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Abstract

Recently, the fingerprint-based wireless local area network (WLAN) positioning has gained significant interest. A

probability distribution-aided indoor positioning algorithm based on the affinity propagation clustering is proposed.

Different from the conventional fingerprint-based WLAN positioning algorithms, the paper first utilizes the affinity

propagation clustering to minimize the searching space of reference points (RPs). Then, we introduce the

probability distribution-aided positioning algorithm to obtain the target's refined position. Furthermore, because the

affinity clustering can effectively lead to a reduction of the computational cost for the RP searching which is

involved in the probability distribution-aided positioning algorithm, the proposed algorithm can lower the difficulty

and minimize the power consumption when estimating the user's position. Experimental results conducted in the

real environments show that our proposed algorithm will significantly improve the performance of the probability

distribution-aided positioning algorithm in both the positioning accuracy and real-time ability.
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1 Introduction
In recent decade, the indoor wireless local area network

(WLAN) positioning technology has caught significant

attention by a variety of universities and research ins-

titutes [1-3]. Among them, the time of arrival (ToA),

angle of arrival (AoA), and received signal strength

(RSS) are the three most representative measurements

for the position estimation. Compared to the ToA and

AoA measurements, the RSS can be more easily mea-

sured without any additional special hardware devices

in current open public WLAN networks. However,

the most significant challenge of the RSS readings is

about the irregular variations of RSS due to the vari-

able radio channel attenuation, signal shadowing, multi-

path interference, and even the variations of indoor

temperature [4].

In general, two approaches are used by the existing

WLAN positioning techniques for position estimation.

One effective solution is the k-nearest neighbor (kNN)

algorithm to estimate the mobile user's position at the

centroid of the K closest neighbors. The closest neighbors

are defined as the reference points (RPs) which have the

smallest RSS distance to the on-line new collected RSS

readings [5]. The kNN algorithm can be easily imple-

mented by the current widely existing WLAN infrastruc-

tures, while the accuracy is limited. Another alternative

approach is based on the statistical analysis on the prob-

abilities of each candidate RP to calculate the confidence

probability of each RP to be selected as the mobile user's

estimated position [6,7].

RSS clustering by the measures of similarities between

the RSS readings can be suggested as a critical step

for the fingerprint-based WLAN positioning. Performing

the RSS clustering prior to the positioning process has

two main advantages. First, it helps to mitigate the deg-

radation on the positioning accuracy caused by the RSS

deviations and potential outlier readings. Second, it is

beneficial to be used to reduce the computation cost

since only the cluster centers are considered for the po-

sitioning [8].

In this paper, we present a new accurate and scalable

positioning algorithm to estimate the user's position

with low computation cost in a public WLAN environ-

ment. Our algorithm consists of two steps: (1) the coarse

positioning step is used to obtain the cluster which the
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user belongs to; and (2) the fine positioning step is uti-

lized to calculate the accurate coordinates of the user.

The paper is organized as follows. Section 2 provides

some related work on the fingerprint indoor positioning

algorithms. Section 3 discusses the overall structure of

our algorithm. Sections 4 addresses the detailed steps of

the off-line affinity propagation, on-line cluster matching-

based coarse positioning, and probability distribution-

aided fine positioning, respectively. The performance of

our proposed algorithm is verified in Section 5. Finally,

Section 6 concludes this paper.

2 Related work
The RSS fingerprints are recognized as the vectors of

RSS values recorded from the hearable access points

(APs) in target area. The fingerprint indoor positioning

by using the set of pre-calibrated RSS fingerprints (or

called the radio map) can be normally classified into

three categories: the (1) deterministic approach; (2)

probabilistic approach; and (3) machine learning ap-

proach, as illustrated in Figure 1. The widely known

RADAR system [9,10] is addressed as one of most repre-

sentative deterministic approaches for the WLAN fin-

gerprint indoor positioning by using the K-nearest

neighborhood RPs to infer the user's position.

