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Abstract One of the potential vulnerabilities in a biometric system is the leakage

of biometric template information, which may lead to serious security and privacy

threats. Most of the available template protection techniques fail to meet all the de-

sired requirements of a practical biometric system like revocability, security, privacy,

and high matching accuracy. In particular, protecting the fingerprint templates has

been a difficult problem due to large intra-user variations (e.g., rotation, translation,

nonlinear deformation, and partial prints). There are two fundamental challenges in

any fingerprint template protection scheme. First, we need to select an appropriate

representation scheme that captures most of the discriminatory information, but is

sufficiently invariant to changes in finger placement and can be secured using avail-

able template protection algorithms. Secondly, we need to automatically align or

register the fingerprints obtained during enrollment and matching without using any

information that could reveal the features, which uniquely characterize a fingerprint.

This chapter analyzes how these two challenges are being addressed in practice and

how the design choices affect the trade-off between the security and matching ac-

curacy. Though much progress has been made over the last decade, we believe that

fingerprint template protection algorithms are still not sufficiently robust to be in-

corporated into practical fingerprint recognition systems.
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1 Introduction

The primary purpose of using a biometric system is to provide non-repudiable au-

thentication. Authentication implies that (i) only legitimate or authorized users are

able to access the physical or logical resources protected by the biometric sys-

tem and (ii) impostors are prevented from accessing the protected resources. Non-

repudiation ensures that an individual who accesses a certain resource cannot later

deny using it. From the perspective of the users, there are two main requirements

that a biometric system must meet. Firstly, the legitimate users must have timely and

reliable access to the protected resource/service. Secondly, the biometric system and

the personal data stored in it must be used only for the intended functionality, which

is to control access to a specific resource and not for other unintended purposes.

However, attacks by adversaries may prevent the biometric system from satisfying

the above functionalities and requirements.

While a biometric system can be compromised in a number of ways, one of

the potentially damaging attacks is the leakage of biometric template information.

The leakage of this template information to unauthorized individuals constitutes a

serious security and privacy threat due to the following two reasons:

1. Intrusion attack: If an attacker can hack into a biometric database, he can easily

obtain the stored biometric information of a user. This information can be used to

gain unauthorized access to the system by either reverse engineering the template

to create a physical spoof or replaying the stolen template. For example, it has

been shown that fingerprint images can be reconstructed from minutiae templates

(see Figure 1), which may in turn be used to construct a spoof [44, 7, 18].

2. Function creep: An adversary can exploit the biometric template information

for unintended purposes (e.g., covertly track a user across different applications

by cross-matching the templates from the associated databases), compromising

user privacy.

Fig. 1 Reconstruction of a fingerprint image from the minutiae template [18].
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Due to these reasons, biometric templates (or the raw biometric images) should

not be stored in plaintext form and fool-proof techniques are required to securely

store the templates such that both the security of the application and the users’ pri-

vacy are not compromised by adversary attacks. The fundamental challenge in de-

signing a biometric template protection scheme is to overcome the large intra-user

variability among multiple acquisitions of the same biometric trait (see Figure 2).

Fig. 2 Illustration of fingerprint intra-class variability. Two different impressions of the same finger

with differences in the number and location of minutiae are shown. Among the 33 and 26 minutiae

in the left and right images, respectively, only 16 minutiae match and some of these matches are

marked.

1.1 Biometric Template Security Requirements

A biometric template protection scheme should have the following three properties.

1. Cryptographic security: Given a secure template, it must be computationally

difficult to find a biometric feature set (commonly known as a pre-image) that

will match with the secure template. This pre-image resistant property defends

against the possibility of an attacker intruding into the biometric system under

consideration by replaying the pre-image.

The concept of pre-image resistance is also related to one-way or non-

invertible mathematical functions. A function f is referred to as a one-way func-

tion if it is “easy to compute” (in polynomial time) but “hard to invert” (given

f(x), the probability of finding x in polynomial-time is small). A non-invertible

template protection scheme implies that it will be computationally hard to ob-

tain the original biometric features from the secure template. This prevents an

adversary from creating a physical spoof of the biometric trait and intruding an-
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other biometric system that makes use of the same biometric trait. Thus, a secure

template must be pre-image resistant and non-invertible.

2. Performance: The biometric template protection scheme should not degrade the

recognition performance (False Match Rate (FMR) and False Non-Match Rate

(FNMR)) of the biometric system.

3. Revocability: It is desirable to have a template protection scheme that can gen-

erate multiple secure templates from the same biometric data. These multiple

secure templates must be such that even if an adversary obtains two or more

of them, it must be computationally hard to: (i) identify that they are derived

from the same biometric data, and (ii) obtain the original biometric features of

the user. This revocability or cancelability property ensures that cross-matching

across biometric databases is not possible, thereby preserving the user’s privacy.

Revocability also makes it straightforward to discard a compromised template

and reissue a new one based on the same biometric data.

Ideally, the template protection scheme should satisfy all the three requirements

simultaneously. However, it is quite a challenge to design such a technique. The

simplest way to secure biometric templates is to encrypt them using standard cryp-

tographic techniques like RSA and AES. This is the methodology deployed in most

of the existing commercial biometric systems. However, it must be emphasized that

multiple acquisitions of the same biometric trait do not result in the same feature set.

Typically, standard encryption functions are not smooth functions and a small dif-

ference in the values of the feature sets extracted from the raw biometric data would

lead to very large difference in the resulting encrypted features. Consequently, one

cannot perform biometric matching directly in the encrypted domain. Rather, the

template must be decrypted in order to be matched with the query features. As a re-

sult, the original biometric features are exposed during every authentication attempt,

irrespective of whether the authentication is eventually successful. Therefore, the

encryption solution is secure and revocable only under ideal conditions (key is kept

secret and matching is done at a trusted location). If practical issues such as key

management or susceptibility to template theft during a matching attempt are taken

into account, the standard encryption technique is not good enough for securing

biometric templates.

