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Abstract—Device-free localization (DFL) systems locate a per-
son in an environment by measuring the changes in received
signal on links in a wireless network. A fingerprint-based DFL
method collects a training database of measurement fingerprints
and uses a machine learning classifier to determine a person’s
location from a new fingerprint. However, as the environment
changes over time due to furniture or other objects being
moved, the fingerprints diverge from those in the database.
This paper addresses, for DFL methods that use received signal
strength as measurements, the degradation caused as a result of
environmental changes. We perform experiments to quantify how
changes in an environment affect accuracy, through a repetitive
process of randomly moving an item in a residential home and
then conducting a localization experiment, and then repeating.
We quantify the degradation as well as consider ways to be more
robust to environmental change. We find that the localization
error rate doubles, on average, for every six random changes in
the environment. We find that the random forests classifier has
the lowest error rate among four tested. We present a correlation
method for selecting channels which decreases the localization
error rate from 4.8% to 1.6%.

I. INTRODUCTION

Device-free localization (DFL) methods measure the
changes in radio signal on links in a static wireless network
and process the data to estimate a person’s location within the
deployment area. Researchers have demonstrated the ability
of DFL systems to locate and track people with less than one
meter error [1], [2], [3], [4], [5], [6], [7]. One advantage of
using radio waves is their ability to penetrate walls and other
objects, allowing for more flexibility in placing the sensors in
an area of interest [8], [9], [10].

In fingerprint-based DFL, training data in the form of signal
measurements of each link are gathered as a person walks to
each of several predetermined locations in the network [11],
[12], [13], [14], [15], [16], [17]. These measured “fingerprints”
gathered during the training session are stored with the known
(or even estimated [18]) coordinate of the person. A super-
vised learning algorithm then processes the test data, a new
measurement on each link, to determine which fingerprint in
the database to which it is closest, or to estimate a person’s
location as a linear combination of several fingerprints.

Fingerprint-based DFL methods are effective compared to
other model-based methods because the changes in a radio
channel as a function of a person’s position are often difficult
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to model in multipath environments. The signal power on any
given channel on a link typically decreases when a person
obstructs the line between a transmitter and receiver (the link
line) in a line-of-sight environment. However, in a non-line-of-
sight environment, this power can increase or decrease when
the link line is blocked [19]; moreover, the signal power can
change even when a person is far from the link line [20].
Measuring the exact mapping between person position and
received signal change for a particular environment enables
position estimation from signal measurements.

Within the broad area of “device-free” environmental sens-
ing, this paper studies DFL systems which use received signal
strength (RSS) as a link signal measurement, which includes
the majority of DFL research. RSS is a nearly ubiquitous mea-
surement available from standard transceivers. Recent work
has shown that use of channel state information (CSI), i.e.,
the signal strength and phase of the received signal at multiple
discrete frequencies, provides a higher dimensional measure-
ment per link which can then improve DFL performance
[16], [17]. Although we do not measure phase, this paper
also studies measuring the signal strength at multiple discrete
frequencies and its effect on DFL. Related to DFL, other
work has shown the capability of bistatic or multistatic radars
to localize people through walls [9]. Further, radio channel
measurements on static links can be used to estimate the
activity in which a person engaged [21] or their gesture [22].
Although environmental changes may also impact them, this
paper does not address radar measurements or recognition of
activity or gesture, and is instead focused on localization using
standard transceivers.

Over time, the mapping between received signal change
and a person’s position changes as the environment changes.
Fig. 1 shows an example of the RSS function (vs. a person’s
location), taken from Experiment Set 2, described in Section
II. In the figure, the RSS function is first measured (blue line).
Then, after 19 randomized small changes are made to objects
in the environment, the RSS function is remeasured (green
line). In some cases, for the same position and same link,
the RSS is different by 5-10 dB. The change in RSS is a
phasor sum of multipath, and as the phases of the multipath
change due to small changes in the positions of reflectors in
the environment, so does the way that the RSS responds to
a person’s presence. Such changes to the RSS mean that the
fingerprints measured in training are no longer accurate, and
as a result, the accuracy of fingerprint-based DFL degrades.

