
Fingerprint Image Enhancement using
Filtering Techniques

E
xtracting minutiae from fingerprint images is one of the most important steps in automatic
fingerprint identification and classification. Minutiae are local discontinuities in the
fingerprint pattern, mainly terminations and bifurcations. Most of the minutiae detection

methods are based on image binarization while some others extract the minutiae directly from
gray-scale images. In this work we compare these two approaches and propose two different
methods for fingerprint ridge image enhancement. The first one is carried out using local
histogram equalization, Wiener filtering, and image binarization. The second method uses a
unique anisotropic filter for direct gray-scale enhancement. The results achieved are compared
with those obtained through some other methods. Both methods show some improvement in the
minutiae detection process in terms of time required and efficiency.
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Introduction

Fingerprints are today the biometric features most widely

used for personal identification. Fingerprint recognition

is one of the basic tasks of the Integrated Automated

Fingerprint Identification Service (IAFIS) of the most

famous police agencies [1]. A fingerprint pattern is

characterized by a set of ridgelines that often flow in

parallel, but intersect and terminate at some points. The

uniqueness of a fingerprint is determined by the local

ridge characteristics and their relationships [2,3]. Most

automatic systems for fingerprint comparison are based

on minutiae matching [4]. Minutiae characteristics are

local discontinuities in the fingerprint pattern and

represent the two most prominent local ridge character-

istics: terminations and bifurcations. A ridge termina-

tion is defined as the point where a ridge ends abruptly,

while ridge bifurcation is defined as the point where a

ridge forks or diverges into branch ridges (Figure 1). A

typical fingerprint image contains about 40–100 min-

utiae [2].

An automatic fingerprint image matching process,

which enables a personal identification, strongly de-

pends on comparison of the minutiae points of interest

(MPOI) and their relationships. Reliable automatic

extraction of these MPOI is a critical step in fingerprint

classification.

The performance of minutiae extraction algorithms

relies heavily on the quality of the fingerprint images

[2]. The ridge structures in poor-quality finger-

print images are not always well defined and, hence,

cannot be correctly detected. This might result in the

creation of spurious minutiae and the ignoring of

genuine minutiae. Therefore, large errors in minutiae

localization may be introduced [2]. Examples of poor-

quality fingerprint images are shown in Figure 2. In
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order to ensure robust performance of a minutiae

extraction algorithm, an enhancement algorithm, which

can improve the clarity of the ridge structures, is

necessary [2,5].

Most of the fingerprint image enhancement methods

proposed in the literature are applied to binary images,

while some others operate directly on gray-scale images

[1,6,7]. Concerning these two approaches, this work

proposes two methods for fingerprint image enhance-

ment. The first one is carried out using local histogram

equalization, Wiener filtering, and image binarization.

The second method uses a unique anisotropic filter for

direct gray-scale enhancement.

The paper is organized as follows. The following

section addresses the main steps for our binarization

approach (see section, A binarization-based method).

Then we present some modifications to the Gabor-based

technique introduced by Hong [2], and propose a fast

direct gray-scale fingerprint enhancement algorithm (see

section, Direct gray-scale enhancement approaches)

based on a unique anisotropic filter. The section

Experimental Results presents the results of a compara-

tive study of our approaches and the methods described

by Maio [1] and Hong [2]. Finally, in the last section

some conclusions are drawn. Some preliminary results

of our work were presented by Greenberg [8]. This paper

contains a more thorough analysis and more complete

results.

Fingerprint enhancement

Fingerprint enhancement can be conducted on either

binary ridge images or gray-scale images. The binariza-

tion process may cause loss of information about the

true ridge structure and it has inherent limitations [2].

Different techniques for gray-level fingerprint images

enhancement have been proposed [6,7] assuming that

the local ridge frequency and orientation can be reliably

estimated. However, this assumption is not valid for

poor-quality fingerprint images. Although, other de-

composition methods [2,5], which apply a bank of

Gabor filters to the input fingerprint images, can obtain

reliable orientation estimation even for corrupted

images, they are computationally expensive.

Steerable filters are a class of filters, in which a filter of

arbitrary orientation is synthesized as a linear combina-

tion of a set of ‘‘basis filters’ [9]. Steerable–scalable

kernels roughly shaped like Gabor functions have the

advantage that they can be specified and computed

easily [10]. However, current steerability approaches

suffer from the consequences of the uncertainty princi-

ple, and in order to achieve a high orientational

resolution a huge number of basis filters must be

used [11].