1.2 Biometric Template Protection Approaches

To overcome the limitations of the standard encryption approach, a number of tech-

niques have been proposed to secure biometric templates (see [21] for a detailed

review). These techniques can be categorized into two main classes (see Figure 3):

• Biometric cryptosystems: In a biometric cryptosystem, secure sketch (yc) is de-

rived from the enrolled biometric template (xE) and stored in the system database

instead of the original template. In the absence of the genuine user’s biometric

data, it must be computationally hard to reconstruct the template from the sketch.
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(a)

(b)

Fig. 3 Biometric template protection based on (a) biometric cryptosystem and (b) template trans-

formation.
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On the other hand, given an authentication query (xA) that is sufficiently close to

the enrolled template (xE ), it should be easy to decode the sketch and recover

the template. Typically, the sketch is obtained by binding the template with a

codeword from an error correcting code, where the codeword itself is defined

by a key (κc). Therefore, the sketch (yc) can be written as fc(x
E ,κc), where fc

is the sketch generation function. The error correction mechanism facilitates the

recovery of the original template and hence, the associated key. Thus, a bio-

metric cryptosystem not only secures the biometric template, but also facilitates

secure key management, which is one of the challenging issues in cryptographic

systems. Examples of biometric cryptosystems include fuzzy vault [26], fuzzy

commitment [27], PinSketch [14], and secret-sharing approaches [20].

• Template transformation: Template transformation techniques modify the tem-

plate (xE ) with a user specific key (κt ) such that it is difficult to recover the

original template from the transformed template (yt). During authentication, the

same transformation is applied to the biometric query (xA) and the matching is

performed in the transformed domain to avoid exposure of the original biometric

template. Since the key κt needs to be stored in the system along with yt , the tem-

plate security is guaranteed only if the transformation function is non-invertible

even when κt is known to the attacker. Some well-known examples of template

transformation include Bio-Hashing [49] and cancelable biometrics [42].

Different combinations of the above two basic approaches, called hybrid bio-

metric cryptosystems, have also been proposed [45, 37]. The template protection

schemes described above have their own advantages and limitations in terms of

template security, computational cost, storage requirements, applicability to differ-

ent kinds of biometric representations and ability to handle intra-class variations in

biometric data [53].

In this chapter, we will focus on the practical issues involved in applying the

available template protection algorithms to secure fingerprint templates. Features

representing fingerprint images may exhibit intra-user variations due to various fac-

tors like rotation, translation, nonlinear deformation, and partial overlap between

multiple impressions of the same finger. As a result, protecting fingerprint templates

is a challenging task. Fingerprint recognition is typically based on the location and

orientation of minutia points, which represent ridge endings or ridge bifurcations

[31]. Minutia sets are unordered and there may be variations (see Figure 2) in the

number and location of minutia points due to intra-user variations. The similarity

between two fingerprints is measured based on the number of minutia correspon-

dences. Furthermore, the template and query minutia sets need to be aligned before

the minutia correspondences can be found. Hence, there are two key challenges in

securely matching fingerprints: (i) How to align query minutia set with template

without leaking information about the original minutiae template? and (ii) Even af-

ter aligning the query and the template, the minutiae in the two sets will not match

exactly in location and orientation due to nonlinear deformation (hence, a simple set

difference metric may not be good enough). Finding a good representation scheme

for fingerprints that can overcome the above problem is a challenge.
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The rest of the chapter is organized as follows. Section 2 gives a brief overview of

the major template protection algorithms that have been applied for securing finger-

print templates. Next, section 3 gives some examples of how the fingerprint features

need to be adapted so that biometric cryptosystems can be applied to secure them.

Section 4 describes the various approaches that have been proposed for aligning the

query fingerprint with the secure template. The matching performance and security

of the state-of-the-art fingerprint template protection schemes are discussed in sec-

tion 5. Finally, our conclusions and pointers for future research are highlighted in

section 6.

2 Fingerprint Template Protection Schemes

Depending on the features used for recognition, existing solutions for fingerprint

template security can be categorized as minutiae-based or pattern-based approaches.

Minutiae-based template protection schemes can be further classified into three

types: (i) directly secure the unordered set representation of minutiae, (ii) secure

a new set of unordered features derived from the minutiae (e.g., distances between

pairs of minutiae), and (iii) secure a fixed-length feature vector derived from the

minutiae. On the other hand, pattern-based schemes directly derive a fixed-length

feature vector based on the global texture of the fingerprint pattern. When the repre-

sentation to be secured is an unordered set, a non-invertible template transformation

approach or a biometric cryptosystem called fuzzy vault can be used. When the rep-

resentation is a fixed-length binary vector, a biometric cryptosystem called fuzzy

commitment can be used to secure it. We will now discuss these three schemes in

detail.

2.1 Non-Invertible Fingerprint Template Transformation

Ratha et al. [42] proposed and analyzed three non-invertible transforms for gener-

ating cancelable fingerprint templates. The three transformation functions are carte-

sian, polar and functional. These functions were used to transform fingerprint minu-

tiae data such that a minutiae matcher can still be applied to the transformed minu-

tiae. In cartesian transformation, the minutiae space (fingerprint image) is tessellated

into a rectangular grid and each cell (possibly containing some minutiae) is shifted

to a new position in the grid corresponding to the translations set by the user-specific

key. The polar transformation is similar to cartesian transformation with the differ-

ence that the image is now tessellated into a number of shells and each shell is di-

vided into sectors. Since the size of sectors can be different (sectors near the center

are smaller than the ones far from the center), restrictions are placed on the trans-

lation vector generated from the key so that the radial distance of the transformed

sector is not very different from the radial distance of the original position. Exam-
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ples of minutiae before and after polar and cartesian transformations are shown in

Figure 4.

For the functional transformation, Ratha et al. [42] used a mixture of 2D Gaus-

sians and electric potential field in a 2D random charge distribution as a means to

translate the minutiae points. The magnitude of these functions at the point corre-

sponding to a minutia is used as a measure of the magnitude of the translation and

the gradient of these functions is used to estimate the direction of translation of the

minutiae. In all the three transforms, two or more minutiae can possibly map to the

same point in the transformed domain. For example, in the cartesian transformation,

two or more cells can be mapped onto a single cell so that even if an adversary knows

the key and hence the transformation between cells, he cannot determine the original

cell to which a minutia belongs because each minutiae can independently belong to

one of the possible cells. This provides a limited amount of non-invertibility to the

transform. Also since the transformations used are locally smooth, the error rates are

not affected significantly and the discriminability of minutiae is preserved to a large

extent. Note that the key to achieving good recognition performance is the availabil-

ity of an alignment algorithm that can accurately pre-align (register) the fingerprint

images or minutiae features prior to the transformation (e.g., based on core and delta

points in the fingerprint).