However, degradation in localization performance over time
in a changing environment have rarely been presented in the
literature. In [11], the authors perform tests in an apartment
one month after the training data were gathered. The results
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Fig. 1. Attenuation on two channels for link 19→25 vs. person location
(0-20). The first attenuation function (——) is measured; then several small
changes are made to the environment, and the attenuation function is re-
measured (——). In some locations, the attenuation has changed significantly
due to the environment changes.

degrade due to the environmental change, and the authors
correct for the change by removing links that experienced a
large variation from the training data due to environmental
instabilities. One concern with the link removal method is that,
over time, fewer and fewer links are used for localization;
eventually, there may be insufficient information for localiza-
tion.

Methods have been developed to track the reference or
“unaffected” value of each link’s signal as the environment
changes. In [23], a radio tomographic imaging (RTI) system
estimates where the person is currently located and updates
the reference RSS for links far away from the current lo-
cation. Other methods train hidden Markov models to learn
the distribution of RSS during affected and unaffected states
[4], [24]. Fingerprint-based DFL systems require knowing the
fingerprints as a function of the known person location. In
[15], a video camera is used to provide ground truth person
location, at the price of having a duplicate localization method
alongside the DFL system.

In this paper we examine the degradation in localization
accuracy over time, and test various methods to mitigate the
decrease in accuracy. We conduct the study by performing
extensive measurements in a residential home in which a
network of RF sensor nodes has been deployed. Environmental
change is systematically introduced by moving, at random,
various objects within the network. After each item is moved,
a new localization experiment is performed. We then employ a
fingerprint-based method using a machine learning classifier to
estimate the subject’s location for each measurement sample.

Four machine learning classifiers are tested to determine
their relative performance over the course of the experi-
ments. We further investigate channel selection as a means
for robustness. We find that localization performance varies
significantly by classifier and fingerprint link features used.
For example, after 18 changes in the environment have been
made for one experiment set, classification error ranges from
12.8% to 47.9% for the four different classifiers. The random
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Fig. 2. Algorithm framework for localizing a subject.

forests classifier consistently outperforms others tested. We
then introduce a novel correlation metric for selecting the
channel to be used as a link’s feature, and show that it achieves
consistently high classification accuracy as the environment
changes, reducing average (over all experiments) classification
error from 3.5% to 1.4%.

A. DFL Problem Statement

A DFL system is composed of N sensor nodes deployed
around the area of interest. In this paper, we consider mea-
surements of received signal strength (RSS) on many links
in the network. We assume a protocol exists to allow many
links to be measured, and that each transmitter/receiver pair
measures RSS on multiple frequency channels. Let link l be
the directional link between transmitter tl and receiver rl,
where tl 6= rl and tl, rl ∈ {1, . . . , N}. Next, let sl,c be the
RSS measured on link l on frequency channel c ∈ {1, . . . , C}
where C is the total number of possible channels. A complete
measurement of the network’s L transmitter/receiver pairs and
C channels is given as,

s = [s1,1, . . . , s1,C , . . . , sL,1, . . . , sL,C ]
T . (1)

Training data are first gathered by having a person stand at
several predetermined locations throughout the environment,
so as to cover as much of the area as possible. Let I be the
set of training locations. We collect several vectors si as given
in (1) for each location i ∈ I.

A fingerprint may be, in general, a subset or a function of the
data in s

i. For example, in order to decrease the dimension of
the fingerprint, the fingerprint may extract RSS measurements
made on particular channels. We assume some function u

i =
f(si) computes a fingerprint vector ui which is then stored in
a database.

During system operation, when a person is standing in
the environment, a new vector s is measured as in (1), with
corresponding feature vector u = f(s). The fingerprint-based
DFL problem is to determine in which location i ∈ I the
person is standing, as shown in Fig. 2.

In this paper, we first present an experimental method to
evaluate the performance of fingerprint-based DFL methods
after environmental changes have made RSS feature vectors
diverge from those stored in the training database.



II. METHODS

In this section, we describe our method for providing a
repeatable experimental evaluation of the performance of a
fingerprint-based localization system in an environment with
a quantifiable degree of change. One method is to test DFL
performance after a long period of time after training [11];
however, the reader will not be aware of what has changed in
that time, or even how much the environment was used in the
interim. As an alternative, we use a procedure in which we
repeatedly make small changes to objects in the environment
and collect a new set of RSS data after each change. First,
we describe the network, the sensors, the environment, and
the data collection methods. Then, we describe the method we
use to introduce random changes into the environment.

