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Abstract—This paper is concerned with accurate and efficient indexing of

fingerprint images. We present a model-based approach, which efficiently

retrieves correct hypotheses using novel features of triangles formed by the

triplets of minutiae as the basic representation unit. The triangle features that we

use are its angles, handedness, type, direction, and maximum side. Geometric

constraints based on other characteristics of minutiae are used to eliminate false

correspondences. Experimental results on live-scan fingerprint images of varying

quality and NIST special database 4 (NIST-4) show that our indexing approach

efficiently narrows down the number of candidate hypotheses in the presence of

translation, rotation, scale, shear, occlusion, and clutter. We also perform scientific

experiments to compare the performance of our approach with another prominent

indexing approach and show that the performance of our approach is better for

both the live scan database and the ink based database NIST-4.

Index Terms—Fingerprint identification, indexing performance, NIST-4 database,

triangle features.
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1 Introduction

FINGERPRINTS have long been used for person recognition due to
their uniqueness and immutability. There are two general ways in
which fingerprint based biometric systems are used: verification
and identification. In verification, the user inputs a fingerprint
image and claims an identity (ID), the system then verifies whether
the input image is consistent with the input ID. In identification,
which is more complex than verification, the user only inputs a
fingerprint image, the system identifies potential corresponding
fingerprints in the database. Efficient identification of fingerprints
is still a challenging problem, since the size of the fingerprint
image database can be large and there can be significant distortions
between different impressions of the same finger. These distortions
include: 1) translation, rotation, and scale because of different
positions and downward pressure of the finger, 2) shear
transformation as the finger may exert a different shear force on
the surface, and 3) occlusion and clutter because of scars, dryness,
sweat, smudge, etc. The problem of identifying a fingerprint can be
stated as: Given a fingerprint database and a query fingerprint,
obtained in the presence of translation, rotation, scale, shear,
occlusion, and clutter, does the query fingerprint resemble any of
the fingerprints in the database?

2 RELATED RESEARCH AND OUR CONTRIBUTIONS

2.1 Related Research

There are three kinds of approaches to solve the fingerprint

identification problem: 1) repeat the verification procedure for

each fingerprint in the database, 2) fingerprint classification, and

3) fingerprint indexing. If the size of the database is large, the first

approach is impractical. Although the scheme adopted by the FBI

defines eight classes, generally, classification techniques [3], [6],

[11] attempt to classify fingerprints into five classes: Right Loop
(R), Left Loop (L), Whorl (W), Arch (A), and Tented Arch (T).
However, the problem with classification technique is that the
number of principal classes is small and the fingerprints are
unevenly distributed (31.7 percent, 33.8 percent, 27.9 percent,
3.7 percent, and 2.9 percent for classes R, L, W, A, and T). The
classification approach does not narrow down the search enough
in the database for efficient identification of a fingerprint. The goal
of the third approach, called indexing, is to significantly reduce the
number of candidate hypotheses to be considered by the
verification algorithm. Thus, an indexing technique can be
considered as front-end processing, which would then be followed
by back-end verification processing in a complete fingerprint
recognition system. For multidimensional indexing methods,
readers are referred to a survey article by Gaede and Gunther [14].

A prominent approach for fingerprint indexing is by
Germain et al. [4]. They use the triplets of minutiae in their
indexing procedure. The features they use are: the length of each
side, the ridge count between each pair of vertices, and the angles
that the ridges make with respect to the X-axis of the reference
frame. The problems with their approach are:

1. the length changes are not insignificant under shear and
other distortions,

2. ridge counts are very sensitive to image quality,
3. the angles change greatly with different quality images of

the same finger, and
4. uncertainty of minutiae locations is not modeled explicitly.

As a result, bins that are used to quantize the “invariants” have to
be large, which increases the probability of collisions and causes
the performance of their approach to degrade. Our technique
follows their work in that we also use the triplets of minutiae.
However, the features that we use are quite different from theirs.
The features that we use are: triangle’s angles, handedness, type,
direction, and maximum side. These features are different, new,
and more robust than the features used by Germain et al. Table 1
shows the substantive differences between these two approaches.
Their approach is basically an indexing method where the top
hypothesis is taken as the identification result as has been done by
several researchers (e.g, Jones and Bhanu [13])

2.2 Contributions of this Paper

1. An indexing algorithm, based on novel features formed by
the triplets of minutiae and associated performance
analysis are presented on two different data sets.

