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Abstract

Storage of biometric data requires some form of template protection in order to preserve the privacy of people
enrolled in a biometric database. One approach is to use a Helper Data System. Here it is necessary to transform the
raw biometric measurement into a fixed-length representation. In this paper, we extend the spectral function
approach of Stanko and Škorić (IEEE Workshop on Information Forensics and Security (WIFS), 2017) which provides
such a fixed-length representation for fingerprints. First, we introduce a new spectral function that captures different
information from the minutia orientations. It is complementary to the original spectral function, and we use both of
them to extract information from a fingerprint image. Second, we construct a helper data system consisting of
zero-leakage quantisation followed by the Code Offset Method. We show empirical data on matching performance
and entropy content. On the negative side, transforming a list of minutiae to the spectral representation degrades the
matching performance significantly. On the positive side, adding privacy protection to the spectral representation can
be done with little loss of performance.
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1 Introduction
1.1 Biometric template protection

Biometric authentication has become popular because of

its convenience. Biometrics cannot be forgotten or left at

home. Although biometric data is not exactly secret (we

are leaving a trail of fingerprints, DNA, etc.), it is impor-

tant to protect biometric data for privacy reasons. Unpro-

tected storage of biometric data could reveal medical

conditions and would allow cross-matching of entries in

different databases. Large-scale availability of unprotected

biometric data would make it easier for malevolent parties

to leave misleading traces at crime scenes (e.g. artificial

fingerprints [1], synthesised DNA [2]). One of the easi-

est ways to properly protect a biometric database against

breaches and insider attacks (scenarios where the attacker

has access to decryption keys) is to store biometrics in

hashed form, just like passwords. An error-correction step

has to be added to get rid of the measurement noise.

To prevent critical leakage from the error correction

redundancy data, one uses a Helper Data System (HDS)

[3–5], for instanceaFuzzy Extractor or Secure Sketch [6–8].
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We consider the HDS approach to be the preferred

method for privacy-preserving storage of biometric enrol-

ment data, because of its strong privacy guarantees com-

bined with low computational requirements. (Approaches

based on homomorphic encryption have excellent privacy

but are computationally expensive; approaches based on

random projections are cheap but their security is difficult

to ascertain.) The best known and simplest HDS scheme

is the code-offset method (COM). The COM utilises

a linear binary error-correction code and thus requires

a fixed-length representation of the biometric measure-

ment. Such a representation is not straightforward when

the measurement noise can cause features of the biomet-

ric to appear/disappear. For instance, some minutiae may

not be detected in every image captured from the same

finger.

Bringer et al. [9] proposed a fixed-length representa-

tion based on minutia vicinities. However, it is vulnerable

to minutia misdetections. Topcu et al. [10] introduced

a system containing a machine learning step; it is diffi-

cult to convert to a privacy-preserving scheme. Jin et al.

[11] proposed minutiae processing using kernel methods

to arrive at a fixed-length representation. However, they

do not explain how to deal, privacy-wise, with the per-

sonalised reliable components and personalised training
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data which are required for the reconstruction step. Tuyls

et al. [12] used Gabor filters to derive a fixed-length rep-

resentation, and applied a HDS. However, their scheme

does not have translation invariance, and the helper data

is personalised.

A fixed-length representation called spectral minu-

tiae was introduced by Xu et al. [13–16]. For every

detected minutia of sufficient quality, the method evalu-

ates a Fourier-like spectral function on a fixed-size two-

dimensional grid; the contributions from the different

minutiae are added up. Disappearance of minutiae or

appearance of new ones does not affect the size of the grid.

Topcu et al. [17] applied biohashing to spectral minutiae

as a form of template protection. Shao and Veldhuis [18]

applied a HDS to spectral minutiae.

One of the drawbacks of Xu et al.’s construction is

that phase information is discarded in order to obtain

translation invariance. Nandakumar [19] proposed a

variant which does not discard the phase informa-

tion. However, it reveals personalised reliability data,

which makes it difficult to use in a privacy-preserving

scheme.

A minutia-pair based variant of Xu et al.’s technique

was introduced in [20]. It has a more compact grid

and reduced computation times. Minutia pairs (and even

triplets) were used in [21, 22], but in the context of a differ-

ent attacker model which allows encryption keys to exist

that are not accessible to the adversary.