A. Environment

The experiments are conducted on the main floor of a brick
house, in an area approximately 84 m2. The main floor area
includes living room, dining room, kitchen, bedroom, den, and
two bathrooms. Thirty-two locations are identified and marked
by numbers on the floor, as shown in Fig. 3. Neighboring
locations are separated by about 50 cm, although furniture and
walls prevented a complete grid of testing locations.

B. Network

A network of N = 30 transceivers is deployed in vertical
pairs at fifteen locations, with the lower nodes approximately
28 cm from the floor and the upper nodes 132 cm above the
floor. Placing nodes at two levels provides an opportunity to
test different topologies of nodes based on height. The nodes
are Texas Instruments CC2531 dongles, which operate in the
2.4 GHz range.

A multichannel system with a TDMA protocol is employed,
where each node takes a turn transmitting and all the nodes
switch to the next channel of a predefined set of C channels
after each transmission cycle. The nodes can transmit and
receive on any of 16 channels numbered 11–26, where the
center frequencies fc are given by,

fc = 2405 + 5(k − 11)MHz, k ∈ [11, 26] (2)

For this research, data are gathered on the C = 8 even-
numbered channels (i.e., 12, 14, . . . , 26), allowing us to test
a set of evenly-spaced center frequencies over the available
range. In the deployed network, we have full connectivity, such
that data are measured on L = N(N − 1) = 870 links. An
additional receiver listens to the traffic on the network and
collects the data for post-processing.

C. Training and Test Sets

a) Training: In our experimental procedure, we first
gather training data. The subject stands at testing location i
for 50 s while RSS vectors s

i are collected. To ensure the
training data are not specific to one orientation of the person,
the subject slowly spins around in place, making one rotation
over the course of the 50 s. Given that we collect one sample on
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Fig. 3. House layout with node locations and test locations. The nodes are
deployed in vertical pairs; lower node numbers are odd, upper node numbers
are even.

all eight channels every 0.817 s, we have about 61 samples of
training data. Note that 50 s of calibration data is gathered with
the subject standing outside the house. We call this location
i = 0, which provides a baseline measurement of RSS on all
the links with no one in the network.

b) Test Experiments: The next phase consists of several
experiments in which the subject moves from one location to
the next, standing still for a minimum of 20 s in each position.
The order and timing of the movements are predetermined, and
the subject uses a stopwatch to know when to move to each
spot. This period of time provides about 24 samples of RSS
vector s for each position. Data recorded during movement
from one location to the next are not used since the exact
position of the person is not known. Note that location i = 0
is also tested, for a minimum of 50 s.

Thus, the term “training” refers to the procedure of gathering
the RSS signature with a subject standing in every location;
“experiment” refers to a localization test; data are collected
for the purpose of having the system estimate where a person
is; and “calibration” refers to the collection of data when the
network is empty.

D. Simulating the Passage of Time

We use a procedure, described here, to randomly change
the environment in a way that might be done by residents
of a home, but in a manner that allows repeatability of the
experiments.

First, we identify several moveable objects and manner of
movements (e.g., direction and distance). Objects include a
coat rack, couch, box of books, bag of groceries, house plant,
ironing board, dining set, and two interior doors.

Next, each object is given a list of possible placements, up
to four possible locations or states. For example, the bag of
groceries could be placed in four possible locations on the
kitchen counter; the stack of boxes is assigned four possible
positions, one in each of the four main rooms (living room,
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Fig. 4. House layout with node locations and default placement for objects.

dining room, kitchen, and den); each chair in the dining set
could be placed facing one of four orthogonal directions. One
of these positions is assigned as the default position, in which
the object is placed during training.

Finally, to reduce the chance of experimenter bias, when
something is to be moved, the object and its new placement
are randomly generated by computer. A complete list of the
chosen objects and placements are listed in the appendix of
[25].

Each set of experiments consists of several separate data-
gathering experiments. Each set begins with a training and
an experiment. Next, an object is moved or changed, and a
new experiment is conducted. This process is repeated, with
the next object being moved and new experiment conducted.
Changes are cumulative over the set of experiments.

Five sets of experiments are performed. Sets 1 and 2 include
minor movements, such as slightly rotating a chair; however,
later experiment sets include only more significant movements
that would represent a greater change in the environment and
thus potentially lead more quickly to a measurable degradation
in localization performance. For example, in Set 3 each exper-
iment involves moving two items at a time, while in Sets 4 and
5 the dining table and chairs form a group that is rotated or
moved together, rather than as individual pieces. Figures 4 and
5 show the “before and after” of objects in the environment
for Sets 4 and 5. A complete sequence of object movements
in each set is listed in [25].

