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Abstract

This work presents two mechanisms for processing fingerprint images; shape-adapted smoothing based on

second moment descriptors and automatic scale selection based on normalized derivatives.

The shape adaptation procedure adapts the smoothing operation to the local ridge structures, which allows

interrupted ridges to be joined without destroying essential singularities such as branching points and enforces

continuity of their directional fields. The scale selection procedure estimates local ridge width and adapts the

amount of smoothing to the local amount of noise. In addition, a ridgeness measure is defined, which reflects

how well the local image structure agrees with a qualitative ridge model, and is used for spreading the results of

shape adaptation into noisy areas.

The combined approach makes it possible to resolve fine scale structures in clear areas while reducing the

risk of enhancing noise in blurred or fragmented areas. The result is a reliable and adaptively detailed estimate

of the ridge orientation field and ridge width, as well as a smoothed grey-level version of the input image.

We propose that these general techniques should be of interest to developers of automatic fingerprint identi-

fication systems as well as in other applications of processing related types of imagery.
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I. Introduction

Fingerprint enhancement is a common step in several systems for automatic fingerprint identification

[3], [4], [5], [6], [7]. Such systems usually mimic the human procedure for fingerprint identification,

consisting of the following processing steps:

• The image is analyzed in local neighborhoods, to estimate attributes of the ridge patterns, such as

ridge width, orientation and curvature, as well as the amount of noise and the image quality.

• Then, a set of contextual filters is built, based on this local information, with the aim of enhancing

the underlying ridge structure while removing the noise.

• Once a clean image has been obtained, the minutiae features (i.e. singularities in the ridge structure

such as ridge endings and bifurcations) can be extracted from the image, as well as their attributes

(usually type and orientation) and relationships (such as ridge count between two minutiae). These

features are eventually post-processed, in order to reduce the number of false positives.

• Finally the detected features are coded into a feature vector, which is either stored in a database or

compared (matched) to other vectors in the database to find a correspondent if it exists.

Traditional works on fingerprint enhancement [3], [8], [9], [10], [11] performed local estimates as well as

contextual filtering in a highly discretized manner. These methods often resulted in blocky artifacts in
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the output as well as in poor estimates of the local image characteristics. Such artifacts may introduce

several problems in a later feature detection phase, and hence many mechanisms have been proposed

to avoid them [12], [13], [14]. Among these approaches, the most flexible one consists of estimating

orientations by means of a structure tensor or second moment descriptor [15], [16], [17], [7] and by

substituting the contextual filtering step by a special kind of anisotropic diffusion scheme [18], [15],

[16], which was first proposed for fingerprint image processing in [16]. These ideas have to be further

developed in order to design a fully automatic and highly accurate module for image enhancement.

In this work, we develop new mechanisms to perform shape adapted smoothing (section II) in a way

that better reflects the orientations of the ridges. We also present a set of scale-selection mechanisms

(section III) that can be used to produce a continuous and reliable estimate of the local distance

between ridges. In addition, a ridgeness measure is defined in section IV, which reflects how well the

local image structure agrees with a qualitative ridge model, and is shown to play a central role for

the shape adaptation and scale selection mechanisms. Section V shows a possible way to combine the

proposed mechanisms into a composed algorithm for image enhancement. Finally, sections VI and VII

give experimental results, which illustrate the qualitative properties of the proposed methods as well as

a quantitative evaluation of their performance. The presentation ends with a comparison with similar

approaches (section VIII), as well as a summarized assessment of the results obtained (section IX).

II. Shape-adapted smoothing

A. Linear scale-space

The method we shall propose for enhancing a fingerprint image f : R
2 → R is based on shape

adaptation of scale-space operators in linear scale-space. This scale-space representation is defined as

a one-parameter family of 2-D signals L : R
2 × R+ → R that satisfies the diffusion equation

∂tL =
1

2
∇T∇L =

1

2
div(∇L) (1)

with initial condition L(x; 0) = f(x). This linear scale-space representation satisfies several uniqueness

properties [19], [20], [15], [21], [22], and is a natural framework to use as pre-processing for feature

detectors expressed in terms of differential geometric image measurements [15], [21].

B. Affine Gaussian scale-space

When dealing with strongly non-isotropic images (as in the case of fingerprint images), one can relax

the rotational invariance assumption underlying the formulation of isotropic linear scale-space, while

still preserving most of the essential scale-space properties [18], [15], [23], [21], [16]. A similar situation
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occurs when dealing with affine transformations of the image domain, as shape from texture and shape

from disparity gradients [24], [23]. Relaxing the rotational invariance assumption in this way leads to

the affine Gaussian scale-space representation generated by the anisotropic diffusion equation1

∂tL(·; Σt) =
1

2
∇TΣ0∇L(·; Σt). (2)

with initial condition L(·; 0) = f , where Σ0 is a symmetric positive semi-definite matrix, and Σt = t Σ0

is a multiple of the initial diffusion matrix. For notational convenience, we also denote this solution by

DΣt
f = L(·; Σt). (3)

or by Dtf = L(·; t), when the diffusion matrix is isotropic and hence Σt = tI.

C. The second moment matrix and shape adaptation

When the diffusion matrix Σ0 is the identity, equation (2) reduces to the linear scale-space represen-

tation (1). When dealing with anisotropic images, however, we shall adapt the diffusion matrix Σ0 to

the local image structure as measured by a second moment matrix [25], [26], [27], [28], [29], [30], [31]

µ(·; Σt, s) = Ds(∇L(·; Σt)∇L(·; Σt)
T), (4)

computed as the exterior product of the gradient vectors by themselves in the affine Gaussian scale-

space representation L(·; Σt) of f at local scale t, subsequently diffused up to the integration scale s.

By expanding the tensor product

µ =





µ11 µ12

µ12 µ22



 = Ds





L2
x LxLy

LxLy L2
y



 (5)

and introducing the descriptors

P = µ11 + µ22 = Ds(L
2
x + L2

y), C = µ11 − µ22 = Ds(L
2
x − L2

y), S = 2µ12 = 2Ds(LxLy) (6)

it can be seen that P ≥ 0 indicates the local image contrast, Q =
√

C2 + S2 ∈ [0, P ] measures the degree

of anisotropy and θ = π
2 + 1

2 tan−1 S
C ∈ [0, π] reflects the dominant orientation (the orientation most

orthogonal to the gradients in a neighborhood of x, which will be used for estimating ridge orientation).