2. The indexing performance is demonstrated in a principled
manner by using triplets as the basic representation unit.

3. Unlike the previously published research (see Table 2),
where ad hoc personalized criteria, partial data, or
handcrafted preprocessing are used for the selection of
images to demonstrate the results, in this paper the entire
NIST-4 database is processed and analyzed in an automated
manner in a black-box approach.1

4. Comparisons of the performance of our approach with
Germain et al.’s approach are carried out, which show that
our approach has performed better for both the live scan
database and the ink based database NIST-4.

3 TECHNICAL APPROACH

Our system for fingerprint identification is composed of two
stages: an offline stage and an online stage. The model database
and indexing structure are constructed during the offline stage,
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and identification is carried out during the online stage. During the

offline stage, fingerprints in the database are processed one-by-one

to extract minutiae [1] to construct model database. During the

online stage, the query image is processed by the same procedure

to extract minutiae. Indexing components are derived from the

triplets of minutiae locations and used to map the points in the

feature space to the points in the indexing space. The potential

correspondences between the query image and images in the

database are searched in a local area in the indexing space. An

indexing score is computed based on the number of triangle

correspondences and candidate hypotheses are generated. The top

N ranked hypotheses are the result of our indexing algorithm.

3.1 Analysis of Angle Changes Under Distortions

Without loss of generality, we assume that one vertex, O, of the

triangle (see Fig. 1) is ð0; 0Þ, and it does not change under distortions.

Since distance is invariant under translation and rotation and

relatively invariant under scale, and angles are defined in terms of

the ratio of distance, it can be proven that angles are invariant under

these transformations. However, because of uncertainty of minutiae

locations, the location of each vertex changes independently in a

small local area in a random manner. Suppose the locations of points

A and B are ðx1; 0Þ and ðx2; y2Þ, x1 > 0, y2 > 0, and x2 2 ðÿ1;þ1Þ.
We have tan� ¼ y2=ðx1 ÿ x2Þ. Because of the uncertainty of

minutiae locations, A and B move to A0ðx1 þ�x1; 0Þ and B0ðx2 þ
�x2; y2 þ�y2Þ; respectively, and � changes to �þ��; then

tan�� ¼ ððx1 ÿ x2Þ�y2 ÿ y2ð�x1 ÿ�x2ÞÞ
=ððx1 ÿ x2Þ2 þ ðx1 ÿ x2Þð�x1 ÿ�x2Þ þ y2

2 þ y2�y2Þ:

Suppose j �x1 ÿ�x2 j<<j x1 ÿ x2 j , and j �y2 j<<j y2 j , and for
small ��; tan�� � ��, we have

j �� j�j �y2 j =ð2 j y2 jÞþ j �x1 ÿ�x2 j =ð2 j x1 ÿ x2 jÞ:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 5, MAY 2003 617

TABLE 1
Comparison between Germain et al.’s [4] Approach and Bhanu and Tan’s Approaches

TABLE 2
NIST-4 Database Used in Fingerprint Recognition Research Published

Fig. 1. Illustration of variables.



That is, if the changes of minutiae locations are small enough, the
change of the angle will be less than a certain small value.
Furthermore, we can compute the expectation of j �� j . Let
fðx1; x2; y2;�x1;�x2;�y2Þ ¼ tan��. Suppose �x1, �x2, and �y2

are independent, and ÿ4 � �xi � 4, ÿ4 � �y2 � 4, i ¼ 1; 2, and
�xi and �y2 are all integers, we have

gðx1; x2; y2Þ �
X4

�x1ÿ¼4

X4

�x2ÿ¼4

X4

�x3ÿ¼4

ðj fðx1; x2; y2;�x1;�x2;�y2Þ � pð�x1Þpð�x2Þpð�y2Þ j :

Assuming pð�x1Þ, pð�x2Þ and pð�y2Þ are all discrete uniform

distributions in ½ÿ4;þ4�. Let 0 < x1 < L, 0 < y2 < L and j x2 j< L,

where L is the maximum value (150 pixels in experiments) of these

variables in the fingerprint. We compute gðx1; x2; y2Þ at each point

ðx1; x2; y2Þ. Table 3 shows the expectation of the percentage of

angle changes that are less than various thresholds for the

minimum, median and maximum angles in a triangle. We observe:

1) We should use �min and �med as the indexing components to

construct the model database; 2) 2o ÿ 4o can tolerate most

distortions of uncertainty and keep the size of the indexing space

that need to be searched as small as possible. We also tried other

distributions for pðx1Þ, pðx2Þ and pðy2Þ and found similar results.