1) Classifiers Tested: Four machine learning classifiers are
tested in this paper: random forests with 100 estimators, k-
nearest neighbors (KNN) using three neighbors, support vector
machine (SVM), and linear discriminant analysis (LDA).

SVM is a supervised learning algorithm that uses labeled
training data to create a model that can then predict which
classes the new test data belong to, given a set of features from
the test data [26], [27]. SVMs treat the data to be classified
as points in a multidimensional space, in which the different
classes can be separated by a hyperplane. SVMs have been
used in fingerprint-based DFL [12].

The SVM used here employs a radial basis function (RBF)
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Sets 4 and 5.

kernel to project data to a higher-dimensional space, where the
RBF kernel on two samples x and x′ is defined as

K(x, x′) = exp(−γ|x− x′|2), (3)

where γ is a kernel size parameter. The SVM also allows
for a few anomalous data points falling on the incorrect side
of a hyperplane by the inclusion of a user-defined penalty
parameter, C, which determines how much the outliers are
taken into account. Finding the optimal values of γ and C
is accomplished through a grid search that involves testing
several pairs of each parameter and choosing the pair that
results in the lowest error rate. From our data, we conclude
that the value of C = 0.95 and γ = 5×10−4 provide the best
performance.

The KNN algorithm is an instance-based learning method,
where learning simply involves storing the training data for
later retrieval, and each instance (i.e., new test sample) is
assumed to correspond to a point in n-dimensional space
[28]. When a new test sample arrives, the algorithm examines
the new sample’s Euclidean distance to the stored samples
and assigns a value for this sample. In the case of k-nearest
neighbors, the algorithm compares the test sample to a user-
defined number of training samples, k, that are closest in
distance to the test sample. The value of the test sample is
then assigned through a simple majority vote of its k nearest
neighbors. For our experiments, we use a value of k = 3.

The random forests classifier consists of a collection of
single classification trees, in which each tree is grown by ran-
domly drawing samples, with replacement, from the training
set [29]. To our knowledge, random forests have not been
used for DFL, and we include them because they are known
to achieve state-of-the-art results in several other applications
[30]. A small number of features is selected at random out
of the input features, and the best split on these is used to
construct each tree. Trees are then combined by averaging
their probabilistic prediction [27]. For these experiments, the
number of trees is set to 100, while the number of random
subsets of features to consider when looking for the best



split on each node is set to the square root of the number
of features. Although performance improves for increasing
number of trees, we see diminishing returns after 100.

Use of LDA has been tested for DFL in [11], [14], and [18],
and is closely related to a Bayesian classifier with Gaussian-
distributed observations such as used in [17]. It is a type
of classifier that finds linear decision boundaries between
classification regions that divide the input space [31]. Each
class density, P (u|i), i.e., the probability density of RSS
fingerprint vector u given a person at location i, is modeled
as multivariate Gaussian, and classes are assumed to share
a common covariance matrix. Given P (u|i) for each class
(location) i, LDA finds the probability that a particular RSS
fingerprint u belongs to a class by applying Bayes’ rule:

P [i|u] = P [u|i]P [i]

P [u]
. (4)

For our implementation, we assume locations i are equally
likely. Location classification is performed by finding the i
that maximizes (4), or equivalently, P [u|i].

III. RESULTS

In this section, we address particular design questions in
RSS-based DFL, in particular, how performance degrades over
time as the environment changes. We do not focus on the value
of the error percentage or RMSE — we are primarily interested
in the relative performance among a set of possible design
choices, or over time.

A. Selecting a Machine Learning Classifier

We first explore machine learning classifier performance.
We use the data from experiment Set 2, since it is the most
representative of the data sets. In Section III-H, we test the
accuracy of the other experiment sets once a classifier and
feature set have been selected.

For this evaluation, we set the feature vector u to contain
the link attenuation values measured on only one channel c,
for some fixed channel c; we refer to this as the One Fixed
Channel method. Specifically,

u = [s1,c, s2,c, . . . , sL,c]
T . (5)

Measuring on one fixed channel on all links has been reported
in the fingerprint-based DFL literature [11], and this setting
for fingerprint vector u is reasonable for comparing different
classifiers. Since our network records data on C = 8 channels,
we run the test with eight different settings for c and show the
average performance.