1.2 Contributions and outline

• We extend the pair-based spectral minutiae method

[20] by introducing a new spectral function that

captures different information from the minutia

orientations. A minutia pair contains two invariant

angles, namely, the two orientations relative to the

connecting line. In [20] only one of these was

exploited.
• Then we use the spectral functions as the basis for a

two-stage template protection system consisting of

two helper data systems, along the lines of [4]. The

first stage discretises the analog spectral

representation using a zero-leakage HDS [4, 5]. This

first HDS reduces quantisation noise, and the helper

data reveals no information about the quantised data.

Discretisation of the spectral functions typically

yields only one bit per grid point. We concatenate the

discrete data from all the individual grid points into

one long bitstring. In the second stage, we apply the

Code Offset Method. Our code of choice is a Polar

code, because Polar codes are low-complexity

capacity-achieving codes with flexible rate.
• We present False Accept Rate (FAR) vs. False Reject

Rate (FRR) tradeoffs at various stages of the data

processing. We introduce the ‘superfinger’

enrollment method, in which we average the spectral

functions from multiple enrollment images. By

combining three images in this way, and constructing

a Polar code specifically tuned to the individual bit

error rate of each bit position, we achieve an Equal

Error Rate (EER) around 1% for a high-quality

fingerprint database, and around 6% for a low-quality

database. Our HDS achieves these numbers while

matching extracted strings that are short, 25 bits or

less. The entropy of such a string is less than the

string length because of mutual dependencies

between the bits. This in contrast to the much larger

numbers mentioned in other works.
• Our results show that, once we have switched to the

spectral representation, privacy protection causes

little performance degradation in terms of FAR, FRR.

However, the transition from a list of minutiae to the

spectral representation reduces performance.

In a sense we have a ‘negative’ result. Our EER is worse

than for matching schemes without privacy protection, or

schemes that use homomorphic encryption. (On the other

hand, by combining multiple fingers, the EER can be low-

ered to an acceptable level.) The main contribution of this

paper is, however, that we push the minutia-pair spec-

tral function approach to its limits while at the same time

giving the ZLHDS technique a baptism of fire in a real-

life biometrics problem. We find that (i) we cannot really

recommend spectral functions as a good fixed-length rep-

resentation, although there is no better alternative; (ii)

the ZLHDS causes little information loss; (iii) we can

confirm that Polar codes are well suited for use in a

HDS, even under tougher circumstances than in previous

work [23].

In Section 3, we introduce notation and briefly review

helper data systems, the spectral minutiae representa-

tion, and polar codes. In Section 4, we introduce the new

spectral function. In Section 5, we explain our experi-

mental approach andmotivate certain design choices such

as the number of discretisation intervals and the use of

a Gaussian approximation. We introduce two methods

for averaging enrollment images. Section 6 contains our

results, mostly in the form of ROC curves. In Sections 7

and 8, we discuss the results and identify topics for future

work.

2 Methods
The aim of this study is to develop improved tech-

niques for privacy-preserving storage of biometric data.

We use fingerprint data from publicly available databases

and analyse the performance of our template protection

scheme using standard nonproprietary techniques. We

compare primarily against the existing spectral minutiae

technique of Xu et al.
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3 Preliminaries
3.1 Notation and terminology

We use capitals to represent random variables, and lower-

case for their realizations. Sets are denoted by calligraphic

font. The set S is defined as S = {0, . . . ,N − 1}. The

mutual information (see e.g. [24]) between X and Y is

I(X;Y ). The probability density function (pdf) of the ran-

dom variable X ∈ R in written as f (x) and its cumulative

distribution function (cdf) as F(x). We denote the number

of minutiae found in a fingerprint by Z. The coordinates

of the j’th minutia are xj = (xj, yj) and its orientation is

θj. We write x = (xj)
Z
j=1 and θ = (θ j)

Z
j=1 We will use

the abbreviations FRR = False Reject Rate, FAR = False

Accept Rate, EER = Equal Error Rate, ROC = Receiver

Operating Characteristic. Bitwise xor of binary strings is

denoted as ⊕.

3.2 Helper Data Systems

A HDS is a cryptographic primitive that allows one to

reproducibly extract a secret from a noisy measurement.

A HDS consist of two algorithms: Gen (generation) and

Rep (reproduction/reconstruction), see Fig. 1. The Gen

algorithm takes a measurement X as input and generates

the secret S and a helper dataW. The Rep algorithm has as

inputW and a noisymeasurement Y ; it outputs an estima-

tor Ŝ. If Y is sufficiently close to X then Ŝ = S. The helper

data should not reveal much about S. Ideally it holds that

I(W ; S) = 0. This is known as Zero Leakage helper data.