2.2 Fingerprint Fuzzy Vault

Fuzzy vault is a cryptographic construct that is designed to work with biometric fea-

tures represented as an unordered set (e.g., minutiae in fingerprints). The security of

the fuzzy vault scheme is based on the computational difficulty in solving the poly-

nomial reconstruction problem, which is a special case of the Reed-Solomon list

decoding problem [2]. The fuzzy vault scheme works as follows (see Figure 5). Let

sE = {x1,x2, ...,xr} denote a biometric template consisting of a set of r points from

a finite field F . In order to secure sE , a uniformly random cryptographic key κc of

length L bits is generated and this key is transformed into a polynomial P of degree

k (k < r) over F . All the elements in sE are then evaluated on this polynomial to

obtain the set {P(xi)}
r
i=1. The set of points {(xi,P(xi))}

r
i=1 is then secured by hiding

them among a large set of q randomly generated chaff points {(a j,b j)}
q
j=1 that do

not lie on the polynomial P (i.e., b j 6= P(a j) and a j /∈ sE , ∀ j = 1,2, · · · ,q). The set

of genuine and chaff points along with their polynomial evaluations constitute the

sketch or vault yc. During authentication, if the query biometric set sA is sufficiently

close to sE , the polynomial P can be successfully reconstructed by identifying the

genuine points in yc that are associated with sE . Note that for successful reconstruc-

tion of P of degree k, a minimum of (k + 1) genuine points need to be identified

from yc.

The three main parameters in the fuzzy vault scheme are r, q and k. The param-

eter r denotes the number of points in the vault that lie on the polynomial P and

it depends on the number of features that can be extracted from the template (e.g.,
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(a) (b)

(c) (d)

Fig. 4 Illustration of cartesian and polar transformation functions used in [42] for generating can-

celable biometrics. (a) Original minutiae on radial grid, (b) transformed minutiae after polar trans-

formation, (c) original minutiae on rectangular grid and (d) transformed minutiae after cartesian

transformation.
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Fig. 5 Securing a fingerprint minutiae template using fuzzy vault.

number of minutia points in the user’s fingerprint). The parameter q represents the

number of chaff points that are added and this parameter influences the security of

the vault. If no chaff points are added, the vault reveals the information about the

template and the secret. As more chaff points are added, the security increases. Typ-

ically, the number of chaff points is an order of magnitude larger than the number of

genuine points (q ≫ r). Parameter k denotes the degree of the encoding polynomial

and it controls the tolerance of the system to errors in the biometric data.

Since the introduction of the fuzzy vault scheme by Juels and Sudan, several re-

searchers have attempted to implement it in practice for securing fingerprint minu-

tiae templates. Clancy et al. [12] proposed a fuzzy vault scheme based on the loca-

tion of minutia points (row and column indices in the image) in a fingerprint. They

assumed that the template and query minutiae sets are pre-aligned, which is not a

realistic assumption in practical fingerprint authentication systems. Further, multi-

ple (four) fingerprint impressions of a user were used during enrollment for iden-

tifying the reliable minutia points. The error correction step was simulated without

being actually implemented. The False Non-Match Rate of their system was ap-

proximately 20-30% and they claimed that retrieving the secret was 269 times more

difficult for an attacker than for a genuine user.

The fingerprint-based fuzzy vault proposed by Yang et al. [56] also used only the

location information about the minutia points. Four impressions were used during

enrollment to identify a reference minutia, and the relative position of the remaining

minutia points with respect to the reference minutia was represented in the polar

coordinate system. This scheme was evaluated on a small database of 10 fingers

and a FNMR of 17% was reported. Chung et al. [11] proposed a geometric hashing

technique to perform alignment in a minutiae-based fingerprint fuzzy vault. Uludag

et al. [52] introduced a modification to the fuzzy vault scheme, which eliminated
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the need for error correction coding. Uludag and Jain [51] also proposed the use of

high curvature points derived from the fingerprint orientation field to automatically

align the template and query minutiae sets (see Section 4 for details).

Nandakumar et al. [36] proposed a fuzzy vault framework that secures both minu-

tiae locations and directions. During vault encoding a (16× k) bit key (κc) is ap-

pended with a 16-bit Cyclic Redundancy Check (CRC) code and divided into (k+1)

blocks of 16 bits each. These (k + 1) values serve as the coefficients of a polyno-

mial P of degree k in the Galois field GF(216). The template minutiae are sorted

according to their quality and only well-separated minutiae [36] are selected for

constructing the vault. If the desired number of minutiae (say r) cannot be obtained,

it is counted as a Failure to Capture error (FTCR). The location and orientation of

each minutia is encoded as an element in GF(216). Points with high ridge curva-

ture are extracted from the fingerprint and stored along with the vault to be used for

alignment during authentication.

During authentication, the high curvature points are used to align the template

and query fingerprints. Then, r well separated and good quality minutiae are selected

from the query and are coarsely matched with the points in the vault in order to

filter out most of the chaff points. At this stage, a minutiae matcher [22] is applied

to determine the corresponding pairs of minutiae in the filtered set of chaff points

and the query minutiae set. To find the coefficients of a polynomial of degree k,

(k +1) unique projections are necessary. If the number of correspondences found is

less than (k + 1), it results in authentication failure. Otherwise, all possible subsets

of size (k + 1) of the obtained correspondences are selected and for each subset,

a polynomial P∗ is constructed using Lagrange interpolation. The coefficients of

the polynomial P∗ are 16-bit values which are concatenated to obtain a 16(k + 1)-
bit string κ∗ and CRC error detection is applied to κ∗. If an error is detected, it

indicates that an incorrect key has been decoded and the same procedure is repeated

for the next candidate subset. If no error is detected, it indicates that κ∗ = κc with

very high probability.