For each setting of channel c, we build each classifier using
the fingerprint vectors {ui}i recorded in the training period.
Skewing of the class distribution is avoided by ensuring that
we gather the same number of samples per class. Then, we
test each classifier using the attenuation data vectors collected
during each experiment in Set 2.

Fig. 6 shows the error rates, averaged over eight possible
channels, for each method over time, i.e., over the course of
the experiments, which are labeled from 1 to 19 in the graph.
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Fig. 6. Error percentage for classifier methods vs. Set 2 experiment number,
with log-linear best fit for random forests, KNN, LDA, and SVM.

Classifier Overall Average Error

Random Forests 3.5%

K-Nearest Neighbors 47.9%

Linear Discriminant Analysis 16.1%

Support Vector Machine 8.3%

TABLE I. ERROR RATES FROM FOUR CLASSIFIERS

Note that one experiment was conducted after each of 19
environmental changes as described in Section II-D, so plotting
vs. experiment number effectively plots performance vs. the
quantity of change in the environment. Table I summarizes the
classifiers’ error rates, also averaged over the 19 experiments.

The k-nearest neighbors classifier performs poorly com-
pared to the other methods. Even before any items have been
moved in the house, at experiment 1, KNN’s error rate of 8.0%
is nearly an order of magnitude worse than the next highest
error rate of 1.0% for LDA. Increasing k does not improve the
error rate of KNN; for example, k = 5 results in an error rate
of 9.7% for experiment 1.

The KNN classifier suffers from the curse-of-dimensionality
problem in which as the dimension increases, the distance
to the closest sample approaches the distance to the furthest
data point [32]. The poor performance with a standard KNN
classifier may be the result of having noisy data with a
dimension of L = 435.

LDA also performs relatively poorly, perhaps because LDA
assumes that 1) data is multivariate normal within each class
and 2) all classes share the same covariance matrix. Although
quadratic discriminant analysis removes the second assump-
tion, it performs poorly when the number of training samples
in each class is too small for accurate estimation of the
conditional covariance matrices [11].

One advantage of random forests is that using a random
split selection when building the tree classifiers makes the
algorithm more robust to noise, since it does not put weight
on any particular subset of the instances [33]. If we were
to retrain the system after a change in the environment, we
might find the feature vectors associated with some locations
to have some altered values. We could thus think of the original
training data as containing noise, i.e., some of the data will be
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misclassified since some pairs of feature vectors and labels no
longer correspond to what the new training data would show.

B. Distance Error

If we present classifier performance in terms of distance, as
is standard in the literature, we find that the random forests
classifier still performs the best. Fig. 7 shows the results for
all classifiers for Set 2 using penalized RMSE. A penalty is
included for cases where the system decides that no person
is present, when in fact a person is at a location inside the
house. In these cases, we introduce a penalty of 6 m, which
is approximately half the length of the house. Comparing this
figure with Fig. 6 informs us that while the number of errors
increases for all four classifiers over time, those for random
forests are due to misclassifications nearer to the subject’s
actual location.

Since the random forests classifier provides the best overall
performance, we will use that for the remainder of the discus-
sions.

C. Error % vs. Environmental Change

The data from the classifier tests plotted in Figs. 6 and
7 show that when system performance is good (≤ 10% or
RMSE < 1 m), the rise in percentage error and RMSE is
approximately exponential with experiment number. That is,
the error metric increases multiplicatively with linear increases
in the number of environmental changes. Further, the rate of
increase is nearly the same for random forests, LDA, and SVM.
For low values, error percentage is approximately proportional
to exp(0.113x) where x is the experiment number, and RMSE
is proportional to exp(0.176x). This corresponds to error
percentage and RMSE doubling every 6.1 and 3.9 experiments,
respectively.

This experimental result may help predict, when an RMSE
result is reported with no environmental changes between
training and test, how the error will increase over time.

Further, the good fit between the exponential fit and the
experimental results shows that it is not just a few specific

Link Set Overall Average Error

All links 3.5%

Upper links 5.9%

Lower links 26.8%

Diagonal cross links 7.8%

All w/o lower links 3.6%

TABLE II. ERROR RATES FOR DIFFERENT LINK SETS

changes in the environment that result in the observed per-
formance degradations. For example, rotating a chair in Set 1
resulted in a small decrease in error, while rotating the same
chair for an experiment in Set 2 caused a large increase in error.
Closing the bedroom door in Set 1 increased the error by nearly
4%, yet in Set 2 the same change increased the error by only
about 1%. Thus, the same change can degrade performance
strongly in one instance and make little or no difference in
another instance. We find that performance degradations are
unpredictable individually, but predictable on their collective
effect over time.

