set to 20, and randomly

select 10,000, 5,000 and 5,000 patches for each of the three

datasets SDUMLA, MMCBNU_6000 and HKPU (a total

of 200,000, 100,000, 100,000 patches) for network training.

For the test images, the size of the patches was consistent

with the one of the training images. In addition, multiple

continuous overlapping patches with a stride of 5 pixels in

both width and height were extracted, and the vein probability

was obtained by averaging probabilities over all prediction

patches covering the pixel. In case that the computer runned

out of memory, we tested all the remaining images in batches

and simply averaged all batches to get the final evaluation

metrics.

For CRF-RNN, the parameter setting followed that of work

[21], and Potts model was arranged to initialize its com-

patibility transformation parameters. In the training process,

the number of mean-field iterations T was set to 5, while

during the test it was increased to 10. The final number of

classifications was changed to 2 because only the vein and

background categories were included.

In terms of finger vein verification, we copied the experi-

mental setup of [57], and obtained a differential image from

two images which was input into the pre-trained VGGNet-16.

In order to verify the effectiveness of segmentation results on

verification performance, similar settings were imposed on

the segmented images and ROI images in SDU, MMCBNU

and HKPU datasets. There are 636 (106 × 6), 600 (100 ×

6) and 522 (105 × 4 + 51 × 2) categories in the three

datasets accordingly, half of which were randomly selected

as training sets while the other half as test sets. In the process

of training, in order to solve class imbalance, the number of

imposter matching images (A2318, A
2
300, A

2
261) in the training

sets was selected to be consistent with that of the authen-

tic matching images (318A26, 300A
2
10, 261A

2
6), while all the

authentic matching and imposter matching images of the test

sets were tested during the test. Lastly, we calculated the

average accuracy by interchanging these images for training

and testing after two-fold cross validation. It should be noted

that all experiments were conducted under the Tensorflow

and Keras frameworks using an NVIDIA GTX Titan XP

GPU.

E. PERFORMANCE EVALUATION METRICS

We deployed several metrics to evaluate our model in the

experiment of finger vein segmentation: Accuracy (AC), Sen-

sitivity (SE), Specificity (SP), F-measure (F1), Jaccard simi-

larity (JS). In addition, since the area under curve (AUC) and

receiver operating characteristic (ROC) pay frequent visit in

medical image segmentation tasks, they had also been taken

into account. We took EER as the evaluation metric in the

finger vein verification experiment.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we explore the effects of deformable con-

volution and residual recurrent convolution on finger vein

segmentation, and conduct a systematic comparison between

the performance of the proposed model and the current

mainstream segmentation model. Besides, the influence of

conditional random field on the performance of fully con-

volutional neural network has also been the main focus in

this section. Apart from the results from various evalua-

tion metrics, the experiment also presents the results of the

segmentation, thus facilitating the observation of the subtle

segmentation differences. Last but not least, we study the

effect of finger vein segmentation results on verification

performance.

A. FINGER VEIN VERIFICATION BASED ON SDUMLA

DATASET

We commenced with exploring the performances of

deformable convolution and residual recurrent convolution

on finger vein segmentation with the segmentation perfor-

mancemetrics of adding deformable convolution and residual

recurrent convolution illustrated in Table 1. We can conclude

from the graphic that the deformable convolution improves

the performance of traditional U-Net to some extent, while

the additional involvement of residual recurrent convolution

bares out a more satisfactory performance of replacing con-

ventional convolution in traditional U-Net with deformable

convolution. Fig. 10(a) describes the ROC curve of finger

vein segmentation with the addition of deformable convo-

lution and residual recurrent convolution, proving that the

closer the ROC curve is to the upper left corner in ROC

coordinates, the higher the accuracy of the model is. Another

phenomenon can be discovered that the ROC curve of the

model proposed in this paper centers mostly on the upper-

left section and occupies the most areas under the curve
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FIGURE 10. ROC curves for adding deformable convolution and residual recurrent convolution on three datasets.

FIGURE 11. Example of segmentation results for adding deformable convolution and residual recurrent convolution on three datasets.

FIGURE 12. ROC curves of different models on SDUMLA dataset.

(AUC). An example of segmentation results is illustrated in

Fig. 11(a) with the left column extracted from traditional

U-Net segmentation, the middle column from U-Net model

segmentation, in which normal convolution is replaced by

deformable convolution, and the right column from network

segmentation after adding residual recurrent convolution on

the former basis. And the four rows respectively stands for

the original ROI image, enhanced image, label and predicted

segmentation result. It can be seen that in the tiny vessel

regions, U-Net shows its limitations in handling details,

and although deformable convolution can capture finger

veins of myriad of shapes and sizes, showing its powerful

geometric modeling ability, it still owns insufficiency in

deep mining and feature accumulation capacities, certified

by some discontinuous lines in some places. Howbeit after

the addition of residual recurrent convolution, the deeper
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FIGURE 13. Examples of segmentation results for various models on SDUMLA dataset (without CRF-RNN).