Hong [2] proposed a fast enhancement algorithm,

which can adaptively improve the clarity of ridge and

valley structures of input fingerprint images based on

the estimated local ridge orientation and frequency.

We present some improvement to the Hong [2]

method by using a unique anisotropic filter, adapted

Figure 1. Examples of minutiae (ridge ending and bifurca-
tion) in a fingerprint image.

Figure 2. Examples of poor-quality fingerprint images due
to: noisy acquisition device (a), (b) and variation in impression
conditions (c), (d), results in corrupted ridgelines.
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to fingerprint images. Instead of using both local ridge

orientation and local frequency information, only the

orientation information is used in our approach.

Our proposed anisotropic filter, which eliminates the

need to estimate local frequency information, can

replace the Gabor filter.

Almansa used diffusion techniques, which are based

on a multi-scale analysis called the scale-space repre-

sentation, and applied an iterative process for local

features estimation [12,13]. Another kind of structure-

adaptive anisotropic filtering technique has been pro-

posed by Yang [14]. Instead of using local gradients as a

means of controlling the anisotropism of filters, it uses

both a local intensity orientation and an anisotropic

measure to control the shape of the filter.

Although the filters proposed by Yang and Almansa

are both structure-adaptive anisotropic filters, they still

significantly differ. We employed Yang’s anisotropic

filter, which does not use diffusion techniques, for

fingerprint enhancement.

The proposed enhancement algorithm is faster and

efficient as well.

A binarization-based method

In some binarization-based approaches the binarization

and thinning process are preceded by a smoothing

operation. Moayer [15] used a smoothing operation

based on convolution with a Gaussian 5� 5 pixels mask,

in order to regularize the starting image. We propose an

enhancement process, which combines filters and noise

reduction techniques for pre- and post-processing as

well. The proposed scheme is based on adaptive

histogram equalization for contrast expansion, followed

by Wiener filtering for noise reduction [16]. The

binarization process is applied using an adaptive

threshold based on the local intensity mean. Then a

thinning process is carried out through the algorithm

presented by Baruch [17], which provides good results

on fingerprints. Finally, morphological filtering is

applied to eliminate artifacts in noisy regions and to

fill some gaps in valid ridgelines. The main stages of our

proposed enhancement process conducted on binary

ridge fingerprint images are shown in Figure 3.

Contrast enhancement. Histogram equalization defines

a mapping of gray levels p into gray levels q such that

the distribution of gray levels q is uniform [16]. This

mapping stretches contrast (expands the range of gray

level) for gray levels near histogram maxima. Since

contrast is expanded for most of the image pixels, the

transformation improves the detectability of many

image features. The probability density function of a

pixel intensity level rk is given by

prðrkÞ ¼
nk

n
ð1Þ

where 0� rk � 1, k ¼ 0; 1; . . . ; 255, nk is the number of

pixels at intensity level rk and n is the total number of

pixels. The histogram is derived by plotting pr(rk)

against rk. A new intensity sk of level k is defined as

sk ¼
X

k

j¼0

nj

n
¼

X

k

j¼0

prðrjÞ ð2Þ

We apply the histogram equalization locally by using

local windows of 11� 11 pixels. This results in expand-

ing the contrast locally, and changing the intensity of

each pixel according to its local neighborhood. Figure

4(b) presents the improvement in image contrast

obtained by applying the local histogram equalization.

Wiener filtering noise reduction. We propose using a pixel-

wise adaptive Wiener method for noise reduction. The filter

is based on local statistics estimated from a local

neighborhood � of size 3� 3 of each pixel, and is given

by the following equation:

wðn1; n2Þ ¼ �þ
�2 � v2

�2
ðIðn1; n2Þ � �Þ ð3Þ

where v2 is the noise variance, m and s
2 are the local

mean and variance and I represents the gray-level

intensity in n1; n2 2 �. Figure 5(a) shows the result of

the Weiner filtering.