2.3 Fingerprint Fuzzy Commitment

Fuzzy commitment [27] is a biometric cryptosystem that can be used to secure bio-

metric traits represented in the form of binary vectors (see Figure 7). Suppose that

the enrolled biometric template bE is an N-bit binary string. In fuzzy commitment, a

uniformly random key κc of length L (L ≤ N) bits is generated and used to uniquely

index a N-bit codeword c of an appropriate error correcting code. The sketch is

then extracted from the template as yc = c⊕bE , where ⊕ indicates the modulo-2

addition. The sketch yc is stored in the database along with h(κc), where h(.) is a

cryptographic hash function. During authentication, the codeword is obtained from

the query biometric bA and the sketch yc as follows: c∗ = yc ⊕bA = c⊕ (bE ⊕bA).
This codeword c∗, which is generally a corrupted version of the original codeword c,

can be decoded to get the key κ∗. The authentication is deemed successful if h(κ∗)
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 6 An example of successful operation of the fingerprint fuzzy vault proposed in [36]. (a) En-

rolled fingerprint image with minutiae template, (b) selected template minutiae and high curvature

points extracted from the enrolled image, (c) vault in which the selected template minutiae are hid-

den among chaff points (for clarity, minutiae directions are not shown), (d) query fingerprint image

with minutiae, (e) selected query minutiae and high curvature points extracted from the query im-

age, (f) ICP alignment of template and query high curvature points and coarse filtering of chaff

points, and (g) unlocking set obtained by applying a minutiae matcher which eliminates almost all

the chaff points. The two points shown in filled squares in (g) are the only chaff points that remain

in the unlocking set.

is the same as h(κc). If the Hamming distance between bE and bA is not greater

than the error correcting capacity of the code, κ∗ would be the same as κ and the

matching will be successful.
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Fig. 7 Securing a fingerprint template using fuzzy commitment.

3 Adapting Fingerprint Representations for Cryptosystems

While minutiae-based schemes are widely used for fingerprint matching, the fol-

lowing characteristics of minutiae-based representation make it difficult to secure

the minutiae templates directly.

1. Unordered Set Representation: Minutiae sets are unordered and the correspon-

dence between individual minutiae in the enrollment and query minutiae sets are

not known in advance. Furthermore, the number of minutiae in the two sets may

be different (see Figure 2).

2. Alignment Issues: A template protection scheme for minutiae templates gener-

ally precludes the use of sophisticated minutiae matchers to align the minutiae

sets. The alignment issue is handled either by using external information such

as reference points or by using rotation- and translation-invariant local minutiae

structures.

3. Nonlinear distortion: Even when two minutiae sets are aligned with respect to

linear transformations like rotation and translation, the locations and directions

of the corresponding minutiae do not match exactly due to nonlinear distortion.

Though quantization of minutiae attributes can reduce the effect of distortion to

some extent, it cannot be eliminated completely.

While some template protection schemes have been designed specifically to work

with unordered sets like minutiae (e.g., fuzzy vault [26] and non-invertible trans-

formation [42]), these schemes tend to significantly degrade the matching accuracy

due to alignment issues and nonlinear distortion. Furthermore, other template pro-

tection schemes like fuzzy commitment, which have been successfully used with

other biometric modalities like iris [19], cannot be directly used for securing fin-

gerprint minutiae. On the other hand, feature representations that characterize the

global texture pattern of the fingerprint image are typically fixed-length real-valued

vectors, which are again difficult to secure. To overcome these limitations, several

techniques have been proposed to adapt the given fingerprint representation into a
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form that can be more easily secured using biometric cryptosystems like fuzzy vault

and fuzzy commitment (see Table 1).

Technique Features Transformation Final represen-

tation

Spectral minutiae [55] Minutiae Fourier transform of 2D-delta

functions at minutiae locations

Vector

BioPhasor [49] FingerCode Nonlinear Vector

Biometric encryption

[47]

Fingerprint im-

age

Apply a secure filter Vector

Minutiae indicator [15] Minutiae Minutiae locations are marked

as ’1’

vector

Histogram of minutiae

triplets [16]

Minutiae Hashing the histogram of minu-

tiae triplet features

Vector

Cuboid based minutiae

Aggregates [48]

Minutiae Minutiae aggregate selection

from random local regions

Vector

Symmetric hash [50] Minutiae as

complex num-

bers

Set of order invariant functions

of minutiae

Minutiae

Cancelable fingerprints

[42]

Minutiae Image folding Minuitae

Alignment free cance-

lable fingerprint[29]

Minutiae,

orientation field

Transform minutiae according

to surrounding orientation field

Minutiae

Minutiae structures [25] Minutiae Local minutiae structures Minutiae

Table 1 Different techniques to transform fingerprint features for template protection.

We now discuss four different fingerprint feature adaptation approaches that have

been proposed in the literature, namely, (i) local aggregates, (ii) spectral minutiae,

(iii) local minutia structure, and (iv) quantization and reliable component selec-

tion. The goal of local aggregates and spectral minutiae approaches is to convert

the minutia set into a fixed-length binary feature vector that can be secured using

fuzzy commitment. The local minutia structure approach is primarily designed to

overcome the alignment problem by deriving new features from the minutiae that

are invariant under rotation and translation. The new features derived from the minu-

tiae can be secured using fuzzy vault, fuzzy commitment, or other hybrid biomet-

ric cryptosystems. Quantization and reliable component selection converts a fixed-

length real-valued feature vector into a compact binary vector, thereby enabling the

use of a fuzzy commitment.

3.1 Local Aggregates Approach

In this approach, the fingerprint region is divided into a number of randomized local

regions (could be over-lapping) and features are computed based on the minutiae

falling within each local region. For example, Chang and Roy [8] consider a finite
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number of lines in the fingerprint area and use the difference in the number of minu-

tiae on the two sides of the line as the feature vector. This feature vector is further

converted into a binary representation using the techniques described in Section 3.4.

Note that the fingerprints need to be aligned before feature extraction in order for

the local aggregates approach to work.

Sutcu et al. [48] used a set of axis-aligned variable-sized cuboids as the local

region. Each cuboid is parameterized by its location and range along each of the

x and y coordinates and the minutia orientation angle θ (see Figure 8 for a typical

cuboid configuration). A vector consisting of the number of minutiae falling into

each of the cuboids is obtained and binarized to derive the final representation. This

approach was further improved in [33] by including additional statistics related to

minutiae falling in each cuboid. The statistics computed are

1. Aggregate wall distance (δ ): For a cuboid bounded by (xmin, xmax, ymin, ymax, θmin,
θmax), δ is computed as:

δ =
t

∑
i=1

min(δ i
x,δ

i
y,δ

i
θ ,τδ ) (1)

where t is the number of minutiae in the given cuboid, τδ is a threshold used

for wall distance, and δ i
x, δ i

y, and δ i
θ are given by min(|xi − xmin|, |xi − xmax|),

min(|yi − ymin|, |yi − ymax|), and min(|θi −θmin|, |θi −θmax|), respectively.

2. Minutiae Average: Average coordinate of all the minutiae present in each cuboid

in a given measurement.