FIGURE 14. Examples of segmentation results for various models on SDUMLA dataset (with CRF-RNN).

TABLE 1. Segmentation performance for adding deformable convolution
and residual recurrent convolution on sdumla dataset.

TABLE 2. Segmentation performance of various models on sdumla
dataset (without CRF-RNN).

effective features are excavated, accumulated and retained,

which helps connect the veins with discontinuous lines and

thus a better segmentation result can be obtained.

Then we shifted our objects to systematically compare

the segmentation performance of the proposed model with

that of the current mainstream segmentation models. The

experimental metrics depicted in Table 2 show that the pro-

posed model outperforms other equivalent models in most

aspects. It is worth notice that the proposed model achieves

the highest accuracy among the eight equivalent models,

reaching 0.9067. We further evaluate the model with ROC

curve, as shown in Fig. 12 (a). We can see that the AUC of

the model proposed in this paper reaches its highest value at

0.8894. Fig. 13 illustrates the predicted segmentation results,

containing from left to right the examples of segmentation

results of FCN [49], UNet [20], Dense-UNet [35], R2UNet

[36], Attention-UNet [34], LadderNet [37], DU-Net [38] and

the proposed method, which certifies that the proposed fully

convolutional neural network obtains clearer vein segmen-

tation results. It can detect the weak vein vessels that may

be lost or tied, and also connect the discontinuous vessels,

enabling the a more effective saving of details.

In succession, we evaluated the influences of conditional

random field on finger vein segmentation. In case of losing

the generality, we likewise intercalated CRF-RNN into other

seven models to refine the output. Various performance met-

rics expounded in Table 3 mainifest that the proposed model

still occupies the first place in most performance metrics.

Another worth-noting matter is that the area under the ROC

curve in Fig. 12(b) has been greatly enlarged, mainly for

the reason that when CRF-RNN is trained with stochastic

gradient descent, the FCN component and the CRF com-

ponent can cooperate to deliver the optimal output of the

whole network, thus improving the overall performance of

the model. However, the other performance metrics of all

eight models are not improved much, which can be mainly

attributed to that the patch-based training solves the class

imbalance problem of the test sets. Considering the complex

spatial dependence, the smoothness and consistency of the

VOLUME 8, 2020 65411



J. Zeng et al.: Finger Vein Verification Algorithm Based on FCN and CRF

TABLE 3. Segmentation performance of various models on sdumla
dataset (with CRF-RNN).

TABLE 4. Verification performance of various models on sdumla dataset
(with CRF-RNN).

TABLE 5. Segmentation performance for adding deformable convolution
and residual recurrent convolution on mmcbnu dataset.

TABLE 6. Segmentation performance of various models on mmcbnu
dataset (without CRF-RNN).

label assignment, the pixel can further adjust the predicted

value according to the global information, thus resulting in

the increased overall performance, and the finely adjusted

corresponding pixels. The predicted segmentation results are

presented in Fig. 14, which implies that the conditional ran-

dom field does take the spatial dependence of pixels into

account, so that the probability of similar pixels with same

label assignment increases, and the segmentation results can

be more easily judged by humans. In addition to detecting

the weak vein vessels, the proposed method supplements the

pixels at the vascular rupture as well. Experiments verify that

the end-to-end training of FCN and CRF raises the accuracy

of the system.

FIGURE 15. EER curves under different models.

TABLE 7. Segmentation performance of various models on mmcbnu
dataset (with CRF-RNN).

TABLE 8. Verification performance of various models on mmcbnu dataset
(with CRF-RNN).

Finally, we inquired into the effect of segmentation results

on verification performance. The experimental results are

elaborated in Table 4 and Figure 15. It can be seen that the

segmentation performance closely relates to the verification

performance while our proposed method obtains the mini-

mum EER. After that, we also discover that the segmentation

results based on FCN and R2UNet possess worse verification

performance than the original ROI does, while the other

segmentation results shows the opposite. It is proved that

these two methods can reduce the inherent distinguishability

of the image itself.

B. FINGER VEIN VERIFICATION BASED ON MMCBNU

DATASET

Consistent with the SDUMLA dataset evaluation method,

three steps were taken. We initiated with investigating effects

of deformable convolution and residual recurrent convolution
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FIGURE 16. ROC curves of different models on mmcbnu dataset.