3.3 Two-stage hDS template protection scheme

Figure 2 shows the two-stage HDS architecture as

described e.g. in [4]. The enrollment measurement x is

transformed to the spectral representation (xi)
M
i=1 on M

grid points. The first-stage enrollment procedure Gen1

is applied to each xi individually, yielding short (mostly

one-bit) secrets si and zero-leakage helper data wi. The

s1 . . . sM are concatentated into a string k. Residual noise

in k is dealt with by the second-stage HDS (Code Off-

set Method), whose Gen2 produces a secret c and helper

data r. A hash h(c||z) is computed, where z is salt. The

Fig. 1 Data flow in a generic Helper Data System

hash and the salt are stored. In the verification phase, the

noisy y is processed as shown in the bottom half of Fig. 2.

The reconstructed secret ĉ is hashed with the salt z; the

resulting hash is compared to the stored hash.

3.4 Minutia-pair spectral representation

Minutiae are features in a fingerprint, e.g. ridge endings

and bifurcations. We briefly describe the minutia-pair

spectral representation introduced in [20]. For minutia

indices a, b ∈ {1, . . . ,Z} the distance and angle are given

by Rab = |xa − xb| and tanφab =
ya−yb
xa−xb

. The spectral

functionMxθ is defined as

Mxθ (q,R) =
∑

a,b∈{1,...,Z}
a<b

eiqφabe
−

(R−Rab)
2

2σ2 ei(θb−θa), (1)

where σ is a width parameter. The spectral function is

evaluated on a discrete (q,R) grid. A pair (q,R) is referred

to as a grid point. The variable q is integer and can be

interpreted as the Fourier conjugate of an angular vari-

able, i.e. a harmonic. The functionMxθ is invariant under

translations of x. When a rotation of the whole fingerprint

image is applied over an angle δ, the spectral function

transforms in a simple way,

Mxθ (q,R) → eiqδMxθ (q,R). (2)

3.5 Zero Leakage Helper Data Systems

We briefly review the ZLHDS developed in [4, 5] for

quantisation of an enrollment measurement X ∈ R. The

density function of X is f, and the cumulative distribu-

tion function is F. The verification measurement is Y.

The X and Y are considered to be noisy versions of an

underlying ‘true’ value. They have zero mean and vari-

ance σ 2
X , σ

2
Y , respectively. The correlation between X and

Y can be characterised by writing Y = λX + V , where

λ ∈[ 0, 1] is the attenuation parameter and V is zero-mean

noise independent of X, with variance σ 2
V . It holds that

σ 2
Y = λ2σ 2

X + σ 2
V . We consider the identical conditions

case: the amount of noise is the same during enrollment

and reconstruction. In this situation we have σ 2
X = σ 2

Y and

λ2 = 1 −
σ 2
V

σ 2
X

.

The real axis R is divided into N intervals Aα =

(�α ,�α+1), with α ∈ S , S = {0, . . . ,N − 1}. Let pα =

Pr[X ∈ Aα]. The quantisation boundaries are given by

�α = F inv
(

∑α−1
j=0 pj

)

. The Gen algorithm produces the

secret s as s = max{α ∈ S : x ≥ �α} and the helper data

w ∈[ 0, 1) as w =
[

F(x) −
∑s−1

j=0 pj

]

/ps. The inverse rela-

tion, for computing x as a function of s and w, is given by

ξs,w = F inv
(

∑s−1
j=0 pj + wps

)

.
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Fig. 2 Two-stage Helper Data System. Figure adapted from [4]

The Rec algorithm computes the estimator ŝ as the

value in S for which it holds that y ∈ (τŝ,w, τŝ+1,w), where

the parameters τ are decision boundaries. In the case of

Gaussian noise these boundaries are given by

τα,w = λ
ξα−1,w + ξα,w

2
+

σ 2
V ln

pα−1

pα

λ(ξα,w − ξα−1,w)
. (3)

Here it is understood that ξ−1,w = −∞ and ξN ,w = ∞,

resulting in τ0,w = −∞, τN ,w = ∞.

The above scheme ensures that I(W ; S) = 0 and that the

reconstruction errors are minimised.

3.6 The Code Offset Method (COM)

We briefly describe how the COM is used as a Secure

Sketch. Let C be a linear binary error correcting code

with message space {0, 1}m and codewords in {0, 1}n. It

has an encoding Enc: {0, 1}m → {0, 1}n, a syndrome func-

tion Syn: {0, 1}n → {0, 1}n−m and a syndrome decoder

SynDec: {0, 1}n−m → {0, 1}n. In Fig. 2 the Gen2 com-

putes the helper data r as r = Syn k. The c in Fig. 2 is

equal to k. The Rep2 computes the reconstruction ĉ =

k̂ ⊕ SynDec(r ⊕ Syn k̂).