The basic idea of probabilistic approach is to pre-store

the RSS distribution with respect to each hearable AP

into a radio map and use it to conduct the position esti-

mation. As an example, the Horus system [11] estimates

the user's position at the location which has the largest

posterior probability by the Bayesian inference [12]. Al-

though the Bayesian inference achieves high positioning

accuracy, the recording of RSS distributions at RPs is

time consuming.

Due to the significant computation cost involved in

the previously mentioned approaches, the researchers

begin to pay more attention to the machine learning ap-

proach (e.g., the artificial neural network [13,14], support

vector machine [15], and fuzzy logic [16,17]) to realize

the fingerprint positioning. The most important ad-

vantage of the machine learning approach is about the

real-time ability of inferring the user's coordinates in the

on-line phase. However, most of the current machine

learning positioning systems is designed for a small-scale

area (e.g., approximately 600 m2 [18]), and meanwhile,

the positioning accuracy will significantly rely on the

training process in the off-line phase.

To improve the positioning accuracy further, we al-

ways consider about the fingerprint processing, such as

the RSS clustering and dimension reduction. A conven-

tional way to the RSS clustering is to select a set of clus-

ter centers to minimize the sum of the squared distances

between the RSS readings and their corresponding cen-

ters. As a representative, the widely used k-means clus-

tering begins with an initial set of randomly selected

centers and then iteratively refines this set to decrease

the sum of the squares distances. However, the k-means

clustering is quite sensitive to the initial selection of cen-

ters. In this case, it is always performed in several times

and with different initial centers to find the best cluster-

ing results. Therefore, the k-means clustering is limited

in practical use due to the arbitrary selection of the ini-

tial cluster centers. To solve this problem, the affinity

propagation clustering creates the centers and the corre-

sponding clusters based on the constant exchanging of

reading similarities between the RPs [19]. With this idea,

the messages will be exchanged between RPs until a

high-quality set of centers and corresponding clusters

gradually emerge.

3 Overall structure of proposed positioning

algorithm
The block diagram of our proposed indoor positioning

algorithm is shown in Figure 2. Obviously, this algorithm

contains two phases: (1) in the off-line phase, we con-

struct the radio map and conduct the affinity propaga-

tion clustering; and (2) in the on-line phase, the cluster

matching-based coarse and probability distribution-

aided fine positioning will be performed, respectively.

The detailed steps about the block diagram in Figure 2

will be analyzed in Section 3.

In the off-line phase, we first hold the WLAN mobile

device to collect the RSS readings from the hearable APs

to construct the radio map in the area of interest. Du-

ring the construction of the radio map Ψ (see details

below), the corresponding physical coordinates of RPs

should also be stored. Then, the affinity propagation

Figure 1 Categories of fingerprint indoor positioning.
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clustering is conducted in the radio map to cluster the

raw RPs.

In the on-line phase, the first step is to use the mobile

device to collect the on-line new RSS readings. Then,

the coarse positioning will be used before the fine posi-

tioning for the reasons of reducing the on-line computa-

tion cost and improving the accuracy performance of

the probability distribution-aided positioning algorithm.

Due to the time-variation property of radio propaga-

tion in indoor WLAN environment (e.g., multi-path ef-

fect, RSS shadowing, and adjacent channel interference),

the fingerprint-based positioning has been more pre-

ferred in practical use [20]. During the off-line phase,

the RSS readings are collected at pre-calibrated positions

which are also named as the RPs. We denote the τ − th

RSS readings from APi at RPj as {ψi,j(τ), τ = 1, …, q,

q > 1} where q is the number of RSS readings. Normally,

the average of RSS readings will be computed and stored

into a database which is known as the widely recognized

radio map Ψ. The radio map can effectively describe the

spatial distribution property of the RSS in target area.