FIGURE 17. Examples of segmentation results for various models on mmcbnu dataset (without CRF-RNN).

FIGURE 18. Examples of segmentation results for various models on mmcbnu dataset (with CRF-RNN).

on finger vein segmentation, then conducted a systematic

comparison between the performance of the proposed model

and those of the current mainstream segmentation models,

and finally embed the conditional random field into recurrent

neural network structure to further evaluate the performance

of the model. In Table 5, metrics after adding deformable

convolution and residual recurrent convolution does not show

much progress due to the quality differences among ROI

images, some of which are clear enough to have their features

learnedwhile some ofwhich are too obscure to have their vein

patterns detected, thus reinforcing the difficulties for deep

mining and feature accumulation of residual recurrent con-

volution. Fig. 10(b) depicts ROC curves with the addition of

deformable convolution and residual recurrent convolution,
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TABLE 9. Segmentation performance for adding deformable convolution
and residual recurrent convolution on HKPU dataset.

FIGURE 19. EER curves under different models.

where their curves unfold greater approximation, and also

better network performance after adding residual recurrent

convolution. Fig. 11(b) illustrates an example of their seg-

mentation results, which share astonishing similarity. Thanks

to the convolution offset layer in deformable convolution,

which outstrips other methods in learning characteristics

of finger veins with different shapes, sizes and directions,

the proposed model can slightly reduce the adjacent pixel

values on the tied veins.

Table 6 expounds the performance metrics of the proposed

model and the current mainstream segmentationmodel,where

the proposed model outperforms the remaining subjects in

most metrics with the accuracy at 0.8722. We notice that

compared with all the performance metrics in SDUMLA

dataset, corresponding data here without exception are supe-

rior. Reason for this can be retrospected to the inferior qual-

ity of some ROI images provided here, resulting in low

image contrast and difficulty in detecting vein patterns, which

will directly affect the accuracy of the label. Fig. 16(a)

also portrays the ROC curve and the area under the curve

of each model. Through observation, the proposed method

owns the largest AUC at 0.8644, which proves its superior

performance of recurrent neural network, residual network

and deformable convolution network for the segmentation

of vein and blood vessel. The predicted segmentation results

are shown in Fig. 17, which are consistent with those in the

SDUMLA dataset; each column stands for the examples of

segmentation results of FCN [49], UNet [20], Dense-UNet

[35], R2UNet [36], Attention-UNet [34], LadderNet [37],

DUNet [38] and the proposed method respectively, while

each row refers to original ROI image, enhanced image, label

TABLE 10. Segmentation performance of various models on HKPU
dataset (without CRF-RNN).

TABLE 11. Segmentation performance of various models on HKPU
dataset (with CRF-RNN).

and predicted segmentation result one by one. Since adding

offset to the deformable convolution sampling position can

make the vein adapt to different size, shape and direction

changes, the proposed method can automatically correct the

predicted segmentation results on the premise of inaccurate

label, and supplement the missing vein pixels. With this

corollary, it is not difficult to comprehend that the evaluation

metric only represents the learning ability of the network, and

the model with better learning ability does not necessarily

satisfy the visual standards of people, despite of which, our

model proves better than other equivalent models in both

visual and quantitative analysis.

When we embed conditional random field and transfer the

error in the reverse direction, the overall performance of the

model can be improved due to the corresponding relationship

between pixels. The most distinguished performance lies in

that the ROC curve and the area under the curve in Fig. 16(b)

has been expanded by about 7%, reaching 0.9313. Following

the similar track of the SDUMLA dataset, the improvement

of other metrics shown in Table 7, remains little. The reason

for that may also ascribe to relative assumptions such as label

consistency between similar pixels involved in conditional

random fields, which regulates the adjustment between pixels

without much change. The results of vein segmentation in

Fig. 18 show the importance of compatibility transformation

between pixels in conditional random fields as well.

In both Table 8 and Figure 19 with the illustration of EER

under different models, our proposed method still achieves

themost prominent verification performance. It is worthmen-

tioning that the EER of all models is much smaller than that

of SDUMLA dataset, which can be ascribed to the samll intra

class difference and large inter class difference in MMCBNU

dataset. Compared with SDUMLA dataset, in spite of the

slightly lower segmentation metrics MMCBNU dataset con-

tains better verification performance, which bears out that the

dataset has more impact on the verification performance than

on the segmentation results. The changing trend is similar to
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FIGURE 20. ROC curves of different models on HKPU dataset.

FIGURE 21. Examples of segmentation results for various models on HKPU dataset (without CRF-RNN).