If we interpret the symmetric positive definite matrix µ as a quadratic form, the corresponding ellipse

{ξ ∈ R
2 : (ξ−x)Tµ(x)−1(ξ−x) = 1}, will be elongated in the direction orthogonal to θ, with eccentricity

(1 + Q̃)/(1 − Q̃), where Q̃ = Q/P ∈ [0, 1] is the normalized anisotropy. Specifically, multiples of µ−1

1Throughout this treatment we consider continuous data. The transfer to discrete images of finite support is straight-

forward, if we follow the guidelines in [15, chapters 4 and 5].
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constitute natural choices for scale matrices, since we want a larger amount of smoothing along ridges

than across them. Computation of µ, however, requires determination of a local scale matrix Σt.

In [15], [24], [23] it was proposed that it is natural to look for a fixed point Σ such that

µ(·; Σt, s) = Σ−1, Σt = tΣ, (7)

and it was shown that a similar fixed point is preserved under affine transformations. The process

of reaching such a fixed point is referred to as shape adaptation. Simple iteration of the fixed point

condition yields a linearly convergent algorithm. In practice, when applied to fingerprint images, the

convergence rate is close to 2, and starting from a rotationally symmetric Σ0 = I about 5 iterations

suffice to obtain a 1% accurate approximation to the fixed point Σ [2].

Strictly, the preservation property of fixed points under affine transformations requires anisotropic

integration smoothing, given by an integration scale matrix Σs = sΣ proportional to Σ at the fixed point.

When implementing this scheme in practice, the second stage integration smoothing corresponds to the

largest computational work, while the local scale matrix causes the largest effect in practice. Hence, to

improve the computational efficiency, we use isotropic integration scale matrices, i.e., Σs = s I.

D. Enhancement of ridges by shape adaptation

When expressing a shape adaptation procedure in practice, it turns out that a number of technical

problems have to be solved.

1. One question concerns how to express a scalar size descriptor of a possibly non-isotropic diffusion

matrix. Experiments on several fingerprint images [2] showed that the minor axis of the ellipse is a

better choice than, for example, the major axis or the square root of the ellipse area, and we define

Σt = t
Σ

‖Σ‖λmin

(8)

where t is the scalar size descriptor and ‖Σ‖λmin
represents the minor axis of the ellipse defined by Σ.

This choice ensures a minimum amount of smoothing as a means of noise suppression [15], and provides

a consistent interpretation of the scale parameter across several degrees of anisotropy [2, appendix C].

The latter property is essential when combining shape adaptation with a scale selection procedure.

2. Another technical problem arises in highly anisotropic regions, where Σ becomes near singular, and

shape adaptation may lead to an exaggerated amount of blurring in some direction. To avoid this effect,

we use a regularized diffusion matrix (having the same eigenvectors)

Σ = (µ + εI)−1. (9)
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From the eigenvalues of µ, we have

cond(Σ) = cond(µ + εI) = 1 +
2Q

(2ε + P − Q)
. (10)

Since (P − Q) ≥ 0, it follows that cond(Σ) ≤ 1 + Q
ε = κ and the natural choice

ε =
Q

(κ − 1)
(11)

ensures a uniform (user supplied) upper bound κ on the eccentricity of Σ, preventing ellipses from

becoming too elongated. Imposing such a bound is also necessary if we want the discretized scale-space

representation to preserve scale-space properties of its continuous counterpart [32], and significantly

improves the performance of certain numerical methods for computing it [2, appendix B].

3. At any stage it is essential that the integration scale is larger than the local scale, i.e.:

s ≥ β2‖Σt‖ (12)

for some β > 1. Failure to satisfy this relation might lead to unreliable estimates of the ridge directions

when computing µ for shape adaptation, which in turn might lead to undesirable enhancement of

spurious directional fine-scale structures. Whereas in [1] ‖ · ‖ = det was used in (12) to allow for fine-

scale shape adaptation near singularities (as minutiae), a more detailed study revealed that ‖ · ‖ = λmin

allows for more reliable shape adaptation results in noisy areas, when complemented by a more careful

(automatic) tuning of the safety factor β (to be described in section IV).

III. Automatic scale selection

When applying the shape adaptation procedure in practice, another important problem concerns

how to choose suitable values for the local scale parameter t and the integration scale parameter s

when computing the second moment descriptor (4). A good choice of these parameter values is always

related to the distance between ridges in the fingerprint.

Ideally, the local scale should be selected in such a way that the gradient vectors at that scale reflect

the local ridge orientation. This parameter should be sufficiently large to suppress the influence of noise

and other fine-scale structures, while it should be small enough to avoid the shape distortion effects

that occur if too much smoothing is used. In practice, the choice of this parameter is determined by

the relationship between the size of the object and the local noise level.

The integration scale defines the size of the neighborhood over which statistics of gradient directions

is computed. Ideally, this parameter should be as small as meaningfully possible if we expect to

discriminate rapid variations in contrast, anisotropy or orientation. In particular, small integration
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s = t s = 22t s = 82t

bifurcation,

frag-

mented

ridge

scar

Fig. 1. The need for automatic selection of integration scales. This figure shows an example where different

values of the integration scale parameter s are required in different parts of the image. The bifurcation in the

center of the top-row images can only be captured with a small to medium value of s, whereas the continuity

of the fragmented ridge can only be enforced with a large value of s. Similarly, in the presence of a scar, as

shown in the bottom-row images, larger values of s are needed to avoid a π/2 error in the orientation field.

scales are needed to resolve the rapid variations that occur in ridge directions around minutiae. The

presence of noise, however, calls for larger neighborhoods to reduce the error of our estimators. In

particular, large integration scales are needed to bridge gaps in regions of poor fingerprint structures.

It is also important that the consistency requirement (12) is satisfied.

Notably, suitable values of these scale parameters may take very different values in different finger-

prints (e.g., due to age, resolution or finger differences), and may vary substantially even within the

same fingerprint (see figure 1 for an illustration of the practical influence of these parameters). Hence,

to tune these scale levels, explicit mechanisms for automatic scale selection are required.