ψ ¼
ψ1;1 ψ1;2 ⋯ ψ1;N

ψ2;1 ψ2;2 ⋯ ψ2;N

⋮ ⋮ ⋱ ⋮

ψL;1 ψL;2 ⋯ ψL;N

0

B

B

@

1

C

C

A

; ð1Þ

where ψi;j ¼ 1
q
∑
q
τ¼1ψi;j τð Þ i ¼ 1; 2;…; L; j ¼ 1; 2;…;Nð Þ is

the average of RSS readings from APi at RPj over the

time domain. L and N are the number of access points

(APs) and RPs, respectively. Each column of the radio

map Ψ (i.e., ψj

→¼ ψ1;j;ψ2;j;…;ψL;j

h iT

, j = 1, 2, …, N) rep-

resents a sequence of RSS readings at a RPj. The super-

script ‘T’ denotes the transposition operation.

4 Detailed steps of proposed positioning algorithm

Different from the conventional K-means clustering [21],

the basic idea of our proposed affinity propagation clus-

tering algorithm is to use the preference (p) to label the

RPs and the RPs with larger preference are more likely

to be selected as the cluster centers. Our proposed algo-

rithm outperforms the K-means clustering because of

the initialization-independent property and better selec-

tion of cluster centers [22].

For the affinity propagation clustering, we first use the

pairwise similarity s(i, j) to describe the fitness of the RPj
to be selected as the cluster center with respect to the

RPi . Based on Equation (1), we can denote the RSS vec-

tor for each RPj as ψj

→ þ δj
→

where δj
→

is the measurement

noise which obeys the Gaussian distribution. Therefore,

the pairwise similarity s(i, j) can be defined as the

squared Euclidean distance in Equation (2).

Figure 2 Block diagram of proposed positioning algorithm.

Figure 3 Indoor WLAN positioning environment.
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s i; jð Þ ¼ − ψi

→

− ψj

→

�

�

�

�

�

�

2

; ∀i; j ∈ 1; 2;…;Nf g ð2Þ

Furthermore, there are two types of messages trans-

mitted among the RPs for the affinity propagation clus-

tering: (1) responsible message r(i, j) which transmits the

information about the clustering center; and (2) avail-

ability message a(i, j) which informs the attachment rela-

tions between the RPs and clusters.

The RPi will send the responsible message to each

candidate cluster center RPj to transmit the accumulated

fitness for the RPj to be selected as the cluster center for

RPi. By taking all the other potential cluster centers j’ for

RPi into account, we can obtain

r i; jð Þ ¼ s i; jð Þ− max
j 0≠j

a i; j 0ð Þ þ s i; j 0ð Þf g; ð3Þ

where a(i, j) is the availability message, as defined in

Equation (5). Meanwhile, we define the self-responsibility

r(i, i), which is known as preference (p) as the median

of input similarities, resulting in the average number

of clusters.

p ¼ median s i; jð Þ; ∀i; j ∈ 1; 2;…;Nf gf g ð4Þ

The availability message a(i, j) is sent from each candi-

date cluster center RPj to RPi. a(i, j) describes the accu-

mulated fitness for RPi to select RPi as its center, such as

a i; jð Þ ¼ min 0; r j; jð Þ þ
X

i0≠i;j

max 0; r i 0; jð Þf g

8

<

:

9

=

;

: ð5Þ

Similarly, the self-availability a(j, j) will reflect the ac-

cumulated fitness for RPj to be selected as the center.

Because of the requirement of positive responsibilities,

we have

a j; jð Þ ¼
X

i 0≠j

max 0; r i 0; jð Þf g: ð6Þ

The previously mentioned messages are transmitted

among the neighboring RPs until the optimal cluster

centers are searched out. When updating the messages,

it is important that they be damped to avoid numerical

oscillations that arise in some circumstances. Each mes-

sage is set to λ times its value from the previous itera-

tion plus 1 ‐ λ times its prescribed updated value, where

Figure 4 Variations of the number of iterations with respect to the damping factor.