Thus, minimum angle and median angle in a triangle formed by the

triplets of minutiae can be taken as components of the index to construct a

model database for fingerprint identification.

3.2 Triplet-Based Features for Indexing

The following features are derived from the triangle formed
by each noncollinear triplets of minutiae to form index
Hð�min; �max; �; ; �; �Þ.

. Angles �min and �med. Suppose �i are three angles in the
triangle, i ¼ 1; 2; 3. Let

�max ¼ maxf�ig; �min ¼ minf�ig; �med
¼ 180o ÿ �max ÿ �min;

then the labels of the triplets in this triangle are such that if

the minutia is the vertex of angle �max, we label this point

as P1, if the minutia is the vertex of angle �min, we label it

as P2, the last minutia is labeled as P3 which is the vertex of

angle �med. Fig. 2 shows an example of this definition. We

use �min and �med as two components of the indexing

space. 0o < �min � 60o and �min � �med < 90o.
. Triangle Handedness �. Let Zi ¼ xi þ jyi be the com-

plex number ðj ¼
ffiffiffiffiffiffiffi
ÿ1
p

Þ corresponding to the location
ðxi; yiÞ of point Pi; i ¼ 1; 2; 3. Define Z21 ¼ Z2 ÿ Z1,

Z32 ¼ Z3 ÿ Z2, and Z13 ¼ Z1 ÿ Z3. Let triangle handed-
ness � ¼ signðZ21 � Z32Þ, where signð�Þ is the sign
function and � is the cross product. Since points P1,
P2, and P3 are noncollinear points, � ¼ 1 or ÿ1.

. Triangle Type . Each minutia is either an endpoint or a
bifurcation, we define triangle type based on the types of
minutiae that form the triangle. Let  ¼ 41 þ 22 þ 3;

where i is the feature type of point Pi, i ¼ 1; 2; 3. If point
Pi is an endpoint, i ¼ 1, else i ¼ 0. 0 �  � 7.

. Triangle Direction �. We search the minutia in the image
from top to bottom and left to right, if the minutia is the
start point of a ridge, we define the direction of the minutia
� ¼ 1, otherwise � ¼ 0. Let � ¼ 4�1 þ 2�2 þ �3, where �i is
� value of point Pi, i ¼ 1; 2; 3. 0 � � � 7.

. Maximum Side �. Let � ¼ maxfLig, where L1 ¼j Z21 j ,
L2 ¼j Z32 j , and L3 ¼j Z13 j .

3.3 Geometric Constraints

They are used to reduce the number of false correspondences
obtained from querying the lookup table by the index.

. Relative local orientation at mid points. Let points P21,
P32, and P13 be the midpoint of line P2P1, P3P2, and P1P3,
respectively, and point P123 be the centroid of the triangle
�P1P2P3. Le t ’21 ¼  21 ÿ  123, ’32 ¼  32 ÿ  123, and
’13 ¼  13 ÿ  123, where  21,  32,  13, and  123 are the local
orientations in the image at points P21, P32, P13, and P123,
respectively. We assume that relative local orientations
’21, ’32, and ’13 will not change much in different
impressions. So, j ’ÿ ’0 j< �m, where ’ and ’0 are ’21,
’32, or ’13 in two different impressions.

. Relative local orientation at vertices. Let  i be the local
orientation of point Pi, and !i ¼  i ÿ  123, we have
j !ÿ !0 j< �l, where i ¼ 1; 2; 3; and ! and !0 are !1, !2, or
!3 in two different impressions of the same finger.

. Relative translation. Let Zc ¼ ðZ1 þ Z2 þ Z3Þ=3, where Zi
is defined in Section 3.2, we have j Z ÿ Z0 j< �t, where Z

and Z0 are the Zc in two different impressions of the same

finger. j Z ÿ Z0 j is the translation between the centroids of

these two triangles.
. Relative rotation. Let �21 ¼ angleðZ21Þ, �32 ¼ angleðZ32Þ,

and �13 ¼ angleðZ13Þ, where Z21, Z32, and Z13 is defined in

Section 3.2, and angleðZÞ is the phase angle of Z. Let

j �ÿ �0 j< �r, where � and �0 are �21, �32, or �13 in two

different impressions of the same finger.