3.7 Polar codes

Polar codes, proposed by Arıkan [25], are a class of lin-

ear block codes that get close to the Shannon limit even at

small code length. They are based on the repeated appli-

cation of the polarisation operation

(

1 0

1 1

)

on two bits of

channel input. Applying this operation creates two virtual

channels, one of which is better than the original chan-

nel and one worse. For n channel inputs, repeating this

procedure in the end yields m near-perfect virtual chan-

nels, with m/n close to capacity, and n − m near-useless

channels. The m-bit message is sent over the good chan-

nels, while the bad ones are ‘frozen’, i.e used to send a fixed

string known a priori by the recipient.

Polar codes have a number of advantages, such as flex-

ible code rate and excellently performing soft-decision

decoders. The most popular decoder is the Successive

Cancellation Decoder (SCD), which sequentially esti-

mates message bits (ci)
m
i=1 according to the frozen bits

and the previously estimated bits ĉi−1. Polar codes have

been recently adopted for the 5G wireless standard, espe-

cially for control channels, which have short block length

(≤ 1024). Because of these advantages we have chosen

Polar codes for implementing the error correction step in

our HDS scheme (see Section 6).

4 A new spectral function
Consider Fig. 3 (modified from [26]). The invariant angle

βa is defined as the angle from the orientation of minutia

a to the connecting line ab, taken in the positive direction.

(The βb is defined analogously). Modulo 2π it holds that

θa+βa = φab and θb+βb = φab+π . The spectral function

(1) uses only the invariant angle βa−βb+π = θb−θa. The

second invariant angle, which can be written e.g. as π −

βa −βb = θa + θb −2φab, is not used in [20]. We therefore

Fig. 3 The relevant angles in a minutia pair. The βa and βb are
rotation invariant. The φab is sensitive to image rotation
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now introduce a new spectral function, denoted as Mxβ ,

which incorporates the invariant angle π − βa − βb.

Mxβ(q,R) =
∑

a,b∈{1,...,Z}
a<b

eiφab(q−2)e
−

(R−Rab)
2

2σ2 ei(θb+θa). (4)

Under image rotation over an angle δ this function

transforms as

Mxβ(q,R) → eiqδMxβ(q,R). (5)

We will useMxθ ,Mxβ and their fusion.

5 Experimental approach
5.1 Databases

We use the MCYT, FVC2000(DB2), and FVC2002(DB2)

database. From this point on we omit the ‘DB2’ designa-

tion for brevity. The MCYT database [27] contains good-

quality images from 100 individuals: 10 fingers per indi-

vidual and 12 images per finger. FVC2000 and FVC2002

contain low-quality images (index and middle fingers

[28]). Each FVC database contains 100 fingers, 8 images

per finger. In FVC2002, image numbers 3, 4, 5, and 6 have

an exceptionally large angular displacement, so they are

omitted from the experiments.

We extract the minutia position and orientation

(xj, yj, θj) by using VeriFinger software [29]. For MCYT we

evaluate the spectral functions on the same grid as [20],

namely R ∈ {16, 22, 28, . . . , 130} and q ∈ {1, 2, . . . , 16} and

we maintain σ = 2.3 pixels. For the FVC databases we use

the same grid, and by trial and error we have found that

σ = 3.2 pixels is a good choice. This larger value of σ as

compared to MCYT is probably because FVC has more

noisy coordinates. The average number of minutiae that

can be reliably found is Z = 35.

5.2 No image rotation

As mentioned in [20], during the reconstruction proce-

dure, one can try different rotations of the verification

image, but it results only in a minor improvement of the

EER. For this reason, we do not apply image rotation.

5.3 Quantisation methods

Before quantisation, all spectral functions are normalised

to zero mean and unit variance, where the variance is

taken of the real and imaginary part together. We quan-

tise the real and imaginary part of the spectral functions

separately. We study two methods: ‘hard thresholding’

(without helper data) and the Zero Leakage quantisation

of Section 3.2. The hard thresholding gives a bit value ‘1’

if ReM > 0 and ‘0’ otherwise. We will show results for

this methodmainly to demonstrate the advantages of Zero

Leakage quantisation.

5.4 Gaussian probability distributions

When using the ZLHDS formulas we will assume that

the spectral functions are Gaussian-distributed. Figures 4

and 5 illustrate that this assumption is not far away from

the truth1.