3. Minutiae Deviation: Standard deviation of minutiae coordinates present in each

cuboid in a given measurement.

Additional information related to ridge orientation as well as ridge frequency

present inside a local rectangular region can also be added to the local aggregate

representation [34]. To obtain the orientation-based features, the fingerprint is fil-

tered using four different Gabor filters oriented along 0, 45, 90, and 135 degrees.

Given a local aggregate region, four different values are obtained corresponding to

the standard deviations of the values associated with the four Gabor responses. The

ridge frequency based features are computed as the average ridge frequency inside

the aggregate region.

3.2 Spectral Minutiae Representation

The spectral minutiae representation is obtained by considering the minutia set as a

collection of 2-dimensional dirac-delta functions and obtaining its Fourier spectrum

after low pass filtering [55]. Only the magnitude spectrum is considered and it is

sampled on a log polar grid to obtain a fixed-length vector. Theoretically, the mag-

nitude spectrum is invariant to rotation and translation due to the shift, scale, and
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Fig. 8 A cuboid bounded by (xmin, xmax, ymin, ymax, θmin, θmax) overlaid over the minutia points.

The local aggregate features are computed based on the statistics of minutiae that fall within the

cuboid [48, 33].

rotation properties of the Fourier transform. Hence, it is possible to perform match-

ing between two spectral minutiae vectors without aligning them first. However, in

practice, alignment based on singular points is required to achieve good matching

performance [55].

Another variation of the spectral minutiae approach is the Binarized Phase

Spectrum (BiPS) representation proposed in [35]. To incorporate translation- and

rotation-invariance, only the magnitude spectrum is considered in [55] and the phase

spectrum is ignored. In [35], alignment is achieved through the use of external infor-

mation such as reference points. Therefore, only the phase spectrum of the minutiae

is considered. The phase spectrum can be sampled along a log-polar grid to obtain

the fixed-length minutiae representation. Furthermore, these phase samples can be

easily quantized into two bits depending on which quadrant they fall into. The result-

ing binarized phase spectrum can be directly secured using the fuzzy commitment

approach.

Consider a minutiae set M = {mi}
n
i=1, where mi is the ith minutiae with location

(xi,yi) and direction θi, and n is the number of minutiae. We can associate a function

g(x,y) to each minutia mi as follows.

g(x,y;mi) = δ (x− xi,y− yi)exp( jθi). (2)

The 2-D function f (x,y) that defines the minutiae set M and its continuous Fourier

transform can be expressed as
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f (x,y) =
n

∑
i=1

δ (x− xi,y− yi)exp( jθi). (3)

F(u,v) =
n

∑
i=1

exp( j(2π(uxi + vyi)+θi)). (4)

The phase of the Fourier spectrum of f (x,y) is denoted as Ψ(F(u,v)) and is given

by the following equation.

Ψ(F(u,v)) = arctan
∑

n
i=1 sin(2π(uxi + vyi)+θi)

∑
n
i=1 cos(2π(uxi + vyi)+θi)

. (5)

Ψ(F(u,v)) can take values in [0,2π]. To binarize the phase spectrum, Ψ(F(u,v))
is quantized into four distinct values based on the quadrant in which it falls and is

represented using two bits. Thus, the phase spectrum can be represented as a fixed

length binary string x = [b1,b2,b3, · · · ,b2N ] as follows.

b2 j−1 = sgn(Re(F(u j,v j)))

b2 j = sgn(Im(F(u j,v j))),where (6)

sgn(y) = 1, if y≥ 0, zero, otherwise, Re(.) and Im(.) are the real and imaginary parts

of a complex number, and (u j,v j) denotes the jth frequency sample, j = 1, · · · ,N.

On a log-polar grid, u = ν cos(φ) and v = ν sin(φ), where ν is the radial distance

and φ is the radial angle. If we choose Nν logarithmically spaced samples between

νmin and νmax and Nφ linearly-spaced samples between 0 and π , the total number of

samples is N = Nν Nφ and the length of the binary string obtained from a minutiae

set is 2N bits. An illustration of the BiPS representation of minutiae is shown in

Figure 9.

3.3 Local Minutiae Structures

Local minutiae structures consist of features that characterize the relative informa-

tion between two or more minutiae (e.g., distance between two minutiae) [6]. The

main advantage of this approach is that since the features are relative, they are invari-

ant to global rotation and translation of the fingerprint. Hence, no a priori alignment

is needed before matching. An additional benefit is that such features are robust to

nonlinear distortion. However, if the matching is based only on the local minutiae

information and the global spatial relationships between minutiae (which are highly

distinctive) is ignored, it may lead to degradation in the matching accuracy.

The simplest local minutiae structure is based on minutia pairs, where the dis-

tance between the pair and the orientation of each minutia with respect to the line

connecting them can be used as the invariant attributes. Boult et al. [4] proposed
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Fig. 9 Illustration of binarized phase spectrum of fingerprint minutiae [35]. (a) A fingerprint

image with minutiae marked on it, (b) phase spectrum: Ψ(F(u,v)), (c) odd bits of the bina-

rized phase spectrum: sgn(Re(F(u j,v j))), and (d) even bits of the binarized phase spectrum:

sgn(Im(F(u j,v j))).

a hybrid biometric cryptosystem to secure such a representation. The fundamental

idea is to split the value of each feature (relative distances and angles) into stable

and unstable parts. The stable parts are encrypted, while the unstable parts are left

unprotected. A robust distance measure was proposed to match minutia pairs by

combining the results of the stable part matching that takes place in the encrypted

domain and the unstable part matching in the plaintext domain.

Another commonly used local minutiae structure is the minutia triplet, where

relative features (distances and angles) are computed from combinations of three

minutiae. Farooq et al. [16] proposed a non-invertible feature transformation ap-

proach for secure fingerprint matching based on minutia triplets. The relative fea-

tures in a triplet are quantized such that only a finite number of triplets (say N)

are possible. A N-dimensional histogram characterizing the distribution of different

triplets in the given fingerprint image is obtained. This histogram is binarized and

transformed in a non-invertible manner by randomly modifying some of the bits in

the binary string.

A number of other local minutiae structures have also been proposed. For exam-

ple, Jeffers and Arakala [24] showed that it is possible to use a fuzzy vault to se-

cure triplet-based, five nearest neighbor-based, and Voronoi neighbor-based minutia

structures. Another interesting structure is the Minutia Cylinder Code proposed by

Cappelli et al. [6]. This local minutia structure divides a cylindrical region (with its

axis along the minutia orientation) around each minutia into a finite number of cells

and encodes the likelihood of another minutia in the fingerprint with a specific angle

difference to the reference minutia being present in the specific cell.