Binarization and thinning. The operation that converts

a gray-scale image into a binary image (Figure 5(b)) is

Figure 3. Filtering and binarization-based enhancement pro-
cess.
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known as binarization. We carried out the binarization

process using an adaptive thresholding. Each pixel is

assigned a new value (1 or 0) according to the intensity

mean in a local neighborhood (13� 13 pixels), as

follows:

Inewðn1; n2Þ ¼
1 if Iold ðn1; n2Þ 	 Local Mean

0 otherwise
:

�

ð3Þ

Thinned (one pixel thickness) ridgelines are obtained

using morphological thinning operations as indicated in

Figure 7(a).

Post-processing and binary filtering. Figure 6 shows

two typical kinds of noise, which can appear in a

thinned binary image: false ridgeline connections and

gaps within a true ridgeline. False ridgeline connections

are almost perpendicular to the local ridge direction,

and empirically found to be of length less than 10 pixels.

Our algorithm automatically removes lines with similar

characteristics (Figure 7). Filling the space between each

of the two end-points that belongs to the same ridge

direction eliminates gaps of up to 15 pixels, within a true

continuous ridgeline. The maximum allowed gap is

determined empirically due to a trade-off between false

ridgelines and missed detection of true long gaps.

Direct gray-scale enhancement approaches

Maio and Maltoni [1] propose a technique, based on

ridgeline following, where the minutiae are extracted

directly from gray-scale images. Hong [2] introduced a

fast fingerprint enhancement algorithm based on a

Gabor filter. In this section we propose a direct gray-

scale enhancement method, which has been simulated by

Hong [2]. First, we suggest some modifications of

Figure 4. Histogram equalization: original image (a) and its
histogram (c), and after equalization (b) (d), respectively.

Figure 5. Wiener filtering result using local neighborhood of
3� 3 pixels (a) and a binary image (b).

Figure 6. Typical noise in the thinned binary image: false
connections between ridgelines (right), and ridgeline gaps
(left).

Figure 7. Post-processing: thinned binary image (a) and
removing false ridges and filling gaps (b).
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Hong’s original algorithm, and then we propose a fast

direct gray-scale fingerprint enhancement based on an

anisotropic filter.

A modification of the Gabor-based algorithm. In this sec-

tion we suggest some improvements to Hong’s [2] Gabor-

based filtering technique. The main steps of Hong’s

algorithm include normalization, local orientation

estimation, local frequency estimation and filtering. A

bank of Gabor filters, which is tuned to local ridge

orientation and ridge frequency, is applied to the ridge and

valley pixels in the normalized input fingerprint image to

obtain an enhanced fingerprint image. The filters are used

as band-pass filters to remove the noise and preserve true

ridge/valley structures. We implemented this algorithm for

comparison purposes, introducing some modification.

First, an alternative scheme, based on local gradient

operations [1], is used for more precise orientation

estimation. Fine tuning of some parameters in the

original algorithm result in an efficient and more

robust algorithm. The selection of �2x and �2y involves a

trade-off between robustness and spurious ridges. The

values of �2x and �2y were equally set of 4.0 based on

empirical data [2]. This selection gives the same

importance both to ridge direction and to the direction

perpendicular to it. In order to decrease the standard

deviation of the Gaussian envelope in the direction

perpendicular to the ridge direction (�2y) we set those

values to 4.0 and 3.0, respectively. The new parameter

setting creates less spurious ridges and makes the filter

more robust to noise. For a given resolution, the value

of the ridge frequency in a local neighborhood lies in a

certain range [2]. By cutting down the valid frequency

range, we avoid wrong estimation of the frequency in

blocks which do not form a well-defined frequency.

Finally, for better definition of the block center, in the

ridge frequency algorithm we divide the normalized

image into an odd block of size (15� 15) instead of

(16� 16).

Enhancement using a unique anisotropic filter. In this

section we present a new direct gray-scale approach

based on a unique anisotropic filter. A structure-

adaptive anisotropic filtering technique is proposed by

Yang [14] for image filtering. Instead of using local

gradients as a means of controlling the anisotropism of

filters, it uses both a local intensity orientation and an

anisotropic measure to control the shape of the filter.