A. Ridge width estimates from differential descriptors

A powerful approach to perform local and adaptive selection of scales for feature detection is by

detecting local extrema over scales of normalized differential descriptors [33], [15], [34], [35]. Our design

of a specific scheme for this application will be based on the following general results:
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• If certain natural requirements are imposed on a scale selection methodology based on local maxima

over scales, such as preservation of local maxima over scales under size variations (a form of scale

invariance), then it can be proved that the corresponding differential descriptors should be expressed

in terms of γ-normalized derivatives [34] where γ is a free parameter (to be determined later)

∂ξ = tγ/2∂x. (13)

• If we consider the following local model of the ridge structure

f(u, v) = A sin
2π

λ
v, (14)

which corresponds to a cylindrical sine wave of amplitude A and wavelength λ, then any m-th order

γ-normalized derivative assumes a single local maximum over scales at scale tmax with [34]

λ = 2π

√

tmax

γm
. (15)

This expression provides a direct link between scales tmax, at which local maxima over scales are

assumed, and estimated ridge widths λ. In the following, these ideas will be further developed and we

will design a set differential descriptors, which are specifically tuned to the selection of local scales and

integration scales for processing fingerprint images.

B. Local scale selection from Qnorm

In related work on shape from texture and disparity gradients [15], [30], local maximization of Q̃ over

scales was used for automatic selection of local scales. Here, we shall multiply this anisotropy measure

by the contrast measure P , expressed in terms of normalized derivatives with γ = 1, and thus maximize

the normalized anisotropy measure

Qnorm = tP Q̃ = t
√

C2 + S2 (16)

over scales. The underlying idea is to select scale levels where the following criteria hold simultaneously:

• the local image structure should be highly non-isotropic, corresponding to a high value of Q̃, and

• the scale value should reflect the size of the dominant image structures, corresponding to a high value

of Pnorm = tP .

Given a local maximum tQnorm of Qnorm over scales, the wavelength is thus estimated according to

λQnorm = 2π
√

tQnorm . (17)
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Extensive experiments show that this approach produces good wavelength estimates on a large set of

fingerprint images. This scale selection scheme, however, also introduces an additional scale problem,

namely that of choosing a suitable integration scale s for computing Qnorm. Since a specific choice of

integration scale s implies that only a certain range of local scales t are meaningful, we can only make

a sensible choice in this respect if we already have a reasonable estimate of the relevant range of scales.

To provide an initial estimate of integration scale for such a bootstrapping step, we will in the next

section present a method that computes such an estimate using local descriptors only, i.e., differential

geometric descriptors depending on pointwise derivatives only. Such descriptors also have the additional

advantage that they require less computational work than Qnorm.

C. Scale selection from quasi quadrature pairs

In [34], [36], [1] it was proposed that local frequency estimation can be performed by pointwise

maximization of the following quasi quadrature measure

PnormL = t (L2
x + L2

y) + C t2 (L2
xx + L2

yy + 2L2
xy) (18)

over scales. This differential expression is a rotationally symmetric differential invariant, which measures

the energy in the first- and second-order derivatives. With C ≈ 2/3, it approximates the local power

spectrum for a signal with one-dimensional symmetry. Moreover, this expression can be seen as an

approximation of a quadrature pair, within the Gaussian derivative framework.

For the purpose of processing fingerprint images, however, it turns out that this expression, in addition

to elongated fingerprint structures, also responds to spatially isotropic noise. To express a scale selection

mechanism that is more specifically sensitive to ridge-like structures, we shall therefore replace the

second-order isotropic energy measure L2
xx+L2

yy+2L2
xy by the directionally more sensitive ridge-strength

measure Aγ−norm = t2γ((Lxx − Lyy)
2 + 4L2

xy) [37]. Moreover, we shall choose the normalization of the

derivatives in such a way that the normalization of the first-order edge strength measure Gγ−normL =

tγ(L2
x + L2

y) and second-order ridge strength measure Aγ−norm agree with the normalization values for

edge detection and ridge detection proposed in [37], [35]. This leads to the combined measure

SnormL = Gγ1−normL + CAγ2−norm (19)

with C = 2/3, γ1 = 1
2 and γ2 = 3

4 . In other words,

SnormL = t
1
2 (L2

x + L2
y) + C t

3
2 ((Lxx − Lyy)

2 + 4L2
xy). (20)

While the spatial response of this operator is rather insensitive to the local phase information (thereby

the name “quasi quadrature measure”), the scales at which they are assumed have a strong phase
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dependency, depending on whether the first- or the second-order derivative information is dominant.

(Equation (15) is not directly applicable, since the differential expression Snorm mixes first- and second-

order derivatives.) Therefore, we compute a first order approximation of the wavelength by considering

the relative contribution of first and second order parts to Snorm, at the scale tSnorm at which this

measure is maximized. In other words, we let

λSnormL = 2π

√

tSnorm

γm
where γm =

γ1m1 Gγ1−normL + γ2m2 C Aγ2−normL

SnormL

∣

∣

∣

∣

t=tSnorm

. (21)

D. Suppression of multiple maxima

Experiments show that the abovementioned approach gives distinct peaks in the scale-space signature,

corresponding to the width of the ridge-like structures in the fingerprints. The scale selection mechanism

can, however, also give rise to multiple local maxima over scales, typically due to noise responses at

fine scales. In the general case, an explicit mechanism is required for extracting the local maxima

corresponding to the desired structures. Here, the following simplified procedure is applied:

• An average scale is computed by tM = argmaxt

∫

R2 M. If the scale-space signature of M at a certain

point x has multiple local maxima, then the maximum closest to tM is selected.

• The selected scales are constrained to the interval [tM/T, tMT ], where T ≈ 4.

• The map of the selected scales is smoothed spatially with a median filter with its size nλ equal to an

integer multiple of the average wavelength.

• Scale selection is performed in the shape-adapted affine Gaussian scale-space.

The choice of T ≈ 4 is motivated by the fact that the variations in fingerprint ridge width are smooth,

and usually within a factor of 2 for a single image. Spurious responses of Snorm usually occur as isolated

impulse noise, and can be suppressed by a median filter, if the size of this filter is chosen in concordance

with the periodic phase dependency effects. Finally, by performing scale selection in the anisotropic

scale-space, spurious responses caused by interference between nearby ridges can be removed.

Figure 2 shows the result of applying these two methods for automatic scale selection to a synthetic

fingerprint image with continuously varying ridge widths, as well as a collage of two fingerprint struc-

tures. Observe, for both measures, the ability of the scale selection method to capture the variations

in ridge widths, even under extreme noise conditions and sudden changes in ridge width and contrast.