FIGURE 22. Examples of segmentation results for various models on HKPU dataset (with CRF-RNN).

the segmentation result, while FCN still gets the worst result,

and gets worse verification performance than the original ROI

together with Dense-UNet does. The performance of other

models is better than that the original ROI.

C. FINGER VEIN VERIFICATION BASED ON HKPU DATASET

Table 9 concludes the test performance metrics after

introducing deformable convolution and residual recurrent

convolution. Compared with the other two datasets, all

metrics of the dataset are improved after adding residual

recurrent convolution. The reason is that after receiving

the features from deformable convolution, residual recurrent

convolution not only accumulates and retains the effective

features, but also further excavates deeper features. This is

reflected in Fig. 11(c), where the residual recurrent convolu-

tion allows the veins to be connected at the venous rupture.
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TABLE 12. Verification performance of various models on HKPU dataset
(with CRF-RNN).

FIGURE 23. EER curves under different models.

Fig. 10(c) also shows their ROC curves, according to which

there is no doubt that the model we proposed defeats the other

ones.

When evaluating the performance of the proposed model

and the current mainstream segmentation models, we find

that the evaluation results based on the HKPU dataset

share great similarities in changes with the other two

datasets of SDUMLA and MMCBNU, and the proposed

model still occupies the most excellent performance level.

Table 10 shows the metrics of the non-embedded condi-

tional random field. The fully convolutional neural network

proposed ranks first with the accuracy of 0.8962, and most

metrics are the highest among their corresponding columns.

Fig. 20(a) also shows the highest AUC at 0.8882. The

predicted segmentation results are summarized in Fig. 21.

Even though the highly similar metrics of each model can

diminish the judging accuracy of bare eyes, the vein pixels

at the boundary can still be retained through the feature

accumulation of limited steps. We notice that all the data

of performance metrics of this dataset are between those

of SDUMLA and MMCBNU. In fact, the image quality of

MMCBNU and HKPU shows not much difference, because

HKPU inputs the enhanced image to the original network and

erased the low contrast of the low-quality image, which leads

to these results.

The ROC curve in Fig. 20(b) has been greatly improved

due to the effect of conditional random fields, with our pro-

posed method reaching AUC of 0.9448. The performance

metrics in Table 11 again certify the possibility of enhancing

the performance of vein segmentation task on the basis of the

fully convolutional neural network and conditional random

fields. After analysing the segmentation results in Fig. 22,

we can summarize that the conditional random field further

refines the output of the fully convolutional neural network,

and comprehensively considers the complex dependence of

the venous space to produce more excellent segmentation

performance.

The EER of eachmodel is shown in Table 12 and Figure 23.

The experimental results appear with the smallest EER of

our proposed method at 2.732% yet the largest improvement

compared with other models. Interesting enough, the per-

formance of FCN performs worst no matter in segmenta-

tion results or in verification performance among all three

datasets, while our proposed model gains the most outst-

anding results. Although several methods do not perform as

well as ROI does, most of them get better results than the

original ROI does, which proves the effectiveness of pattern

extraction.

VI. CONCLUSION

In this paper, we propose a new fully convolutional neural

network to fulfil the finger vein segmentation task in a pixel-

wise manner. As an extension of U-Net, it can well integrate

the advantages of recurrent neural network, residual network

and deformable convolution network. Moreover, by adding

an offset to the sampling grid of normal convolution, the con-

volution operation can adaptively adjust the receptive fields

according to the size and shape of the vein blood vessels, so as

to facilitate the capture of them. These more complex and

deeper features are mined and accumulated by the recurre-nt

neural network and residual network. In addition, conditional

random field is introduced to refine the output of fully con-

volutional neural network by controlling smooth constraints

such as image edge, appearance consistency and space con-

sistency when assigning labels, which heightens the accuracy

of the segmentation results. The conditional random field can

be inferred as the embedment of the whole network model,

while the conventional back propagation algorithm is used

for end-to-end training. Every equivalent model is trained

from scratch, with their performances compared with each

other. The experimental results on three public finger vein

datasets manifest that the fully convolutional neural network

proposed in this paper earns superior segmentation results

to other equivalent models, and the embedded conditional

random field also further improves the performance of the

system. Furthermore, we delve into the effect of segmentation

results on verification performance. It is discovered that

the quality of segmentation results can indirectly affect the

performance of verification with keeping the changing trend

consistent, while the quality of dataset can directly affect the

performance of verification. In segmentation and verification,
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the proposed methods receive the most satisfactory

results.

In the future, we will design a classification network

specifically for finger vein verification to further improve

accuracy. We also expect to extend the proposed fully convo-

lutional neural network to three dimensions, so as to obtain

more accurate results in various medical image segmentation

tasks.
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