D. Link Sets Based on Network Topology

At this point we can investigate whether it is possible to find
a feature set that will help improve localization performance
even though the environment changes. Including links that have
been too greatly affected could lead to a misclassification by
the machine learning algorithm. Thus, we want to only include
data from the links and channels that remain more constant
throughout the course of any changes in the environment.

We begin by looking at the results of different link sets
based on topology. Typical experimental setups consist of
nodes placed at a height of 1.0–1.5m above the floor. While we
employ this arrangement (referred to as the upper level here),
we also include a lower level of nodes near the floor. This setup
can potentially be used in applications such as fall detection
[34]. Thus, we can select from the upper links (created by
nodes on the upper level of the network), the lower links, the
diagonal cross links (all the links traversing diagonally from
the lower level to the upper level or vice versa), or all links
minus the lower links.

Primarily, changes in the environment are due to moving
objects and furniture, which typically sit on the floor. Thus
we expect the results generated by the lower links to degrade
the most. Indeed, this is what we find. However, we also want
to determine if using one of the other link sets will provide
localization performance that equals or surpasses that of using
all the links.

Using the same fingerprint vector u as used in Section III-A
and the random forests classifier, we compute the error rate
for each of the link sets. The average over all experiments and
channels is given in Table II.

We see that we cannot improve performance by selecting a
link set based only on topology, though it is possible to remove
the lower links and achieve results nearly equivalent to using
all the links. For the remainder of the paper, we use all links
when processing the data.



E. Selecting a Channel Set

The results in Sections III-A and III-D use only data from
channel c in the fingerprint u, as given in (5). However, for any
particular link, two different channels may behave differently
both before and after the environment changes. Our choice of
channel or channels to use in fingerprint vector for a link will
impact the performance of the DFL system. In this section, we
explore the selection of one or more channels for each link.

At one extreme of fingerprint vector dimension, the system
could use the data from all eight channels at once in the finger-
print vector, i.e., s = u. Using the random forests classifier for
Experiment Set 2, this setting achieves an overall average error
rate of just 0.185%, which is far better than the 3.5% error we
get by processing the channels separately and averaging their
results. We could conclude that, to minimize the degradation in
localization performance over time, we simply need to gather
data on multiple channels and process them together. Although
the measurement now requires significantly more bandwidth,
the result is motivation for use of devices that can measure CSI,
which includes signal strength at each of multiple frequency
channels (in addition to phase), such as reported in [17], [16].
Note that the eight channels we measure span 80 MHz of
bandwidth, while WiFi channels at 2.4 GHz span only 20 MHz.

If we use devices which report signal strength on a sin-
gle frequency, measuring eight channels requires eight times
the energy and latency. Sending data on C channels would
multiply the data rate sent from each transceiver to the sink
by C, and would increase the computational requirements at
the processor. For a real-time embedded DFL system, such an
increase is undesirable. In the following sections, we determine
if we can choose a subset of the channels to process, while
still achieving acceptable error rates.

1) Subsets of Channels: We test processing the data using a
subset of the eight available channels. That is, for a subset A ⊂
{1, . . . , 8} with elements c1, . . . , c|A|, we set the fingerprint
vector,

u = [s1,c1 , . . . , s1,c|A|
, . . . , sL,c1 , . . . , sL,c|A|

]T .

Testing every possible subset A and averaging the results of
the sets with the same number of channels |A| indicates that,
as expected, the average error is higher with fewer channels
(Table III).

Note that for any particular number of channels, some
subsets of channels provide excellent results. Fig. 8 shows an
example in which the performance of channels {22, 20, 16} is
as good, on average, as using six channels. The difficulty lies
in determining beforehand which are the “right” channels to
use.

F. Best Channels Per Link

In this section, we explore selecting, based on information
available to us from the training and calibration, a single chan-
nel for each link that we predict will be best for fingerprint-
based DFL. Denoting bl as our channel selection for link l, we
set the fingerprint vector to,

u = [s1,b1 , s2,b2 , . . . , sL,bL ]
T . (6)

Number of Channels Overall Average Error

1 3.50%

2 1.80%

3 1.10%

4 0.750%

5 0.547%

6 0.413%

7 0.329%

8 0.185%

TABLE III. ERROR RATES USING VARIOUS SUBSETS OF CHANNELS
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Fig. 8. Different combinations of three channels. Depending on the channels
selected, the results can vary dramatically.