E. Selection of local scales and integration scales

Once a local scale t has been determined according to section III-B, the next step is to determine

the integration scale. Referring to the consistency requirement s ≥ β2t and the experimental results in
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Original image Scale selection using Qnorm Scale selection using SnormL
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Fig. 2. Automatic scale selection by maximizing Qnorm and Snorm over scales. The left column shows an image

with wavelengths varying from 4 to 16 pixels with 60% speckle noise and a collage of two fingerprint structures

having ridge widths of 7 and 14 pixels respectively. In the middle column, the signatures of Qnorm along a

vertical cross-section at x = 32 are shown as functions of scale for different values of the vertical y-coordinate,

thus forming a surface. The curve below the surface represents the scale at which the signatures assume local

maxima over scales. Similarly, the right column shows the signatures of SnormL as a surface. In this case, the

scales at which the local maxima over scales are assumed are represented as stars, whereas the continuous

curve represents the scales obtained after median filtering of the scale map. In both cases, the scale axis has

been normalized according to equation (15) to express the distance λ between ridges in logarithmic scale.

Observe how both measures reflect the variations in ridge width, even under extreme noise conditions and

sudden changes in ridge width and contrast.

Figure 1 for different values of β, we can see that β = βgood = 1 is a reasonable value only in very clear

areas, whereas β = βpoor = 8 is required to obtain reliable orientation estimates in extremely noisy

areas. In transitional areas, β = βtrans = 2 is a reasonable compromise.

To continuously tune β to the local image quality, we introduce a ridgeness measure Q : R
2 → [0, 1],

such that Q = Qpoor = 0 in poor areas and Q = Qgood = 1 in good ones. Assuming that Q = Qtrans

is an optimal threshold between these two kinds of regions, β is then chosen as function of Q, by

interpolating these three points according to

β = βgood b(1−Q)a

where b =
βgood

βpoor
and a = log(1−Qtrans) logb

βtrans

βgood
. (22)
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The next section defines such a discriminatory function Q, which is also useful for several other purposes.

IV. Ridgeness measure

The previous section motivates the need of a ridgeness measure Q : R
2 → [0, 1], defined for every

point of the input image such that it:

• takes values close to 1 in areas with clear parallel ridges, even if these areas contain minutiae,

• takes values close to 0 whenever the local image structure does not correspond to ridges, such as e.g.

background, fragmented ridges, scars, blurred, damaged, over- and under-inked areas,

• is slightly dependent on contrast, giving a lower response for low-contrast ridges that may be confused

with background texture or quantization effects.

One way to define such a ridgeness measure is by:

Q = min

(

1,

√

P

Pmax
Q̃

)

(23)

The normalized anisotropy Q̃ is always in the range [0, 1] and characterizes anisotropic structures like

ridges. This measure should be computed at the local scale t = tQnorm , and at an integration scale

s = 82tQnorm to make it sufficiently localized, while at the same time being insensible to small-scale

isotropic ridge structures, like minutiae or pores.

The factor
√

P/Pmax gives the ridgeness measure a slight dependency on contrast, and this factor is

rarely larger that 1, if we regard

Pmax =
A2

4te
(24)

as a “pragmatic” upper bound for P , derived under the assumption that the input signal is a sine wave

(14) with amplitude A and wavelength λ = 2π
√

t, where t is the local scale level for computing P (i.e.

t = tQnorm). For certain extreme signals, like a pure square wave, P may assume slightly higher values

than Pmax, but for real fingerprints this hardly happens. Rather, P is very close to Pmax in clean areas.

The amplitude A of the underlying ridge model is, in turn, estimated from the local image variance as:

Â =
√

2(Ds(f2) − (Dsf)2), A = Â + Amin
Amax − Â

Amax
(25)

where Amax = 256 and Amin = 16 depend on the dynamic range of the input image, and the importance

of background noise and quantization effects.

A qualitative and quantitative evaluation (see section VI-B) shows that the proposed ridgeness mea-

sure reasonably well satisfies our design requirements, and that it can be used for selecting integration

scales as described in section III-E.
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The ridgeness measure is also useful for other purposes. For example, the shape adaptation procedure

can be improved by substituting equation (4) by a weighted second moment descriptor

µ(·; Σt, s,Q) =
Ds(∇L(·; Σt)∇L(·; Σt)

TQ)

DsQ
(26)

where lower weight is given to gradient estimates in low quality regions. This modification effectively

reduces the typical π/2 orientation error near scars (illustrated in figure 1). More generally, it increases

the reliability of the orientation estimates and the eccentricity of the diffusion matrix, which leads to

improved ridge connectivity in fragmented areas, as illustrated in figure 3. Other applications of this

measure are discussed in section VI-B.

V. Composed Algorithm

The proposed mechanisms for shape adaptation and scale-selection can be used in various ways within

enhancement and identification systems. For the purpose of experiments and validation, we have here

integrated these modules into a composed algorithm, according to the following four-step procedure:

Stage 1 constructs, in the absence of further information, the isotropic scale-space (1) for a large range

of scales. Then, it finds an average local scale t
(1)
local and wavelength λ

(1)
, by maximizing

∫

R2 SnormL

over scales, and using (21).

These scale values are used for constraining further analysis to the scale range [λ
(1)

/2, 2λ
(1)

], and for

computing the ridgeness measure Q at local scale t
(1)
local and integration scale s = 82t

(1)
local.

Stage 2 constructs a first orientation estimate µ(2), by iterating the Q-weighted shape adaptation pro-

cedure (7) and (26) with spatially constant local scales and integration scales as in stage 1. Then

SnormL is maximized over scales in the resulting affine Gaussian scale-space, which after application of

(21) results in a pointwise local scale map t
(2)
local.

Stage 3 refines the results of the previous stage by performing shape adaptation with spatially varying

local scales t
(2)
local, and scale selection based on Qnorm. This produces a refined orientation estimate µ(3)

and our final local scale map t
(3)
local.

Stage 4 refines the orientation estimate by using local scales t = t
(3)
local, and spatially varying in-

tegration scales s = β2t. This results in our final orientation estimate µ(4), and enhanced image

L(·; Σ(4)

t
(3)
local

, β2t
(3)
local).

