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Abstract

Fingerprint distortion changes both the geometric posi-
tion and orientation of minutiae, and leads to difficulties in
establishing a match among multiple impressions acquired
from the same finger. In this paper, minutia polygons are
used to match distorted fingerprints. A minutia polygon de-
scribes not only the minutia type and orientation but also
the minutia shape. This allows the minutia polygon to be
bigger than the conventional tolerance box without losing
matching accuracy. In other words, a minutia polygon has
a higher ability to tolerate distortion. Furthermore, the
proposed matching method employs an improved distortion
model using a Multi-quadric basis function with parame-
ters. Adjustable parameters make this model more suit-
able for fingerprint distortion. Experimental results show
the proposed method is two times faster and more accurate
(especially, on fingerprints with heavy distortion) than the
method in [1].

1. Introduction

One of the main difficulties in matching two impressions
of the same finger is dealing with non-linear distortions.
Distortion arises from the elasticity of finger skin, the pres-
sure, and the movement of fingers during image capture.
It changes the mutual spatial locations of minutiae, which
leads to great difficulties in establishing a match among
multiple images acquired from a single finger. This paper
deals with compensating for elastic distortion to improve
the performance of minutiae matching.

There have been several attempts to account for the elas-
tic distortions in fingerprint images. Senior et al. [3] pro-
posed a canonical model which normalizes a fingerprint im-
age to a canonical form in which all the ridges are equally
spaced. This model can actually correct traction deforma-
tion very well, but torsion deformation cannot be adequately
corrected. Cappelli et al. [5] proposed a distortion model
which defines three distinct distortion regions according to
different pressures. Experiments showed that this model

provides an accurate description of the elastic distortion.
However, the parameters of this model should be given by
experiments, not automatically. Kovács-Vajna [7] used a
triangular matching algorithm to compare two sets of minu-
tiae and to account for elastic distortion. Ross et al. [2]
attempted to build an average deformation model from mul-
tiple impressions of the same finger using a thin-plate spline
(TPS) model. Since we cannot guarantee that any given pre-
captured impression contains all kinds of distortions, this
average deformation model does not have sufficient compe-
tence for matching. Bazen et al. [1] also used a TPS model
to align all possible matched pair of impressions. Owing
to iteratively aligning minutiae between input and template
impressions, a risk of forcing an alignment between impres-
sions originating from two different fingers arises, and leads
to a higher false accept rate.

Normally, minutiae matching has two stages: 1. Regis-
tration aligns fingerprints, which could be matched, as well
as possible; 2. Evaluation calculates matching scores using
a tolerance box between every possibly matched impres-
sion pairs. In this paper, minutia polygons are incorporated
in both the registration and evaluation stages. As minutia
shapes are included, the proposed method provides more
accurate matching results. We also improved the distortion
model as in [1] by using a Multi-quadric function instead of
TPS, since the Multi-quadric function has higher capability
for interpolating scatter minutiae. Experiments demonstrate
that using minutia polygons and a Multi-quadric function
leads to a better performance compared to [1].

The rest of the paper is organized as follows. Section
2 describes the definition of minutia polygons. Section 3
gives out a matching method using minutia polygons and
an improved distortion model. Experimental results are pre-
sented in Section 4. Finally, we conclude in Section 5.

2. Minutiae polygons

2.1. Polygons of bifurcation minutiae

Let p be a bifurcation minutia with three ridges incident
upon it, namely, where r is the ridge before bifurcation, r1



and r2 are the two ridges after bifurcation. For each of r, r1

and r2, consider a line segment, which has length λ and is
tangent to the corresponding ridge at p. Let these three line
segments be b1p, b2p and ap corresponding to r1, r2 and r,
respectively (see Fig. 1). Let θ be the angle made by ap,
measured in counterclockwise direction with regard to x-
axis. We call the group of the three line segments b2p, b1p
and ap as the bifurcation detail B(p, a, b1, b2) for minutia p.
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Figure 1. Minutia detail and defining ε-square
box with regard to a bifurcation minutia at p.

Now consider a square ABCD = S(p, θ, ε) having side
length ε, centered about the minutia p, and having one of its
sides perpendicular to ap, as shown in Fig. 1. As we go on
sliding the minutia p with its three line segments within the
ε-square, we get a bifurcation polygon M (see Fig. 2(a)).
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Figure 2. Minutia polygons.

The polygon M can have different shapes, depending
on the mutual orientations of b1p, b2p and ap. When p co-
incides with A, the region around p can be divided into
4 quadrants, which are named as SLL (lower left region),
SUL (upper left region), SUR (upper right region), and SLR

(lower right region), as shown in Fig.2(a). Each of b1 and
b2 can lie in any one of these 4 regions, thereby making
4 × 4 = 16 possibilities. Out of these 16 possibilities,
however, there will be 10 cases having distinct mutual po-
sitions of b1 and b2, considering the inter-changeability of
b1 and b2. That is, for example, the case of b1 ∈ SLR and
b2 ∈ SUR, and the case of b2 ∈ SLR and b1 ∈ RUR, which
are 2 different cases in 16 possibilities, are the same in the
later 10 cases. These 10 cases are enumerated in Fig.3.
Cases 2, 6 and 9 can have two subcases each, depending
on the relative x-axis (or, y-axis) coordinates of b1 and b2,
which will have differently shaped polygons of M. Hence

we get 7 + 6 = 13 different polygons (See Fig.2(a) and 3).
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Figure 3. Bifurcation polygons (case 2 – 10).