3.4 Indexing Score, Algorithms, and Analysis

Suppose

1. I is the query image and Ii are the images in the database,
i ¼ 1; 2; . . .Nd, where Nd is the number of images in the
database,

2. M and Mi are the sets of minutiae in I and Ii, respectively,
3. m is a minutia, and m 2 ðM [MiÞ,
4. Ni is the number of matched triangles between I and Ii,

Cniÿ1
3 � Ni � Cni

3 , and ni is an integer, which is the number
of potential corresponding minutiae in each image, and

5. r is the number of triangles in Ii which include m.

Then, we can compute the posterior probability
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Expectation of the Percentage of Angle Changes Less than Various Thresholds

Fig. 2. Definition of feature points labels.



PMi ¼ PfIi ¼ I j m 2 ðM \MiÞg ¼ c � r, where c is a

constant factor that makes PMi to be the correct

posterior probability.

We sort PMi for each m, and find the ni largest probabilities,
suppose they are pk, where k ¼ 1; 2; . . .ni. We define the index
score of image Ii as:

Si ¼
Xni
k¼1

pk:

. Algorithms. Fig. 3 shows the algorithms used in our
experiments.

. Probability of false indexing. Suppose:

1. S is the size of the index space,
2. fk is the number of triangles in the model database for

image Ik, and these triangles are uniformly distrib-
uted in the indexing space,

3. b is the search redundancy for each triangle in the
query image,

4. vk is the number of corresponding triangles between
image I and Ik, and

5. ft is the number of triangles for the query image [8].

Then, the value of vk that is greater than a threshold T can be
approximated by the Poisson distribution

pfvk > Tg � 1ÿ eÿ�
XT
i¼0

ð�i=i!Þ:

where � ¼ ft � p1, p1 � bp0, p0 ¼ fk=s. In our approach, in a
triangle if �min < �� or � < �� , where � is the minimum side of
the triangle, then we do not use this triangle to build the model.
We use 0:5o as the bin size for angles �min and �med, �� for �, and
we search the indexing space with the uncertainty of �2o. Hence,
� � 15:885. Fig. 4 shows the curve of Pfvkg > T with respect to T .
When T ¼ 25; Pfvkg > T ¼ 0:0121. That is, if there is no image in

the database corresponding to the test image, the probability of
finding 25 corresponding triangles between the test image and any
of the images in the database is about 0.0121. We can use T ¼ 25 as
the threshold to reject a test image which has no corresponding
image in the database. Note that, while the triangles are not
uniformly distributed in the model database, since we apply
geometric constraints, T can be less than 25.

4 Experiments

4.1 Database and Parameters

The data set 1 contains 400 pairs of images and 200 single images.
These images are collected from 100 persons on the same day by a
Sony fingerprint optical sensor (FIU-500-F01) with the resolution of
300 DPI (see Fig. 5a). The size of these images is 248� 120 pixels.
Each pair of images is different impression of the same finger, one is
used to construct the model database, and the other one is used as
the query image. The single image data set is used to test the
rejection performance. We subjectively classify these images
according to their quality into three classes: good, fair, and poor.
Most images in the database are of fair (33.2 percent) or poor quality
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Fig. 3. Algorithms for runtime identification (online stage). (a) Algorithm for constructing the model database (offline stage). (b) Algorithm for runtime indentification (online
stage).

Fig. 4. Pfvk > Tg with respect to T .



(47.8 percent). The data set 2 is the NIST special database 4 (NIST-4)

[9] that contains 2,000 pairs of images. Since these images are
collected with an ink based method, a large number of NIST-4

images are of much poorer quality. NIST-4 images often contain
other objects, such as characters and handwritten lines (see Fig. 5b).
The size of these images is 480� 512 pixels with the resolution of 500

DPI. Parameters ��, �� , and �� are different for the two data sets: for
data set 1, �� ¼ 5o, �� ¼ 20 pixels, �� ¼ 10 pixels, for data set 2,
�� ¼ 10o, �� ¼ 40 pixels, �� ¼ 20 pixels. All other parameters are the

same for both data sets: �m ¼ 30o, �l ¼ 30o; �r ¼ 30o, �t ¼ 50 pixels,
T�1 ¼ 4o, T�2 ¼ 4o, and T ¼ 20.