In the above procedure, the Q-weighted shape adaptation procedure (used in stages 2, 3 and 4) consists

of the following steps (assuming known local scale t, integration scale s and initial estimate of µ):

Step A: Compute the diffusion matrix at each point by Σ = (µ + Q
κ−1I)−1 and Σt = t Σ

‖Σ‖λmin
, where κ

is an upper bound on the eccentricity of Σ.
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Proposed algorithm no weighting fixed t = t

no weighting fixed t = t

fixed,

coarse in-

tegration

scale

no weighting fixed t = t

fixed,

fine inte-

gration

scale

Fig. 3. Illustration of the effects of different modules in the composed shape adaptation and scale selection

algorithm. The output of the proposed method (top left) is compared to the result of running the last stage

without some of the proposed features. The top row shows the result of applying the last stage with the

same local and integration scales as in the proposed method, but without ridgeness-based weighting during

shape-adaptation (central column); or with a fixed local scale (right column). The central and bottom rows

illustrate the result of using fixed integration scales set to the maximum and minimum values allowed in the

proposed algorithm, instead of the proposed scale selection scheme. Observe how the quality of the computed

skeleton is rapidly degraded when any of the proposed features is omitted. In particular, observe the ability

of the proposed method to spread the correct estimates of the orientation field into the fragmented lower left

area, which results in more continuous ridges.
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Original image Selected scales at stage 2

Stage 1 Stage 2 Stage 4

second

moment

descrip-

tors

skeleton

of en-

hanced

image

Fig. 4. Illustration of the various stages in the composed shape adaptation and scale-selection algorithm. Stage 1

uses isotropic smoothing and allows the preservation of the central bifurcation at the cost of several inter-

rupted lines as well as spurious small ridges. In stage 2, a globally constant coarse integration scale produces

a coarse estimate of the orientation field, resulting in highly anisotropic second moment descriptors. This

gives more continuous ridges and fewer spurious responses at the cost of broken bifurcations. The coarse

orientation field, which breaks the central bifurcation, does, however, not prevent the scale selection mech-

anism from capturing the rapid variations in ridge width around this point (see top row). After stage 3,

which mainly refines the results of stage 2, the final stage 4 constructs an adaptively detailed orientation

field, based on scale selection from stages 2 and 3. Observe how the total effect of these successive processing

stages allows details to be preserved, while ridge lines are joined and spurious ridges eliminated.
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Step B: Construct the scale-space filtered image L = DΣt
f at scale t, and compute the weighted second

moment descriptor µ′ = Ds(∇L∇LTQ)
DsQ

.

Step C: If the relative change
∫

R2
‖µ′−µ‖
‖µ‖ is small enough, then µ′ (and the corresponding diffusion

matrix Σ′ is considered to have converged to the fixed point (7). Otherwise, return to step A with

µ = µ′ and loop until convergence is achieved in this step.

Here, µ = I is used as initial condition in the first stage, while the result of the previous stage are used

in later stages. Furthermore, we initially set Q = 1, and let s and t be globally constant estimates.

Later stages produce progressively more refined and spatially localized estimates of s, t, and µ.

Figure 4 shows how this algorithm progressively reconstructs the fingerprint structures, and figure 3

illustrates the importance of each of the proposed mechanisms in the final result that is obtained.

It is worth emphasizing that this prototype algorithm does not only produce an enhanced image, but

also pointwise estimates of ridge width, orientation and local image quality, which can be used in later

stages of a fingerprint identification system.

VI. Experiments and Evaluation: I

To evaluate the performance of the proposed mechanisms, we have applied the prototype algorithm

in section V to a selected set of standard image databases and compared the output with the result of

manual measurements by fingerprint recognition experts.

A. Material

For the evaluation, we used a subset of 10 fingerprints from NIST database 4 [38], 10 fingerprint pairs

from NIST database 14 [39], and 14 fingerprint images used for evaluation in [40] (referred to as image

set MM). These images were manually extended with the following information by a forensic expert:

• The position of all reliable minutiae, and their type (ridge ending, bifurcation or transition).

• A set of points where the image quality is good (clear parallel ridges, where the minutiae can be

clearly distinguished), and a set of points where the image quality is poor (scars, fragmented ridges,

blurred or over-inked areas, which make it more difficult to distinguish real minutiae from noise).

In addition, we provided the following information by counting the number of ridges (typically between

4 and 8) within a circle of fixed diameter

• The average ridge width within a neighborhood of each point on a regular grid. This grid was later

interpolated to obtain the ridge width at each point.

Given the tedious work that this represents, not all information was obtained for all images. Minutiae

were obtained for the data sets MM (yielding 567 minutiae in 14 images) and NIST14 (yielding 1969
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minutiae in 20 images), whereas image quality was estimated for set NIST4 (yielding 379 points of both

classes in 10 images), and ridge width only for the image in the NIST4 set, judged to have the largest

internal ridge width variations.

B. Evaluation of the ridge width estimates

For the image in NIST database 4, having internal ridge width variations of 100 %, the manually

measured distance between ridges was compared to the automatically selected scales, by means of the

relative differences (λSnorm/λ−1) and (λQnorm/λ−1). In both cases, we obtained a negative bias of -10%

and a standard deviation of 10%, which is within the errors of the manual measurements (figure 5).

Manual measurements Scale selection using Qnorm Scale selection using SnormL

Selected

scales as

gray

levels

Selected

scales as

diameters

Fig. 5. Results of automatic scale selection by maximizing Qnorm and Snorm over scales. In the upper row,

brighter gray-levels represent coarser scales. In the lower row, the selected scales are represented by diameters

of circles. In the case of Qnorm, the selected scale is reflected by the minor axis of the ellipse, while the

orientation and the reflect the attributes of the second moment descriptor used for computing Qnorm at the

selected scale. Observe how the selected scales reproduce the corresponding manually determined pattern.

C. Evaluation of the ridgeness measure

A first qualitative study on several images (see figure 7 for a few samples) showed that the proposed

ridgeness measure Q effectively discriminates good areas (taking values usually above 0.6), from scars,
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fragmented ridges, blurred and over-inked areas (taking values usually below 0.4). This property was

unaffected by high or low global contrast, and even by smooth variations in local image contrast. The

only undesired results were related to very small noisy areas (that are regarded as good areas) and

highly curved areas, where the ridgeness measure always takes very small values.
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Distribution of ridgeness measure for good (solid) and bad (dashed) areas

Fig. 6. Empirical distribution of the ridgeness measure. The solid curve represents the empirical distribution

of ridgeness within good areas (parallel ridges and true minutiae), whereas the dashed curve represents

the distribution within poor areas (scars, blurred, fragmented, over/under-inked). Observe the reasonable

separation of the two classes.