Finally, it is also possible to exploit additional descriptors such as ridge orienta-

tion and ridge frequency in the neighborhood of a minutia [17] for more accurate

fingerprint matching. For instance, Nagar et al. [32] use the ridge orientation and

ridge frequency values, which are sampled at a set of points around each minutiae,
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to encrypt the polynomial evaluations of the corresponding minutia in a fuzzy vault.

As a result, an attacker who only guesses the set of genuine minutia from the vault

can no longer recover the key; he also needs to know the values corresponding to

the associated descriptors in order to fully decode the vault.

3.4 Quantization and Reliable Component Selection

Most of the fingerprint feature adaptation techniques initially output a fixed-length

real-valued feature vector. This feature vector could be either derived from the minu-

tiae [34, 55] or based on the global texture pattern [5]. Typically, this real-valued

feature vector is quantized by assigning bits to each element in order to obtain a bi-

nary representation. In some cases, only a fixed-number of reliable bits are selected

to obtain the final binary representation, which is secured using a fuzzy commitment

scheme.

Rohde [43] proposed two basic Binary Multidimensional Scaling techniques with

the objective of obtaining a lower dimensional set of binary vectors whose pair-

wise distances closely follow the pairwise distances between the associated original

data points. In the first approach, a singular value decomposition was performed on

the original real-valued vectors and the resultant projections were binarized using

unary encoding1. In the second technique, a projection matrix was obtained using

the gradient descent method with the objective of minimizing the stress between

the pairwise distances in the original space and the scaled pairwise distances in

the transformed space. The original vectors were projected using the obtained pro-

jection matrix and the resultant vectors were binarized based on the sign of each

vector-element.

Andoni et al. [1] proposed a technique referred to as Locality Sensitive Hashing

(LSH), where the original real-valued vectors are projected using random matrices

and the resultant projections are binarized using unary coding in order to obtain the

final binary vector. LSH is mostly used in image retrieval applications, where the

objective is to efficiently compute an approximate nearest neighbor of a query. Chen

et al. [10] associated multiple bits with each real valued feature element based on

its discriminability. The bit values were determined based on binary representation.

Chen et al. [9] also proposed a binarization technique, where pairs of elements of

real vectors were converted to polar coordinates and then quantized.

Given binarized features, it is a common practice to select a subset of reliable

bits either because the specific biometric cryptosystem requires the binary vector to

be of a desired length or there are a large number of unreliable bits and removing

them will improve the system accuracy. Selecting a subset of bits that provides the

best performance would, in general, require evaluating all the 2n possible subsets

where there are n bits in the original binary vector. However, a number of efficient

1 A unary encoding works as follows. Suppose that a real-value a needs to be encoded using t

bits. The range of a, say [amin,amax], is quantized into (t + 1) bins. If a falls into the ith bin, it is

represented as (t-i+1) ones followed by (i−1) zeros, where i = 1,2, · · · ,(t +1).
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approximations have been proposed in literature. Examples include the sequential

forward floating search [40], where features are successively added and removed to

the selection based on the performance of the selected set of features till a stable

performance is reached, mutual information based feature selection [39], and other

simple selection procedures based on correlation and feature discriminability [33].

4 Alignment with Secure Fingerprint Templates

The first step in matching two fingerprint images is to align them and determine

the area of overlap. Although aligning two fingerprints is a difficult problem in any

fingerprint authentication system, it is much more difficult when the information

about the template must not be leaked. One way to solve this problem is to use local

minutiae structures, which are invariant to rotation and translation because such fea-

tures are typically obtained relative to the location and orientation attributes of each

minutia point. We have already discussed this approach in Section 3.3. The alternate

approach is to extract and store some reference points from the enrolled fingerprint

image that do not leak excessive information about the minutiae template. During

authentication, the reference points can also be obtained from the query fingerprint

image. The template and query minutiae sets can be aligned based on the parameters

obtained by aligning the corresponding sets of reference points.

The most commonly used reference points for fingerprint alignment are the sin-

gular points (e.g., core and delta) [31]. There are many approaches like Poincare

index method [31], geometric method [41], complex filter method [38], etc. to de-

termine the singular points in a fingerprint image. However, the accuracy of these

techniques is limited by the following three issues: (i) low quality of the captured

fingerprint image, (ii) the absence of clearly defined core points in arch and tented-

arch fingerprint patterns, and (iii) partial nature of many fingerprint images captured

using live-scan sensors.

One promising approach for reference point detection is the focal point localiza-

tion algorithm proposed by Boonchaiseree and Areekul [3], which overcomes the

problems associated with singular points. The focal point is defined as the average

center of curvature of a fingerprint. In other words, the focal point is the centroid

of all the crossing points, where a crossing point is a point of intersection of two

normal lines of curved ridges. The algorithm proposed in [3] is iterative and in

each iteration, only the orientation field in the semi-circular region of a specified

radius centered at the current focal point is used to generate the crossing points. The

limitations of this algorithm are its iterative nature (hence high computational re-

quirement) and the need for carefully selecting the focal point for the first iteration.

Another alternative candidate for a reference point is a stable minutia point in

the given fingerprint [56]. While the alignment based on such a reference point is

simple and computationally efficient, it is difficult to determine the stable minutia

point reliably. Even a small error in locating the reference point could lead to a false

reject.
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Uludag and Jain [51] extracted a set of points with high curvature from the fin-

gerprint orientation field. A trimmed Iterative Closest Point (ICP) algorithm was

used to determine the alignment between the template and the query based on these

high curvature points. Since high curvature points are global features in the finger-

print pattern, they do not reveal any information about the minutia attributes, which

are local characteristics in the fingerprint. Nandakumar et al. [36] have made signif-

icant enhancements to the alignment algorithm in [51], resulting in more accurate

alignment between the template and query.

The high curvature points can be extracted as follows (see Figure 10). First a set

of orientation field flow curves are extracted from the fingerprint. An orientation

field flow curve [13] is a set of piecewise linear segments whose tangent direction

at each point is parallel to the orientation field direction at that point. Although flow

curves are similar to fingerprint ridges, extraction of flow curves is not affected by

breaks and discontinuities, which are commonly encountered in ridge extraction.