We modified this anisotropic filter by shaping the filter

kernel and applied it to fingerprint images. The basic

idea is that the filter kernel is shaped or scaled according

to local features within a given neighborhood. The filter

kernel applied at each point x0 is defined as follows [14]:

kðx0; xÞ ¼ �ðx� x0Þ

exp �
ððx� x0Þ 
 nÞ

2

�21ðx0Þ
þ

ððx� x0Þ 
 n?Þ
2

�22ðx0Þ

� �� �

ð5Þ

where n and n? are mutually normal unit vectors, and n

is parallel to the ridge direction. The shape of the kernel

is controlled through �21ðx0Þ and �22ðx0Þ, � satisfies the

condition �ðxÞ ¼ 1 when jxjor, and r is the maximum

support radius. We modified the original filter to a

band-pass filter type in order to adapt it to fingerprint

images. The proposed anisotropic filter has the follow-

ing general form:

hðx0;xÞ ¼ V þ S 
 �ðx� x0Þ

exp �
ððx� x0Þ 
 nÞ

2

�21ðx0Þ
þ

ððx� x0Þ 
 n?Þ
2

�22ðx0Þ

� �� �

ð6Þ

where V and S are parameters, which must be adjusted

to a specific application. Applying a 2D Fourier trans-

form to Eqn (6), we obtain the filter’s frequency

response:

Hðu; vÞ ¼V 
 4�2�ðu; vÞþ
1

�	
S

sinðurÞ

u 
 exp �
u2

4	

� �� �



sinðvrÞ

v 
 exp �
v2

4	

� �� �

	 ¼
cos 


�1ðx0Þ

� �2

þ
sin 


�2ðx0Þ

� �2

ð5Þ

where 
 is the local pattern orientation, r is the kernel’s

maximal support radius and * stands for convolution.

We adjusted the filter empirically by setting the filter

parameters to V=�2 and S=10. The filter frequency

response has band-pass filter characteristics, and was

found to be effective in removing noise, while preserving

the local ridge frequency of the fingerprint image. The

frequency bands transferred by the filter include almost

all typical local ridge frequencies that lie within a certain

range for a given image resolution [2]. Figure 8 shows a

comparison of impulse and frequency responses for the

original and the modified anisotropic filters. Both filters

have directional Gaussian-shaped kernels in the space

domain. However, in the frequency domain the original

filter shows low pass (one peak in the center) filter

characteristics, while the modified anisotropic filter

represents band-pass filter characteristics (two peaks
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symmetrically located around the center). An accurate

estimation of the space constants �21ðx0Þ and �22ðx0Þ in

Eqn (6) is actually local frequency estimation. However,

no accurate estimation of these constants is needed. We

set them empirically to be as follows: �21ðx0Þ ¼ 4 and

�22ðx0Þ ¼ 2. This setting produced a Gaussian-shaped

kernel filter, with a 1 : 2 ratio between the two kernel

axes.

When a ridgeline edge is encountered, the kernel is

deformed into a ellipse with the major axis aligned

parallel with the edge (Figure 9). Therefore, smoothing

is performed along but not across the ridgeline.

Our approach is quite similar to the Gabor-based

technique, as both are using oriented filters. By applying

our filter, only orientation information is required.

In our enhancement algorithm we replaced the Gabor

filter used by Hong [2] with the proposed anisotropic

filter, which eliminates the need to estimate the

local frequency information. This makes our algorithm

faster than the one proposed by Hong. The

main advantages of the anisotropic filter are its non-

dependence on ridge frequency and its robustness

against noise and distortions in the ridge frequency

image.

Experimental results

In order to quantitatively assess the performance of the

fingerprint enhancement algorithm the following error

criteria are defined:

Dropped minutiae: Minutiae that were not found in

the neighborhood of true minutiae.

False minutiae: Minutiae that were found in the region

not containing true minutiae.

Exchanged minutiae: Minutiae differing from the true

minutiae type in the same image region.

Comparison of binarization-based methods

Here we compare our binarization-based method with

some other similar techniques. Maio [1] reports the

average error percentage obtained with four different

schemes (B–E) based on binarization and thinning. We

refer to Maio ([1, Figure 20]), and use fingerprints from

the same sample set in order to compare those four

schemes to our binarization scheme, named F (see

Figure 8. Comparison of impulse and frequency response between the original (a) and the modified (b) anisotropic filters
(V=�2, S=10). Both filters have an 11� 11 pixels kernel size. Both filters have a directional Gaussian-shaped kernel in a space
domain (a) (b). However, they are different in the frequency domain: (c) the original anisotropic filter shows low-pass (one peak in
the center) filter characteristics, while (d) the modified anisotropic filter represents band-pass filter characteristics (two peaks).
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section, A binarization-based method). The samples set

consists of 10 fingerprints taken from NIST, an FBI

sample and through an opto-electronic device. Figure 10

shows the average error percentage obtained with the

five different approaches. The results are reported in

terms of undetected (dropped), non-existent (false), and

type exchanged (exchanged) minutiae [1].