A quantitative study was then conducted by comparing the ridgeness measure with the image quality

information available for the NIST4 image set. This was done by comparing the histogram of Q over

all areas classified as “good” by the forensic expert (shown as a solid line in figure 6), with the same

histogram taken over all areas classified as “poor” (shown as a dotted line in figure 6). The results

show that 93% of the class “poor” has a value of Q below 0.55, and that 93% of the class “good” has a

value of Q above this threshold. This suggests that Q reasonably well discriminates these two classes,

which was the main design goal in section IV.

D. Orientation and isotropy estimates

Unfortunately, it is hard to carry out an objective evaluation of the quality of the orientation es-

timates. Besides the large amount of manual work required to produce dense orientation fields, it is

not clear which orientation should be selected at branching points, and in general the manual choice

of orientation will be dependent on the size of the neighbourhood presented to the operator. For these

reasons, we restrict ourselves to describing qualitative properties of the computed orientation estimates.

• Orientation fields contain a coarse description in poor regions, where statistics are taken over larger

neighborhoods, leading to low anisotropy values, which still allow orientation discrimination.
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• A much more detailed description is obtained in clear areas, where the rapid changes in orientation

near branching points are captured, leading to highly anisotropic second moment descriptors at parallel

ridges, and isotropic second moment descriptors (no preferred orientation) at the centers of minutiae.

• Scars are usually assigned orientations ranging between “no orientation” and the orientation of their

surrounding ridges.

These properties can be observed in figure 4. Highly anisotropic second moment descriptors allow the

connectivity of parallel ridges to be enforced, and may even break bifurcations. These properties can

also be observed in the computed skeletons (see figure 3).

VII. Experiments and Evaluation: II

To measure the accuracy of the enhanced gray-scale image is harder, in particular in the lack of a

true reference. Here, we shall evaluate the performance of the composed prototype algorithm in an

indirect way, by measuring to what extent the minutiae in the fingerprint structure can be captured,

using a simple algorithm for minutiae extraction consisting of the following steps [41], [11], [42]:

• apply a local contrast adaptive threshold to the input gray-level image,

• apply a thinning algorithm to the resulting binary image,

• detect ridge endings and bifurcations by means of a 3x3 logical mask on the skeleton so obtained,

• postprocess the minutiae set by filtering out minutiae having a ridgeness value below a threshold.

It should be noted that this evaluation procedure has obvious limitations, since it measures the perfor-

mance of the enhancement module with respect to a specific feature detection algorithm. One could

conceive using more sophisticated and accurate feature detection algorithms, which are more closely

adapted to and integrated with the pre-processing step. For example, since our initial developments

[1] methods have been developed which take advantage of ridge width and orientation outputs in the

feature detection step [43], perform differential ridge detection with automatic scale selection [35], and

detect minutiae directly from grey-level data [40]. Another possibility could be by estimating the per-

formance with respect to a matching algorithm [44]. The current evaluation procedure is chosen because

of historical reasons, and its availability in the AFIS project this work is a part of.

A. Definitions

Given a set D of minutiae obtained by the abovementioned minutiae extraction algorithm, our

evaluation measures (following [40]) are based on comparing D with the set M of true minutiae marked
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by the forensic expert. For this purpose, we consider the following sets:2

• The set FP = D − M of false positives or false minutiae.

• The set FN = M − D of false negatives or missed minutiae.

• The set D ∩ M = CC ∪ FC of correctly detected minutiae is partitioned into two sets: CC of

correctly classified minutiae, and FC of falsely classified minutiae, depending on whether the detected

type (ridge ending or bifurcation) coincides or not with the type assigned by the expert.

B. Results of minutiae detection

Figure 7 shows a few results of applying the minutiae detection algorithm to the output of the

composed prototype fingerprint enhancement algorithm. The results have been compared with the

manual classification and been colour coded in the following way:

• “o” represents a ridge ending or any of its equivalent minutiae types (dot or island ending),

• “x” represents a bifurcation or any of its equivalents (fork, enclosure ending or bridge ending),

• “*” is a minutia for which it could not be decided whether it is a ridge ending or a bifurcation,

• green represents a correct minutia (in CC), i.e. one that was marked by the expert, found by the

algorithm and correctly classified,

• yellow represents a misclassified minutia (in FC), i.e. correctly detected by the algorithm, while the

type differs from the type selected by the expert,

• red represents a false positive (in FP ), i.e. a minutia that has been detected by the proposed method

but was not marked by the expert,

• blue represents a false negative, (in FN), i.e. a minutia that has been marked by the expert but not

detected by the proposed method.

Results are shown for two images from the MM image set and one image from the NIST4 database.

(As a general rule, the images in the MM image set have much higher image quality than the images

in the NIST4 data base.) As can be seen from the illustrations, the output from the algorithm agrees

rather well with the features marked by the expert in regions where the ridge structures are clear and

approximately parallel. When features are missed, that typically occurs at extremely fine scale details

such as dots and pores (see the center of image 5 from the MM set), which cannot be expected to be

2For points not coinciding exactly, we identify a point d ∈ D with a point m ∈ M if d and m are not too far apart, and

no point d′
∈ D is closer to m than d and similarly for every point m′

∈ M . In addition, we require the mapping between

points in D and M to be one to one. For points marked as “transition” by the expert, meaning that the image does not

provide enough information to make a decision on the minutiae type, the detected type is always regarded as correct.
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Post-processed minutiae over original

Minutiae before post-processing

over skeleton and thresholded ridgeness

(threshold values: 0.4, 0.45, 0.5, 0.55, 0.6)

MM image 1

MM image 5

NIST 14 image f0000971

Fig. 7. Results of applying a ridge structure and minutiae detection algorithm to the output of the composed

fingerprint enhancement algorithm. The figure shows the extracted minutiae overlayed on the original grey-

level image, as well as an image showing the extracted ridge structure and thresholded ridgeness measure.

(Symbols: “o” = ridge ending, “x” = bifurcation, “*” = transition, green = fully correct, yellow = correctly

detected but misclassified, red = false positive, blue = false negative.).
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reliably detected by an automated system lacking explicit mechanisms for such features, or in regions

where the ridge structures are highly curved (see the center of image 1 from the MM set). Besides

the latter effect, post-processing by thresholding on the ridgeness measure effectively suppresses false

positives due to background, scars and other noisy areas (see image f0000971 from the NIST 14 set).