In contrast to (5), this also uses one channel’s data per link,
but allows each link to use an arbitrary channel.

1) Best Channels – Highest Average RSS Methods: First, we
explore using, for link l, the channel bl with highest average
RSS. This is motivated by the fact that in a multipath channel,
as a function of center frequency, a link may experience
low RSS because of destructive interference (said to be in
“deep fade”) or high RSS because of constructive interference
(called “antifade” links in [19]). A link in an antifade generally
experiences a sharp drop in RSS due to a change directly on
the link line, and little variation otherwise. In contrast, a link
in a deep fade experiences high variance when there is change
in a wide area near the link line [19]. Deep fade links are, in
short, very sensitive to environmental change, and thus should
be avoided.

We test two methods to using highest average RSS to select
a channel for each link:

1) Channel with Highest RSS During Training method:
From the training data collected when no person is
present, select the channel on each link that has the
highest average RSS, then use that channel for all
experiments.

2) Channel with Highest RSS Adaptive method: Adaptively
select the channel on each link that has the highest
average RSS during each calibration period. In our
experiments, we have a calibration period before each
experiment during which we know the area to be empty.
In a real-time system, one would need to use a method
such as used in [35], [23], [4], [24] to adaptively track
the calibration RSS.

In the Channel with Highest RSS Adaptive method, the



channel bl used during training to generate fingerprint vectors
{ui} may later be changed. Denote bl(m) as the channel
with highest calibration RSS at time m on link l. A new
calibration is collected (and m is incremented) whenever the
link is determined to be not affected by any person’s presence.
The fingerprint vector sent to the classifier at time m will be,

u = [s1,b1(m), s2,b2(m), . . . , sL,bL(m)]
T , (7)

even though bl used during training may be not equal to bl(m).
In effect, we replace the data from channel bl with the data
from a new channel bl(m) which we believe is now closer in
attenuation characteristics to the training data for link l.

Using the Channel with Highest RSS Adaptive method
results in an error rate of 1.25%, compared with a 3.50%
error rate using the One Fixed Channel method, and a 6.89%
error rate using the Channel with Highest RSS During Training
method. The rationale for this is that links with channels
with the highest average RSS when the network is empty
are less likely to be in deep fade, and thus more likely to
be affected only when someone is standing on the link. In
terms of complexity, determining bl from training is preferable
compared to adapting bl; however, the results show it is not
robust to environmental change.

2) Best Channels – Correlation Method: Next, we test the
idea that if two channels have highly correlated RSS during
training then they are also likely to be robust to environmental
change. To motivate this, consider that a link l’s RSS sl,c is
the squared amplitude of a phasor sum of multipath, in dB:

sl,c = 10 log10

∣

∣

∣

∑

i

αie
j2πfcτi

∣

∣

∣

2

, (8)

where fc is the center frequency of channel c, αi is the
complex amplitude and τi is the propagation delay of path
i, and j =

√
−1. We suspect that many small changes in the

environment alter the time delays {τi} because the changes
make a path from transmitter to receiver slightly longer or
shorter. These changes in τi alter the phases ej2πfcτi . Similarly,
changing the center frequency alters the phases ej2πfcτi . If we
find a frequency fc near which the amplitude of the phasor
sum (and thus sl,c) changes very little, then we hypothesize
that sl,c will change very little due to changes in {τi}.

In this correlation method, we first find for link l the
Pearson correlation coefficient between the RSS measured
during training on any pair of channels. We denote the two
channels with highest correlation coefficient as γl,1 and γl,2.
We set bl to be the channel γl,1 or γl,2 with the highest average
RSS over the course of the training experiment.

We set bl in (6) in this manner and run the random forests
classifier and plot results for Experiment Set 2 in Fig. 9. Using
this correlation method provides better results than the One
Fixed Channel method, reducing the overall average error rate
from 3.5% to 1.4%.

The correlation method for channel selection has similar per-
formance to the Channel with Highest RSS Adaptive method,
but yet does not require adaptive tracking of the calibration
RSS. Further, it is significantly better than the Channel with
Highest RSS During Training method, which also relied only
on the training period RSS data.
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Fig. 9. Error rates for Set 2, comparing the One Fixed Channel method with
the Correlation method of selecting the best channels.