Comparison of direct gray-scale methods

In this section we compare the enhancement results

conducted on gray-scale images by four different

methods: the direct gray-scale miniature detection (G)

used by Maio [1], the modified Gabor-based filtering (H)

(see section, A modification of the Gabor-based algo-

rithm), the proposed anisotropic filter (I) and the

original anisotropic filter (J) (see section, Enhancement

using a unique anisotropic filter).

Figure 11 compares the average error percentage

obtained by applying the four different filters (G, H, I, J)

for the same sample set as in the section Comparison of

binarization-based methods. The average error percen-

tage is expressed in terms of false, dropped and

exchanged minutiae.

Figure 12 shows enhancement results obtained for

poor-quality fingerprint images, which contain regions

that do not form a well-defined local ridge frequency.

These regions are mostly encountered in the neighbour-

hood of fingerprint image singular points: core and delta

[1]. The enhancement was carried out with the Gabor-

based algorithm (see section, A modification of the

Gabor-based algorithm), and with the anisotropic filter

(see section, Enhancement using a unique anisotropic

filter). Both the original and the improved anisotropic

filters outperform the Gabor-based filters for those

regions which contain singular points.

Figure 13 compares the enhancement results obtained

by applying the two different filter techniques, the

anisotropic filter and the Gabor filter, to some

fingerprint images from the sample set.

Figure 14 shows the minutiae extracted from some

input images and from the corresponding filtered

Figure 10. Comparison of 5 binarization-based schemes.

Figure 11. Performance comparison of the gray-scale ap-
proaches: GFGabor filter, HFmodified Gabor filter, IFmo-
dified anisotropic filter and JFthe original anisotropic filter.

Figure 9. Controlling the shape of an anisotropic filter
kernel.
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images. It can be seen that the use of the proposed

enhancement algorithm results in a better minutiae set

that in turn will lead to improvements in matching

performance.

Table 1 shows the wall time for different stages of the

Gabor-based enhancement algorithm [2] and the total

time on a Pentium 200MHz PC. The enhancement

algorithm based on the anisotropic filter does not

Figure 12. Enhancement results for poor fingerprint images: original image (a); enhanced image using Gabor filter (b), modified
Gabor filter (c), original anisotropic filter (d) and the modified anisotropic filter (e).

Figure 13. Enhancement results of applying different filters to fingerprint images: (a)–(d) original fingerprint images and after
enhancement by using (e)–(h) original anisotropic filter, (i)–(l) the modified anisotropic filter and (m)–(p) the improved Gabor
filter.
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require the estimation of the local ridge frequency

information. Therefore, it saves about 4% of the

processing effort compared to the Gabor-based en-

hancement algorithm.

Summary and conclusions

The techniques based on direct gray-scale enhancement

perform better than approaches which require binariza-

tion and thinning as intermediate steps. The average

error percentage, in terms of dropped, exchanged and

false minutiae, as produced by our binarization

approach F, is considerably lower than the errors

produced by approaches B–D and comparable to the

errors produced by approach E. The modified Gabor

filter H performs better than the original scheme

introduced by Hong [2], especially for poor-quality

images with corrupted ridges and blocks with singular

points.

Although the anisotropic filter has been already

applied to fingerprints [12], to the best of our knowledge

this is the first time that a structure-adaptive anisotropic

filter, which does not use the diffusion technique, has

been applied to fingerprint images. Improvements were

made to the original anisotropic filter in order to adjust

it to fingerprint images. The resulting filter shows

robustness against noise, while restoring the true ridge/

valley of the fingerprint image. The performance

comparison shows that an anisotropic filter outperforms

the Gabor filter for poor-quality fingerprint images.

Moreover, applying the proposed anisotropic filter to

fingerprint images eliminates the need for accurate

estimation of local frequency information, as implemen-

ted by other Gabor-based filters. The proposed en-

hancement scheme is faster and efficient as well.
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