It is worth noting that many false positives are due to small scars that the ridgeness measure did not

capture (see center-right of image 1 from the MM set), but more importantly due to apparent omissions

of the expert (see the lower part of image 1 from the MM set). To make a more fair judgement about

the algorithm, it would thus be preferable to use classifications from more than one fingerprint expert,

and take the internal consistency between the experts into account when evaluating the performance.

C. Performance measures

Given the definitions in section VII-A, we measure the accuracy of our feature detection in terms of

the relative sizes of the sets FP , FN , FC, and CC with respect to the size of D or M . In [40], errors

relative to M were considered in all cases. Here, we shall emphasize the following error measures, which

are more directly related to the way a matching algorithm treats the detected minutiae:

• FN/M — the proportion of minutiae missed by the algorithm. The complement 1 − FN/M should

be large enough to allow a positive match with the corresponding pair. If we assume that only 6-12

minutiae pairs (i.e. about 10%) are usually enough to ensure a legally positive identification, we see

that relatively high values of FN/M are still admissible.

• FC/D, FP/D — the proportion of errors in classification and detection, within the set of detected

minutiae. Certain matching algorithms are very sensitive to even small values of FP/D (noise), and

hence minimizing this number becomes a critical task. The importance of FC/D depends on whether

the matching algorithm uses type information or not. The complement CC/D = 1 − FC/D − FP/D

measures the proportion of correct minutiae available for matching.

D. Comparison with traditional enhancement method

The left table in table I shows the results of feature detection in terms of the abovementioned

measures for the proposed enhancement method, referred to as method G. For comparison, results

are also shown of applying the same feature detection algorithm to the output of a more traditional

fingerprint enhancement algorithm (an improved version of [11], referred to as method F ). As can be

seen, both methods give a similar, and relatively large, but still acceptable number of false negatives,

whereas the remaining performance measures are considerably better for method G.

The right table in table I shows corresponding results after introducing an additional post-processing
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TABLE I

Results of feature detection for the proposed method G, and a more classical method F [11].

Raw minutiae detection

NIST14 MM

F† G† F† G†

FN/M 45.0% 49.7% 51.8% 37.6%

FP/D 39.0% 28.6% 33.1% 19.4%

FC/D 16.2% 12.9% 21.9% 9.8%

CC/D 44.8% 58.5% 45.1% 70.8%

After minutiae post-processing

NIST14 MM

F† G† F† G†

FN/M 63.8% 65.1% 67.7% 59.3%

FP/D 10.2% 6.2% 9.5% 3.7%

FC/D 25.6% 17.5% 29.2% 13.8%

CC/D 64.3% 76.3% 61.3% 82.5%

step, which drastically reduces the number of false positives at the expense of an increased number

of false negatives. We have used a simple set of rules to eliminate “false minutiae”, i.e. unlikely

configurations in the ridge structure that are most often due to noise [41], [42].

E. Comparison with feature detection methods

In [40] a similar evaluation was carried out for five other algorithms, referred to as method A [40],

B [8], C [45], D [46] and E [14] respectively, using the MM image set: Direct comparison with [40] is,

however, not straightforward, for several reasons:

1. Even though the MM image set is the same, the manual features used in [40] (also introduced by

an expert) were only available for two images (labeled 1 and 13) out of 14. Hence, we had to use a

different set of manual features (our own), which turned out to differ significantly from the MM feature

set.

2. Methods A–E are specialized feature detection and enhancement algorithms, while the evaluation of

our enhancement method G relies on a simple feature detection algorithm to enable comparisons.

3. Methods A–E rely on manual setting of several parameters, notably scale parameters, whereas the

proposed method G is fully automatic.

Table II lists the performance values (A∗–E∗) reported in [40] for these five methods applied to the

MM image set with its corresponding features. The left table shows corresponding performance values

obtained by applying the abovementioned minutiae detection method to the output of our proposed

fingerprint enhancement scheme on the MM image set, using our own feature set for evaluation (G†).

The right table shows corresponding values for those two images in the MM image set where the MM

feature set is available, and we can thus compare how the evaluation depends upon the feature set used
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TABLE II

Comparison between the performance measures of five methods (A–E) in [40], and our method

(G). (Note that performance values are computed using different ground truths.)

MM image set MM images 1 and 13

A∗ B∗ C∗ D∗ E∗ G† G†∗ A∗ B∗ C∗ D∗ E∗ G∗ G†

FN/M 4.5% 1.5% 5.0% 2.3% 1.8% 37.6% 35.3% 0.0% 0.0% 1.9% 0.0% 0.0% 28.0% 29.8%

FP/D 8.2% 53.1% 68.1% 66.7% 18.7% 19.4% 4.1% 3.6% 57.9% 75.4% 71.7% 18.5% 3.6% 17.5%

FC/D 12.5% 3.3% 2.9% 3.2% 7.9% 9.8% 12.5% 20.0% 3.2% 4.7% 4.3% 13.8% 19.6% 15.8%

CC/D 79.3% 43.6% 28.9% 30.1% 73.4% 70.8% 83.5% 76.4% 38.9% 19.9% 24.1% 67.7% 76.8% 66.7%

(∗ means that the evaluation has been performed with respect to the MM feature set and † with respect

to ours). The column labeled (G†∗) gives an extrapolation of the performance values for our feature

set to the MM feature set, using the ratio G∗/G† for MM images 1 and 13 as normalization.

Although, as mentioned previously, this comparison is not fully fair, we can observe that the per-

formance of the integrated method is competitive compared to the other methods. Our method has

a high, but still admissible number of false negatives, but on the other hand the lowest ratio of false

positives, and the highest ratio of correctly detected minutiae, which are the most critical parameters.

F. Summary

Based on these results and the promising results in the evaluations of the ridge width, orientation

field and ridgeness measure, we argue that we have with the proposed mechanisms for shape adaptation

and automatic scale selection captured essential aspects of fingerprint processing, which should be of

interest to developers of systems for automatic fingerprint recognition. Specifically, we believe that

there could be a potential for further improvements by combining the proposed scale selection and

shape adaptation mechanisms with differential geometric definitions of ridges and minutiae.