G. Analysis of the Correlation Method

Analysis of the two most correlated channels γl,1 and γl,2
over all the experiment sets indicates that 96.0% of these
pairs consist of adjacent channels (e.g., channel pairs such as
14 and 12, 22 and 20, 26 and 24, since we are only using
the even-numbered channels). One might expect to find that
channels near each other would behave similarly. However,
it does not appear that lower frequencies perform better than
higher frequencies, or vice versa. The specific channels chosen
are evenly distributed among the eight possible channels, so
there is no bias towards a particular center frequency.

As an example, Fig. 10 compares the attenuation on the link
between nodes 24 and 28 for the initial and final experiments.
Channel 14 is selected by the Channel with Highest RSS
During Training method, and channel 24 is selected by the
correlation method. Another example is in Fig. 1, showing a
different link (19 to 25) for which the Channel with Highest
RSS During Training method selects channel 22 and the
correlation method selects channel 16. Both links are typical of
links in which the two methods do not select the same channel.
We note that the correlation method often selects a channel that
experiences more signal, i.e., change in RSS as a function of
position. This is seen in Fig. 10 at locations 2, 5, and 17,
compared with the lack of such a change in RSS in the upper
graph. Second, when the channel selected by the correlation
method does show a high signal, it is often more consistent
over time, compared to locations for which the highest average
RSS method shows a high signal.

H. Testing the Repeatability of the Results

Having identified, for one set of the experiments, a machine
learning classifier that offers the best localization performance
for the system under investigation, as well as feature sets
that are relatively robust to environmental change time, we
now need to determine if the results are repeatable with other
experiment sets. Five sets of experiments are conducted in the
same house over the course of two weeks. Each set consists of
several experiments in which one item is moved before each
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Fig. 10. Attenuation for the two channels selected by different methods, for
the link between nodes 24 and 28.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Experiment (Number of Alterations)

0

5

10

15

20

E
rr
o
r 
(%
)

One Fixed Channel method

Correlation method

Channel with Highest RSS Adaptive method

Fig. 11. Error rates for Set 1, comparing all channels with two methods of
selecting the best channels.

experiment, and all experiments in a set are conducted on the
same day.

Fig. 11 shows the results of experiment Set 1, using the
random forests classifier. We compare:

1) One Fixed Channel method,
2) Correlation method, and
3) Channel with Highest RSS Adaptive method.

Table IV summarizes the error rates for each experiment set
using the three methods. The correlation method performs
the best across the five experiment sets, with a 1.6% overall
average classification error, 2.6 to 3.0 times lower than the
other methods. We note that the highest RSS adaptive method
was better than the correlation method only in Set 2. As the
correlation method is easier to implement, we can conclude
that, of the methods to select one channel per link, the
correlation method is recommended.

IV. CONCLUSION

This paper investigates the degradation of fingerprint-based
DFL accuracy as a function of the degree of change in an
environment. A network of sensor nodes on the main floor

Experiment Set Correlation One Fixed Channel Highest RSS Adaptive

Set 1 0.44% 2.56% 2.32%

Set 2 1.40% 3.50% 1.25%

Set 3 2.05% 8.68% 8.68%

Set 4 0.35% 3.30% 2.21%

Set 5 3.85% 5.79% 6.50%

Overall 1.62% 4.76% 4.19%

TABLE IV. ERROR RATES FOR DIFFERENT SETS AND METHODS

of a residential home is used to gather link RSS data on
multiple channels on all the links in the network. We use
a procedure in which we perform a sequence of randomly-
selected environmental changes and conduct new localization
test experiments after each change. We conduct five sets of
such change-over-time experiments, where each set consists
of 10 to 19 changes and re-testing.

This paper uses the extensive data to test how fingerprint-
based DFL methods degrade over time, and how they may be
made more robust. When the classification error percentage
is less than 10%, it increases exponentially, doubling, on
average, after 6.1 random changes in the environment. The
random forests classifier is shown to be more reliable than
three other classifiers tested. We next test different methods
to select the channel, as a function of the link, to be used
in the fingerprint vector. We propose a correlation method
for channel selection which, in combination with the random
forests classifier, helps achieve a much lower localization error
rate even as the environment changes. The correlation method
decreases localization classification error from an average of
4.8% over all the experiment sets to 1.6%. This demonstrates
that we can develop a more robust localization system that
requires less frequent retraining.
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