4.2 Performance Evaluation Measures for Indexing

False Positive Rate (FPR) and False Negative Rate (FNR) are used
to evaluate the performance of a verification algorithm [10].
However, the goal of the indexing method in this paper is to
narrow down the number of hypotheses which need to be
considered for subsequent verification. The output of an indexing
algorithm is the set of top N hypotheses. If the corresponding
fingerprint is in the list of top N hypotheses, we should take the
indexing result as a correct result. Hence, FPR and FNR are not
suitable for evaluating the results of an indexing algorithm. We
define Correct Index Power (CIP) and Correct Reject Power (CRP)
as the performance evaluation measures for indexing: CIP ¼
ðNci=NdÞ � 100% and CRP ¼ ðNcr=NsÞ � 100%, where Nci is the

number of correctly indexed images, Nd is the number of images in
the database, Ncr is the number of correctly rejected images, Ns is
the number of the query images that don’t have corresponding
images in database.

4.3 Indexing Results for Data Set 1

Fig. 6 shows the CIP for each class of images and the entire
data set 1 with respect to the length of the short list of hypotheses.
The CIP of a single hypothesis for good quality images is
96.2 percent. As the quality of images become worse, the CIP
decreases to 85.5 percent for fair and 83.3 percent for poor images.
The average CIP of a single hypothesis for the entire database is
86.5 percent. The CIP of the top 2 hypotheses is 100.0 percent for
good images, and for fair images and poor quality images, the CIP
of the top five hypotheses are 99.2 percent and 98.0 percent,
respectively. For the entire database of 400 images, the CIP of the
top nine (2.3 percent of database) hypotheses is 100.0 percent. Fig. 7
shows that on data set 1 the performance of our approach is better
than that of Germain et al.’s approach. We also evaluated the
indexing performance of our algorithm for the 200 images, which
are not in the database. Our indexing algorithm rejected these
images ðCRP ¼ 100%Þ. Thus, threshold T based on the analysis of
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Fig. 5. Sample images: (a) data set 1 and (b) data set 2.

Fig. 6. CIP of data set 1.

Fig. 7. Comparison of two approaches.

Fig. 8. ROC justifies T ¼ 20.

Fig. 9. Number of corresponding triangles of the 2,000 query images of data set 2.

Fig. 10. Distribution of corresponding triangels among 2,000 query images of

data set 2.



our approach works well. Furthmore, we use the hypothesis,
which has the highest indexing score, as the result of identification
to obtain the Receiver Operating characteristic Curve (ROC) shown
in Fig. 8, where Pci is the CIP for the top hypothesis and the False
Alarm Rate FAR ¼ 100ÿ CRP . When T ¼ 20, the FAR is 0 and as
T decreases, FAR will increase.

4.4 Indexing Results for Data Set 2

Fig. 9 shows the number of corresponding triangles for each query
image of data set 2. Note that 32 images do not have any
corresponding triangles. That is why CIP can not reach 100 percent
as the number of hypotheses increases. Fig. 10 shows the
distribution of the number of corresponding triangles among
those 2,000 query images on a log scale. Because of bad quality, for
some queries the number of corresponding triangles is quite small.
Fig. 11 shows how CIP performance varies with the number of
corresponding triangles for different threshold T. Approximately
10 good features lead to good indexing results.

. Effect of constraints and computation time. Fig. 12 shows
the effect of geometric constraints in reducing the average
percentage of hypotheses that need to be considered for
indexing. We observe that four geometric constraints
provide a reduction by a factor of 589.487, 6.869, 1.428,
and 1.007, sequentially. On a SUN ULTRA2 workstation,
without optimization, average time for correctly indexing
or correctly rejecting a query is less than one second.