For a valid bifurcation minutia p, the angle 6 (b1, p, b2)
should be less than both 6 (b1, p, a) and 6 (b2, p, a), which
helps us to distinguish r from r1 and r2. Keeping this point
in consideration, out of the above 13 cases, cases 3, 4 and 7
are not possible for a valid bifurcation minutia. Hence we
have only 13−3 = 10 possible differently shaped polygons.

2.2. Polygon of termination minutiae

Let p also be a termination minutia. As there is only
one ridge r incident upon it, termination detail T (p, a) has
just one line segment ap corresponding to r, which is de-
fined similar to bifurcation detail. So, only the line segment
ap contributes to termination polygon. Analogously sliding
the minutia p with line segment ap within square S(p, θ, ε),
we get a termination polygon M, i.e. a rectangle (see Fig.
2(b)). Certainly, the shape of termination polygon is unique.

3. Minutiae matching

To identify a input fingerprint with distortion among
templates stored in a database, our algorithm contains three
stages: first of all, pick out those possibly matched tem-
plates according to local similarity measures (Section 3.1).
Next, estimate a global non-rigid transformation between
each possibly matched pair (Section 3.2). Finally, calculate
and evaluate the matching scores (Section 3.3).

3.1 Alignment of minutiae set

To find possibly matched templates, our matching al-
gorithm relies on correct correspondences of minutiae pat-
terns. This step greatly affects the efficacy and efficiency



of distortion estimation. The basic idea of our approach is
based on the observation that, even if an elastic distortion is
applied to a fingerprint image, every minutia always keeps
the same neighbor structure. We use this idea, employing
minutia polygons and invariants of each minutia with re-
spect to its neighbors. Some similar methods have been
proposed in the literature. Jiang et al. [6] proposed a match-
ing approach using local structure represented by a minutia
and its two nearest neighbors. In [1], this idea was slightly
modified to improve reliability. However, their time com-
plexity is O(n2) at least. Parziale et al. [4] used minutiae
triangulation to describe the local structure and decreased
the time complexity to O(n log n). Since these triangles in-
clude less information about minutiae, more factors must be
considered to achieve satisfied matching result.

As a simple and explicit definition of minutia polygon,
and uniqueness and reliability of Delaunay triangulation,
we incorporate them in alignment step. Let MI

pi,θi
(i =

1 . . . n) denote the polygon case with position and orien-
tation of the ith minutia in an input fingerprint. In a tem-
plate fingerprint, we have similar polygon caseMT

pj ,θj
(j =

1 . . .m). Once the minutiae have been extracted, their De-
launay triangulation can be obtained. Here, each Delaunay
triangle and its edges are reliable descriptions of local struc-
ture. Therefore, we compute invariants related to the posi-
tions and angles of the minutiae for each triangle edge:

(L, φ1, φ2, M1, M2)

where L is the length of triangle edge; φ1 and φ2 are the
angles between the edge and line segments ap at two end
points respectively; M1, M2 are minutia polygon cases of
two end points.

To compare two edges in input and template fingerprints,
(L, φ1, φ2, M1, M2) values are used, all of which are
invariant of the translation and rotation. We assume two
edges match if they satisfy the following set of conditions:

|LI − LT |
max(LI , LT )

< t1

|φI
1 − φt

1| < t2; |φI
2 − φt

2| < t2

MI
1 = MT

1 ; MI
2 = MT

2

where ti is a threshold, and its value is dependent on images.
If one edge from an input image matches two or more

edges in a template image, we need to consider the triangle
to which this edge belongs and compare the triangle pair.
With the same strategy, our method retrieves five template
fingerprints, which have the most matched triangle edges,
from database. Each of these matched edges represents a
hypothetical correspondence between minutiae in the input
and template fingerprints. These correspondences are the
control-points we expect for our estimation of a elastic dis-
tortion model.

3.2. Estimation of elastic distortion

The next step is to estimate the global non-rigid trans-
formation that can register two fingerprints for final match-
ing. Referring to the obtained local correspondences from
alignment step, the global non-rigid transformation is esti-
mated. This transformation is expected to explicitly map
the input fingerprint to a template one with aim of obtaining
the largest amount of matched minutiae pairs.