Points of maximum curvature in the flow curves along with their curvature values

can be used for alignment. These high curvature points tend to occur near the sin-

gular points in the fingerprint image. If the image has more than one singularity,

high curvature points may have many clusters, which can be identified by applying

a single-link clustering algorithm. While this alignment technique is more accurate

than alignment based on singular points [36], it is not computationally efficient and

storing many high curvature points may leak more information about the fingerprint

pattern. To overcome this problem, a single focal point was estimated from each

cluster of high curvature points in [35].

Fig. 10 Algorithm for extraction of high curvature points.
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5 Matching Performance and Security

The effectiveness of a fingerprint template protection technique can be measured in

terms of the resulting (i) matching performance and (ii) template security. Matching

performance is usually quantified by the False Accept Rate (FAR) and the Genuine

Accept Rate (GAR) of the biometric system. Security is measured in terms of the in-

formation leakage rate2 or the computational complexity involved in recovering the

original template from the secure sketch or the transformed template [28, 20]. Due to

intra-user variability in fingerprint images, there is usually a trade-off between the

GAR and the security in most template protection schemes. Schemes with higher

security tend to have lower GAR and vice versa.

While a number of fingerprint template protection schemes have been proposed,

many of them have not been carefully evaluated in terms of their matching perfor-

mance and template security. For example, the matching performance of traditional

fingerprint recognition systems have been evaluated on large databases containing

several thousand unique fingerprints by independent third-parties (e.g., Fingerprint

Vendor Technology Evaluation [54]). Such large scale independent evaluations al-

low us to determine whether the performance differences between competing al-

gorithms are statistical significant. However, most fingerprint template protection

schemes have been tested using small (sometimes proprietary) databases containing

at most a few hundred users. Hence, it is difficult to judge the relative differences in

matching performance among various fingerprint template security schemes. Simi-

larly, accurate estimation of the security provided by a template protection scheme

requires good statistical models for the distribution of fingerprint features (e.g.,

minutiae). Given the absence of such models, most of the schemes make unrealis-

tic assumptions such as uniform distribution of features, resulting in over-optimistic

estimates of security. Furthermore, in addition to the information leakage rate from

the secure sketch or transformed template, one must also carefully analyze the secu-

rity in scenarios where the adversary may get access to ancillary information (e.g.,

alignment information stored with a secure sketch or the user-specific key used to

derive a transformed template) along with the protected template.

For illustration purposes, we evaluate implementations of the non-invertible fea-

ture transformation approach [42], fingerprint fuzzy vault [36], and fingerprint fuzzy

commitment [35] on a public-domain fingerprint database, namely the FVC2002-

DB2. This database [30] consists of 800 images of 100 fingers with 8 impressions

per finger obtained using an optical sensor. The size of the images in this database

is 560× 296, the resolution of the sensor is 569 dpi and the images are generally

of good quality. Our goal here is not to determine the superiority of one template

protection method over the other but to simply highlight the various issues that need

to be considered in implementing a template protection scheme. Of course, perfor-

mance varies depending on the choice of the features, the selected feature adaptation

2 Given the secure sketch, leakage rate quantifies the information available to adversary about the

original biometric template (known as privacy leakage) or the cryptographic key associated to it

(secret key leakage).
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scheme, database used, and the values of the parameters used in each scheme. In our

implementation, we consider only the location and orientation attributes of minutiae.

5.1 Non-invertible Transform

We implemented two non-invertible transforms, namely, polar and functional (with

a mixture of Gaussian as the transformation function) defined in [42]. For the polar

transform, the central region of the image was tesselated into n = 6 sectors of equal

angular width and 30-pixel wide concentric shells. The transformation here is con-

strained such that it only shifts the sector number of the minutiae without changing

the shell. There are n! ways in which the n sectors in each shell can be reassigned.

Given k shells in the image (constrained by the width of the image and ignoring the

central region of radius 15 pixels), the number of different ways a transformation

can be constructed is (n!)k which is equivalent to log2(n!)k bits of security.

For the functional transformation, we used a mixture of 24 Gaussians with the

same isotropic standard deviation of 30 pixels (where the peaks can correspond to

+1 or -1 as used in [42]) for calculating the displacement and used the direction

of gradient of the mixture of Gaussian functions as the direction of minutiae dis-

placement. Since the mean vector of the Gaussians can fall anywhere in the image,

there are 296 x 560 possible different values of means of each Gaussian compo-

nent. As there are 24 Gaussian components and each one can peak at +1 or -1, there

are (296 ∗ 560 ∗ 2)24 possible transformations. However, two transformations with

slightly shifted component means will produce two similar templates such that one

template can be used to verify the other.

To analyze the security of the functional transformation, Ratha et al. [42] as-

sumed that for each minutiae in the fingerprint, its transformed counterpart could

be present in a shell of width d pixels at a distance of K pixels from the minutiae.

Further, assuming that the matcher cannot distinguish minutiae that are within δ r

pixels and their orientations are within δθ degrees, each transformed minutiae en-

codes Im = log2(π
((K+d)2−K2)

(δ r)2 ∗ π
δθ

) bits of information. Assuming that there are

N minutiae in template fingerprint and one needs to match at least m minutiae to

get accepted, the adversary needs to make 2Im∗m−log2((N
m)) attempts. Note that this

analysis is based on the simplifying assumption that each minutiae is transformed

independently. This overestimates the number of attempts needed by an adversary

to guess the minutiae template.

Among the eight impressions available for each of the 100 fingers in FVC2002-

DB2, we use only the first two impressions in this experiment because they have the

best image quality. The results, based on the minutiae matcher in [22], are shown in

Figure 11, which indicates a decrease of about 6% in the GAR at a FAR of 0.1%.

In terms of security, non-invertible transformation is one of the better approaches

since it is computationally hard (in terms of brute force complexity) to invert the

stored template and obtain the true template. The true template is never revealed
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especially in case when the transformation of the biometric template is done on a

separate module (possibly a hand held device [23]), which does not save the original

template in memory and is not accessible to an adversary.
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Fig. 11 ROC curves corresponding to two non-invertible transforms (Gaussian and polar) on

FVC2002-DB2. The “Original” curve represents the case where no transformation is applied to

the template, “Gaussian” curve corresponds to the functional transformation of the template and

“Polar” corresponds to the polar transformation of the template.