Figure 5 Variations of the number of clusters with respect to the damping factor.
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the damping factor λ is between 0 and 1. In each ite-

ration, there are three steps involved [23]: (1) updating

the responsibilities by Equation (7); (2) updating the

availabilities by Equation (8); and (3) integrating the

availabilities and responsibilities to determine the cluster

centers by Equation (9). In our experiments, we keep on

this process until the cluster centers have not changed

in ten iterations or the number of iterations exceeds 300.

ri ¼ 1−λð Þri þ λri−1 ð7Þ

ai ¼ 1−λð Þai þ λai−1 ð8Þ

r i; ið Þ þ a i; ið Þ > 0 ð9Þ

In the on-line phase, we will collect the new RSS rea-

dings at unknown positions ψr

→¼ ψ1;r;…;ψL;r

h iT

where

{ψk,r, k = 1, …, L} is the average of new RSS readings

from APk. We define H and Cj as the set of cluster cen-

ters and the set of RPs with the center RPj ∈H. After the

coarse positioning, the candidate cluster selected for the

fine positioning can be obtained by Equation (10).

j 0 ¼ argminj∈H jj ψr

→

− ψj

→ jj2;ψr

→¼ ψ1;r;…;ψL;r

h iT

ð10Þ

For the fine positioning, we will calculate the matching

probability between the on-line new collected RSS rea-

dings and the pre-stored fingerprints in radio map. By

assuming the Gaussian probability distribution of RSS

readings at each RP, the RSS values should obey the nor-

mal distribution N(μ, σ2) [7].

First, the likelihood function is calculated by

L μ; σ2
� �

¼
Y

n

i¼1

1
ffiffiffiffiffiffi

2π
p

σ
e−

xi−μð Þ2
2σ2 : ð11Þ

Second, we can obtain the logarithmic equation in

Equation (12).

lgL μ; σ2
� �

¼ −
n

2
lg 2nð Þ− n

2
lg σ2
� �

−
n

2σ2

X

n

i¼1

xi−μð Þ2

ð12Þ

Third, likelihood equations should be

∂ lgL μ; σ2ð Þ
∂μ

¼ 1

σ2

X

n

i¼1

xi−μð Þ2 ¼ 0

∂ lgL μ; σ2ð Þ
∂σ2

¼ −
n

2σ2
þ 1

2σ4

X

n

i¼1

xi−μð Þ2 ¼ 0

:

8

>

>

>

<

>

>

>

:

ð13Þ

Figure 6 Variations of the number of clusters with respect to the parameter p.

Figure 7 Results of affinity propagation clustering on RPs.
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Last, by calculating Equation (13), one has

μ� ¼ �x ¼ 1

n

X

n

i¼1

xi; ð14Þ

σ�2 ¼ 1

n

X

n

i¼1

xi−�xð Þ2: ð15Þ

The likelihood equations have a unique solution

(μ*, σ*2) which should also be a local maximum point.

This result can be interpreted that when |μ|→∞ or σ2→ 0

or σ2→∞, the non-negative function L(μ, σ2)→ 0.

Therefore, the maximum likelihood estimation of μ and

σ2 will be

μ� ¼ �X ; ð16Þ

σ�2 ¼ 1

n

X

n

i¼1

X i−�Xð Þ2; ð17Þ

where X is defined as the set of RSS readings. Based

on the statistical property of the maximum likelihood

estimation μ* and σ*2, we can approximately recognize

μ* as the RSS fingerprint at each RP. With this idea,

the mean of RSS reading ei and the corresponding

variance di from each hearable AP APi should be cal-

culated for the construction of radio map in the off-

line phase.

In the on-line phase, after collecting the new RSS

readings {rssi, i = 1, 2, …, L}, according to Equation (18),

we can calculate the probability of the RP (x, y) with re-

spect to the i − th AP Pi(x, y). In Equation (18), we have

μ = ei and σ = di.

Pi x; yð Þ ¼ 1
ffiffiffiffiffiffi

2π
p

σ
e−

rssi−μð Þ2
2σ2 : σ > 0ð Þ ð18Þ

Then, the probability of each RP P(x, y) can be calcu-

lated. Finally, we will locate the user's position at the RP

which has the maximum probability.

P x; yð Þ ¼
Y

L

i¼1

Pi x; yð Þ ¼
Y

L

i¼1

1
ffiffiffiffiffiffi

2π
p

di

e
−

rssi−eið Þ2
2di

2

 !