VIII. Relations to Previous Work

Non-linear diffusion. The shape adaptation procedure builds upon work in [15], [24], which was

originally aimed at reducing the shape distortions that occur in filter based algorithms for estimating

shape from texture and disparity gradients. It also builds upon the non-linear filtering and diffusion

ideas proposed in [18], [47] as well as the suggestion in [16] to apply “tensor based diffusion” to fin-

gerprint enhancement. The major difference is that the proposed approach separates the non-linear

scale-selection and shape-adaptation procedure from the linear anisotropic diffusion scheme, thus bear-

ing closer relationships to the open-ended suggestion in [21] to regard non-linear scale-space concepts

as linear scale-space representations on transformed domains. More recently a non-linear orientation
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diffusion scale-space was proposed [48]. In this context, let us emphasize that the windowed second

moment matrix constitutes a well-founded multi-scale representation of orientations [15, section 14.2.3

and 14.4.1] and that it satisfies the diffusion equation ∂sµ = 1
2 ∇2µ.

Algorithmic structure. The general structure of the proposed method resembles the classical structure

presented in section I, and used by most classical works on fingerprint image enhancement [3], [8], [9],

[10], [11], consisting of an estimation of local image parameters, followed by the application of contextual

filters. In this respect, a major difference of the proposed algorithm consists of its iterative coarse to

fine structure, where initial coarse estimates lead to a coarsely enhanced image, which is later used to

produce more refined estimates and enhanced images, until convergence criteria are achieved.

Multiple directions. The fact that a single orientation cannot be defined at ridge endings and bifurca-

tions has led to several different approaches. In [49] it was proposed to filter along several orientations,

by analyzing local Fourier transforms, whereas in [50], [51] it was proposed to apply a set of logi-

cal/linear operators for simultaneously applying a directional filter and testing its consistency with the

logical preconditions for applying that filter. The proposed method can be considered as a hybrid, since

it resembles a filter which continuously varies between a directional filter in regions with clearly defined

orientation (Q̃ ≈ 1) and an isotropic filter near bifurcations without a single dominant orientation

(Q̃ ≈ 0). It should also be noted that the methods in [51], [49] are likely to enhance noisy structures

like scars, as well as minutiae, since they do not provide an explicit mechanism for distinguishing be-

tween the two situations, whereas the proposed method handles this situation by means of a ridgeness

measure and automatic scale selection.

Selection of local scales. The proposed method for automatic scale selection bears close relationships

to works on wavelet representations [52], and on generalized entropies [53], [54], but most importantly to

previous works on feature detection with automatic scale selection [15], [34], [35]. In the specific area of

fingerprint analysis, many recent developments stress the need of an automatic scale-selection procedure

[40], [50], [14]. In fact, most methods that address scale selection issues in fingerprint analysis are either

implicit [49], [55], [12] (and without explicit reports on scale-selection results) or highly discretized [11].

The only exception known to the authors is the recent work in [43], which addresses the problem from

a statistical point of view and computes simultaneous estimates of scale and orientation by maximizing

a semi-variogram. A main aim of this paper is to contribute to fingerprint analysis by presenting a

principled and theoretically well-founded study of the topic of automatic scale selection.

Selection of integration scales. Several works on fingerprint image analysis have previously described

alternative methods for tuning the amount of smoothing (integration scale) necessary to obtain reliable

orientation estimates. These methods are based on a measure of consistency of the orientation map
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after smoothing, and the smoothing level is selected by maximizing this measure in a coarse-to-fine

[14], [7] or fine-to-coarse [17] manner. In this work the integration scale is determined as a function of

the local scale and ridgeness. This avoids unreliable estimates near scars and other noisy situations,

which can be expected to occur in the methods in [14], [7]. On the other hand, the proposed method

has the disadvantage that it gives too large values near cores and deltas. A curvature-dependent scale

selection scheme should be able correct for this shortcoming.

Ridgeness measure. The proposed ridgeness measure is closely related to similar measures proposed

in [11], [56], but besides being more continuous, the proposed measure was experimentally shown to

better discriminate good and poor areas in a fingerprint. This measure also has similar properties as

those described in [6], but the details of how that measure is defined were not available. Interestingly,

[6] also showed that such a measure can be used with great benefits as a weight in a matching algorithm.

IX. Summary and discussion

We have presented a novel methodology for fingerprint image enhancement, and compared it to other

approaches, based on a well established set of sample fingerprint images, and using a set of subjective

and objective evaluation measures. The experiments led us to the conclusion that the proposed method:

• Gives reasonably accurate and continuous estimates of local ridge width. Whereas this kind of in-

formation is of widespread use in fingerprint identification, we know of very little previous work on

fingerprint image processing that addresses this problem in a systematic way. Some authors leave this

as an open question for future development, while others address it in a slightly ad-hoc manner, tightly

intertwined with the enhancement procedure, which results in poor or highly discretized estimates.

• Produces directional fields which are more useful for later stages of an AFIS, since they are continuous

both in space and magnitude, the level of detail is adapted to the local image quality, and the reliability

is high, since most spurious ridge directions produced by scars or fragmented ridges are corrected, which

otherwise mislead methods for fingerprint image enhancement and feature extraction.

• Generates a ridgeness measure with similar properties as other quality measures proposed previously.

Such a ridgeness measure was shown to be highly useful for feature extraction, and also for later stages

of an AFIS [6]. Furthermore this measure is used to regulate and adapt the diffusion process to the

local image quality, an original feature not seen in previous approaches to fingerprint identification.

• Avoids the “checkerboard effect” present in the grey-level output of some spectral based methods.

Thus, this shape adaptation approach addresses key weaknesses of traditional fingerprint image en-

hancement methods, and should be suitable for use within an AFIS. In particular, the combination of
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the proposed enhancement method with a very simple feature detection module was shown to produce

competitive results when compared to other state-of-the-art methods. Hence, it should be possible to

integrate the different outputs of the proposed method into a much more reliable feature detection

algorithm. Previous work on geometric differential feature detection [35] and gray level ridge counts

[43] provide an interesting direction to follow.

More generally, this technique provides an interesting connection between linear and non-linear scale-

space approaches, in the sense that the smoothing operation is purely linear and is separated from the

non-linear shape adaptation and scale selection procedures. Whereas the more general implications

of this approach have not been explored in detail, this technique has the general attractive property

of leading to a larger amount of smoothing along edges than across them, while presenting a more

conservative behavior around non-edge areas, allowing more complex structures, such as corners or

branching points, to be preserved [18], [15]. We believe that non-uniform smoothing schemes based on

this general idea should be applicable to a large number of other purposes in image processing.
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