. Extrapolation of indexing performance. There exists no
general theory in the computer vision and pattern recogni-
tion field to predict the performance of model-based
indexing and matching algorithms under arbitrary trans-
formations and arbitrary size of databases. Initial attempts
have been made in [2], which takes into consideration of
uncertainty in features, occlusion, clutter and similarity of
object models. In the absence of a general theory, we perform
extrapolation of the results obtained on NIST-4 database to
estimate the scalability of our approach. Let N, the number of
hypotheses, be 10 percent of M, where M is the size of the

database, but if N > 100, then let N ¼ 100, so that the
maximum number of hypotheses need to be considered is
100. Fig. 13 shows the extrapolated performance of our
approach on databases of different size, which uses a linear
regression model. Fig. 14 shows the extrapolation with large
M. As M increases, the performance will decrease and the 95
percent confidence interval of the performance will increase.
However, these results indicate that a CIP of 50 percent could
be achieved with a short list of 100 hypotheses, which would
be only 0.33 percent of a 30,000-image database, which is
really a good performance. This extrapolation from the
results of 2,000 images to 30,000 needs to be taken with
caution. It is dependent on the quality of input images and, as
our analysis shows, NIST-4 is a difficult database.

. Comparison of approaches. We have done a direct
comparison with Germain et al.’s approach. We imple-
mented Germain et al.’s approach and compared the
performance of our indexing algorithm with it on NIST-4
data set 2. Fig. 15 shows the comparisons of the two
approaches on four subsets, first 100, 500, 1,000, and
2,000 fingerprints, of data set 2. Our approach has
performed better than that of Germain et al.’s approach.
When the entire data set 2 is used, although the CIP of
Germain et al.’s approach increases from 53.0 percent to
67.0 percent, the CIP of our approach increases from
60.4 percent to 72.4 percent as the number of hypotheses
increases from top 1 (0.05 percent of the database) to top 10
(0.5 percent of the database). Fig. 16 shows that the
indexing performance increases as the percentage of the
database size increases. When it is 10 percent, our
approach is still better, the CIP of these two approaches
are 85.5 percent and 83.7 percent, respectively.

A direct comparison with traditional fingerprint classification
approaches can not be done for the following reasons: our approach
for indexing is different from classification techniques. They are
classifying each testing image into four or five classes, while we are
generating the top N hypotheses for an input fingerprint query. The
outputs of these two systems are different. If we take our approach
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Fig. 11. CIP performance varies with the number of corresponding triangles (data set 2). (a) T ¼ 1, (b) T ¼ 10, and (c) T ¼ 50.

Fig. 12. Effect of constraints. Fig. 13. Performance on NIST-4.



and traditional classification approaches as a filtering step for data
reduction before detailed verification, then it is possible to compare
the two approaches indirectly. The results of our technique can be
evaluated in term of the number of hypotheses that need to be
considered for detailed verification. We do not use error/efficiency
analysis since it has its own limitations as pointed out by Senior [11].
Fig. 15 and Fig. 16 show the percentage of the NIST-4 database that
needs to be examined in subsequent verification. Rather than
reducing the computation for verification to about 1/3 of the
database by a classification approach, our approach reduces the
computation to about 10 percent of the database for the CIP to be
85.5 percent. So, on the NIST-4 database, our approach is better than
traditional classification approach. For a database of 30,000, for our
approach, a CIP of 50 percent could be achieved with only
100 hypotheses (0.33 percent of the database). The performance of
the traditional approach will be quite low, because the number of
classes is limited (4 or 5) and quite likely there will be more than
10 percent misclassification. A thorough comparison of these two
kinds of approaches (indexing and classification followed by
verification) is the topic of future research. It is beyond the scope
of this paper. Note that a low value for CIP is not a fatal flaw with our
approach for large database where a low miss rate is required,
because indexing can produce an ordered list of hypotheses of the
entire database, which will, on average, be much more efficient for
verification than a blind exhaustive search.

5 CONCLUSIONS

Our approach, based on triplets of minutiae, is promising for
identifying fingerprints under translation, rotation, scale, shear,
occlusion, and clutter. Experimental results show that it can greatly
reduce the number of candidate hypotheses for further verification.
In various comparisons with the prominent indexing approach
developed by Germain et al., our approach has performed better.
We have performed the analysis of the entire NIST-4 database in a
systematic manner and characterized indexing performance in
terms of the number of corresponding triangles. This will allow the
comparison of our results by others on the same publicly available

database. Our approach can also be applied to each class after the
fingerprints have been classified into R, L, A, T, and W classes to
produce an ordered list of hypotheses for efficient verification.
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Fig. 14. Performance with large M.

Fig. 15. Comparison of Germain et al.s and our approaches on NIST-4 data set.

Fig. 16. Comparison of Germain et al.’s approach and our approach on NIST-4

data set.