ð19Þ

5 Experimental results
Figure 3 shows the target indoor WLAN positioning en-

vironment for our testing. By using RSS readings collected

from nine public APs (Cisco WRT54G), we will compare

the performance of our proposed algorithm with other

three typical positioning algorithm; (1) kNN positioning

algorithm with K-means clustering (K-means + Knn); (2)

probability distribution-aided positioning algorithm with

K-means clustering (K-means + Probability Distribution);

and (3) kNN positioning algorithm with affinity propaga-

tion clustering (Affinity Propagation + Knn). The dimen-

sions of our testing area are 66 × 22 m2.

5.1 Clustering results

In the experiments, we only focus on the situations that

the damping factor is in the range of [0.5, 0.9] because

only the damping factor falling into this range can guar-

antee that the affinity clustering results converge when

the clustering process ended. Figures 4 and 5 show the

variations of the numbers of iterations and clusters with

respect to the values of damping factor respectively. To

be clearer, we compare the numbers of iterations and

clusters in the conditions of 9-AP (or all the APs), 5 APs

(or about half the APs), and 3 APs (or the 3 APs which

have the strongest RSS readings). As can be seen in

Figures 4 and 5, the damping factor λ = 0.65 performs

best in the computation cost (or with the smallest

Figure 8 The experimental curve selected randomly.

Table 1 Results of statistical positioning errors

Algorithm Mean (m) Max (m) Variance (m2)

K-means + Knn 3.38 6.72 2.82

K-means + Probability Distribution 3.11 6.70 3.24

Affinity Propagation + Knn 2.66 6.67 3.02

Proposed algorithm 2.23 6.52 2.52
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number of iterations), and meanwhile results in stable

number of clusters.

Figure 6 shows the number of clusters with respect to

the values of preference (or the parameter p) for the af-

finity propagation clustering. A large value p will result

in the small number of clusters as expected. To distri-

bute the RPs with the equal probability of being the

cluster centers, we first set the value p as the median of

the input similarities to generate a proper number of

clusters, as described in Equation (4). After that, we can

tune the values of p for the better clustering perfor-

mance [21].

Figure 7 gives the results of the affinity propagation

clustering on the RPs. The solid circles represent the cal-

ibrated RPs, and the RPs belonging to different clusters

are labeled by different color. The 182 RPs have been

clustered into seven clusters and the RPs in the same

cluster are physically adjacent.

5.2 Positioning results

By randomly selecting 81 test positions in target area

(see Figure 8), we can compare the error performance of

the K-means + Knn, K-means + Probability Distribution,

Affinity Propagation + Knn and our proposed algorithm

in Table 1. Furthermore, the comparisons of the cumula-

tive density functions (CDFs) of positioning errors are

also illustrated in Figure 9. The red line in target area

stands for the path that the user was walking.

5.3 Error analysis

Based on the previous experimental results which are con-

ducted in a public indoor WLAN environment, we can

observe that: (1) our proposed probability distribution-

aided positioning algorithm has reduced the mean of

errors by 34.02%, 28.3%, and 16.17%, respectively

compared to the K-means + Knn, K-means + Probability

Distribution, and Affinity Propagation + Knn positioning

algorithms; and (2) our proposed algorithm has also in-

creased the confidence probability of errors within

3 m to 80.49% which is significantly larger than the

probabilities 43.9%, 62.2%, and 65.85% achieved by

the K-means + Knn, K-means + Probability Distribution,

and Affinity Propagation + Knn positioning algorithms.

6 Conclusion

This paper proposes a new probability distribution-aided

indoor positioning algorithm based on affinity propaga-

tion clustering. Compared with the conventional indoor

fingerprint-based positioning algorithms, the positioning

search space and computing cost are reduced. Because

the affinity propagation clustering can be recognized as

a preprocessing of the conventional fingerprint-based

positioning algorithms, the proposed method can also be

applied to the other fingerprint-based wireless posi-

tioning systems, like the RFID and mobile cellular net-

work. However, due to the significant dependence on

the RSS distributions and deployment of RPs, future re-

search is required to optimize the layout of the APs and

fingerprint modification for improving the positioning

accuracy.
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