With control-points, the estimation of elastic distortion
can be treated as a scattered data interpolation problem.
One way of approaching interpolation is to use Radial Basis
Function (RBF). RBF offers several advantages: first of all,
the geometry of the control-points is by no means restricted;
secondly, the RBF provides easily controllable behavior that
can be tailored to meet specific requirements. An RBF may
be purely deformable, or it may contain some form of lin-
ear component, allowing both local and global deforma-
tions. Bazen et al. [1] first proposed a Thin-plate spline
model for elastic distortion and reported a good result. Es-
sentially, Thin-plate spline (TPS) is one of the RBF basis
functions. The choice of a basis function is determined
by the interpolation conditions and the desired properties
of the interpolation. Since fingerprint distortion is elastic
rather than viscous/rigid, the influence of control-points on
the distorted fingerprint increases with distance at a certain
range from the center. On the other hand, fingerprint distor-
tion is not globally uniform. For instance, if one side of a
traction deformation center is compressed, the opposite side
must be dilated. Both the TPS (r2

i log ri) and Multi-quadric
((r2

i + δ)+µ) basis functions monotonically increase with
distance from the center, where ri is the distance between
control-points. However, the Multi-quadric basis function
(MQ) has another advantage: parameters (locality param-
eter δ and exponent µ). MQ, therefore, can be tailored to
many specific needs, and their range of influence can be
controlled by adjusting the parameters. As the property of
fingerprint distortion, we would like to control the area of
influence of basis function. Locality parameters, which can
control the range of influence of a basis function, can per-
form this task. They give less weight to distant control-
points and more weight to neighboring ones. A locality pa-
rameter uses unique values δi for each control-point, calcu-
lated from the distance to the nearest neighboring control-
point. This essentially allows the distortion to be softer
where control-points are widely spaced and stronger where
they are closer together, which may work more effectively
on fingerprint minutiae. Using this adaptive locality pa-
rameter, MQ is modified as: g(ri) = (r2

i + δi)µ. where
δi = mini 6=j(rij) (j = 1, . . . , n).

3.3. Final minutiae matching

Most conventional matching methods use a small circle
as a tolerance box. If two similar minutiae fall into the



same tolerance box, they are defined as matched. When
the circle is smaller, the accuracy of identification is higher.
In our work, we replace the small circle by minutia poly-
gons. Since the minutia polygon contains more informa-
tion (minutia shape), it can be bigger than a traditional tol-
erance box without losing accuracy. Therefore, a bigger
minutia polygon has a higher ability to tolerate distortion.
Our minutia matching condition is: if two minutia poly-
gons intersect with the same case and a similar orientation,
they are defined as matched. Finally, the matching score S
is calculated by

S =
n2

match

n1n2

where nmatch is the number of matched minutiae, n1 and
n2 are the number of minutiae in the input and template
fingerprints, respectively.

4. Experimental results

We evaluated our method by testing it on Database
FVC2000 which consists of 880 fingerprints, 8 prints each
of 110 distinct fingers. In addition, we also scanned 80 fin-
gerprints with heavy distortion from a FUJITSU Fingerprint
Sensor (model: FS-210u), 4 prints each of 20 distinct fin-
gers.

Due to the lack of a benchmark of minutiae matching
performance, we compared our matching method with the
TPS-based algorithm in [1] on two aspects: computing time
and accuracy of identification. In our method, ε = 3 and
λ = 5 were used to generate minutia polygons; µ = 0.2
was employed for the MQ basis function. For TPS-based al-
gorithm, a tolerance box with radius r = 5 was used. Since
TPS-based algorithm uses three local structures for each
minutia in the alignment step, and iteratively registers minu-
tiae between two fingerprints, they are time consuming and
lead to a higher risk of matching two similar fingerprints
coming from distinct fingers. On the contrary, our method
uses minutiae polygons and triangle edges for alignment, so
there are fewer comparisons. Moreover, parameters tailor
the MQ basis function more suitable for elastic distortion,
and minutia polygon works as a tolerance box with a higher
ability to tolerate distortion. With these two advantages,
our matching does not need iteration for registering minu-
tiae. Therefore, our method, in practice, is around two times
faster than TPS-based algorithm on average. Matching per-
formance (ROC) curves plotting the false reject rate (FRR)
against the false accept rate (FAR) at various thresholds are
presented in Fig. 4. For the data in FVC2000, two methods
have almost same accuracy, but for the scanned fingerprints
with heavy distortion, our method is more accurate. We
believe that this is due to minutia polygon has a higher abil-
ity to tolerate distortion and the MQ basis function can be
tailored by parameters for this particular problem. To sum

up, our matching method using minutia polygons not only
provides computational efficiency, but also leads to better
performance in matching.
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Figure 4. ROC curves on FVC2000 DB and
scanned fingerprints obtained with the pro-
posed method and the algorithm in [1].

5. Conclusions

We have proposed a matching method using minutia
polygons. A minutia polygon describes not only the minutia
type and orientation but also the minutia shape. This allows
minutia polygon to be bigger than the conventional toler-
ance box without losing matching accuracy. In other words,
minutia polygon has a higher ability to tolerate distortion.
Our method also improves the distortion model in [1] using
MQ basis function with parameters. Adjustable parameters
make the improved model more suitable for fingerprint elas-
tic distortion than the TPS-based model. Our future efforts
will target a more in-depth study of the properties of minutia
polygon that can be used in distorted fingerprint matching.
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