5.2 Fingerprint Fuzzy Vault

We implemented the fuzzy vault as proposed in [36] using the first two impressions

of each of the 100 fingers in the FVC2002-DB2. Table 2 shows the error rates cor-

responding to different key sizes used in binding. Compared to the “original” ROC

curve in Figure 11, we observe that the fuzzy vault scheme has a lower genuine ac-

cept rate by about 4%. Further, this scheme also has failure to capture errors if the

number of minutiae in the fingerprint image is not sufficient for vault construction

(18 in our implementation).

Suppose an attacker launches a brute-force attack on the fuzzy vault by trying

to decode the key using all possible combinations of (k + 1) points in the vault.

If k = 10 and the number of genuine and chaff points in the vault are 24 and 200,

respectively, the security of the minutiae template is approximately 39 bits. Note that
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Table 2 Performance summary of the fuzzy vault implementation for FVC2002-DB2 database.

Here, k denotes the degree of the encoding polynomial used in vault construction. The maximum

key size that can be bound to the minutiae template is 16k bits. FTCR refers to the failure to

capture rate, which is the proportion of fingerprints having very small number of minutiae that is

not sufficient for vault construction.

FTCR
k = 7 k = 8 k = 10

GAR FAR GAR FAR GAR FAR

2% 91% 0.13% 91% 0.01% 86 0%

this estimate is based on the assumption that minutia points are distributed uniformly

over the fingerprint image area, which is not true in practice. Moreover, there are

some specific attacks that can be staged against a fuzzy vault, e.g., attacks via record

multiplicity, stolen key inversion attack and blended substitution attack [46]. If an

adversary has access to two different vaults (say from two different applications)

obtained from the same biometric data, he can easily identify the genuine points in

the two vaults and decode the vault. Thus, the fuzzy vault scheme does not provide

revocability. In a stolen key inversion attack, if an adversary somehow recovers the

key embedded in the vault, he can decode the vault to obtain the biometric template.

Since the vault contains a large number of chaff points, it is possible for an adversary

to substitute a few points in the vault using his own biometric features. This allows

both the genuine user and the adversary to be successfully authenticated using the

same identity and such an attack is known as blended substitution.

5.3 Fingerprint Fuzzy Commitment

The fingerprint fuzzy commitment scheme based on the Binarized Phase Spectrum

representation of minutiae proposed in [35] was implemented with the following

parameter settings: νmin = 0.01, νmax = 0.25, Nν = 128, Nφ = 37. At the time of en-

rollment, N = 2,048 most reliable bits are selected from the available bits using the

bit selection algorithm described in [35]. During enrollment, we select a codeword c

of the same length N by adding error correction bits to a uniformly random key (κc)

of length L bits generated independently. The length of the key (L) is varied from

224 to 256 bits to obtain different false accept rates (FAR). A turbo encoder with a

recursive convolutional code of rate 1/4 as the component encoder is used for error

correction. For these settings, the turbo code can recover the key κ from the secure

sketch even if approximately 30% of bits in bE and bA are different.

Table 3 Genuine Accept Rate (GAR) of fingerprint fuzzy commitment based on Binarized Phase

Spectrum representation of minutiae proposed in [35]. Here, FAR denotes the false accept rate.

0% FAR 0.02% FAR 0.1% FAR

87.4% 90.4% 91.1%
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The genuine accept rate (GAR) at zero, 0.02%, and 0.1% FAR are shown in Ta-

ble 3. Note that these GAR values are based on all the impressions for each user.

In the case of fingerprint fuzzy vault (see Table 2), the GAR is 86% at zero-FAR

compared to a GAR of 87.4% for the fingerprint fuzzy commitment. However, only

the 100 genuine matches based on the first two impressions for each user were con-

sidered in the fuzzy vault. For this subset of FVC2002-DB2, the GAR of the fuzzy

commitment is 94% at zero-FAR. Even after considering the correlation between

the bits, a security of 43 bits was reported in [35].

6 Conclusions and Future Research Directions

Among the various vulnerabilities of a biometric system, leakage of biometric tem-

plate information is a major security and privacy concern due to the strong linkage

between a user’s template and his identity and the irrevocable nature of biometric

templates. In this chapter, we briefly reviewed the three basic theoretical frame-

works for biometric template protection, namely, encryption, template transforma-

tion, and biometric cryptosystems and discussed the practical issues involved in ap-

plying these techniques to secure a fingerprint template. Due to variations in finger

placement and pressure applied on the sensor, there are two fundamental challenges

in any fingerprint template protection scheme. First, we need to automatically align

or register the fingerprints obtained during enrollment and matching, without reveal-

ing excessive information about the features that uniquely characterize a fingerprint.

Secondly, we need to select an appropriate representation scheme that captures most

of the discriminatory information, but is relatively invariant to changes in finger

placement. Finally, specific implementations of three different template protection

schemes on a common fingerprint database was presented to illustrate the issues

concerning matching accuracy and template security.

We believe that as yet, there is no “best” approach for template protection that

completely satisfies the three main requirements of template security, matching ac-

curacy, and revocability. The application scenario and requirements play a major

role in the selection of a template protection scheme. In an airport watch list applica-

tion, non-invertible transform may be a more suitable approach because it provides

both template security and revocability without relying on any other input from the

user. Biometric cryptosystems may be more appropriate in match-on-card applica-

tions because such systems typically release a key to the associated application in

order to indicate a successful match. In general, more than one template protection

scheme may be admissible and the choice of the suitable approach may be based

on a number of factors such as matching performance, computational complexity,

memory requirements, and user acceptance and co-operation. Further research in

the area of fingerprint template security is expected to progress along the following

three main directions.
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1. What is the “optimal” feature transformation function or biometric cryptosys-

tem for matching fingerprints securely? Optimality generally refers to the best

tradeoff between template security and matching performance.

2. Suppose that there is a good template protection algorithm for a specific feature

type (e.g., a binary string); what is the best way to embed other types of features

(e.g., minutia set) in the desired feature domain? This question is also relevant in

case there is a need to secure templates from multiple biometric traits as a single

entity. Note that the best representation should be compact, preserve accuracy,

and preferably have a uniform distribution.

3. Finally, one of the important but difficult tasks in the design of a template protec-

tion algorithm is: how to quantify the security provided by the algorithm? Most

of the existing methodologies for security analysis are based on unrealistic as-

sumptions (e.g., uniform distribution of minutiae). A related issue is the need

to quantify the inherent entropy in (or the individuality of) a fingerprint or the

features extracted from it.
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