5.5 Zero leakage quantisation

5.5.1 Signal to noise ratio; setting N

In the ZLHDS of Section 3.5, the optimal choice of the

parameter N (number of quantisation intervals) depends

on the signal to noise ratio. Figure 6 shows a comparison

between N = 2 and N = 3. At low noise it is obvious

that N = 3 extracts more information from the source

than N = 2. At σV /σX larger than ≈ 0.3, there is a regime

where N = 3 can extract more in theory, but is hindered

in practice by the high bit error rate. At σV /σX > 0.55 the

N = 2 ‘wins’ in all respects.

For our data set, we define a σ 2
X(q,R) for every grid

point (q,R) as the variance of M(q,R) over all images in

the database. The noise σ 2
V (q,R) is the variance over all

images of the same finger, averaged over all fingers.

Figures 7 and 8 show the noise-to-signal ratio σV /σX .

Note the large amount of noise; even the best grid points

have σV /σX > 0.45. Figure 6 tells us that setting N =

2 is the best option, and this is the choice we make.

At N = 2 we extract two bits per grid point from

each spectral function (one from ReM, one from ImM).

Hence our bit string k (see Fig. 2) derived from Mxθ has

length 640. When we apply fusion of Mxθ and Mxβ this

becomes 1280.

For N = 2 the formulas in Section 3.5 simplify to A0 =

(−∞, 0), A1 =[ 0,∞), p0 = p1 = 1
2 , ξ0,w = F inv

(

w
2

)

,

ξ1,w = F inv
(

1
2 + w

2

)

, τ1,w = λ
2 (ξ0,w + ξ1,w). Since we work

with Gaussian distributions, F is the Gaussian cdf.

5.5.2 Enrollment and reconstruction

We have experimented with three enrollment methods:

E1. A single image is used.

E2. We take the first2 t images of a finger and calculate

the average spectral function.We call this the ‘superfinger’

method. In the ZLHDS calculations the signal-to-noise

ratio of the average spectral function is used.

E3: For each of t images we calculate an enrollment

string k. We apply bitwise majority voting on these strings.

1Note that we often see correlations between the real and imaginary part. This
has no influence on the ZLHDS.
2We take the first t images to show that the approach works. We are not
trying to optimise the choice of images.
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Fig. 4 Histogram of ReMxθ , and a fitted Gaussian

(This requires odd t.) The reconstruction boundaries are

calculated based on the superfinger method, i.e. as in E2.

Reconstruction:

We study fingerprint authentication with genuine pairs

and impostor pairs. For pedagogical reasons we will

present results at four stages of the signal processing: (1)

Spectral function domain, before quantisation; (2) Bina-

rised domain, without applying the first-stage HDS; (3)

Binarized with first-stage ZLHDS; (4) With first-stage

ZLHDS and discarding the highest-noise grid points.

In the spectral function domain the fingerprint match-

ing is done via a correlation score [20]. In the binarised

domain we look at the Hamming weight between the

enrolled k and the reconstructed k̂. For all cases we will

show ROC curves in order to visualise the FAR-FRR

tradeoff as a function of the decision threshold.

Let the number of images per finger be denoted as M,

and the number of fingers in a database as L.

E1: For the spectral domain and the quantisation with-

out HDS we compare all genuine pairs, i.e.
(M
2

)

image

pairs per finger, resulting in L
(M
2

)

data points. For ZLHDS

the number is twice as large, since there is an asymme-

try between enrollment and reconstruction. For the FVC

databases we generate all possible impostor combinations

(all images of all impostor fingers), resulting in O(M2L2)

data points.

For the MCYT database, which is larger, we take

only one random image per impostor finger, resulting in

O(ML2) data points.

E2+E3: For genuine pairs we compare the superfinger to

the remainingM − t images. Thus we have (M − t)L data

points. Impostor pairs are generated as for E1.

Fig. 5 Histogram of ImMxθ , and a fitted Gaussian
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Fig. 6 Comparison of ZLHDS with N = 2 versus N = 3. Lines without markers: Mutual information between the enrolled key S and the reconstructed
key Ŝ given helper dataW, as a function of σV/σX . Markers: bit error rate as a function of σV/σX . The curves follow equations (22) and (26) from [20]

Note: The VeriFinger software was not able to extract

information for every image.

6 Experimental results
6.1 FAR/FRR rates before error correction

For each the data processing steps/options before applica-

tion of the Code Offset Method, we investigate the False

Accept rates and False Reject rates. We identify a number

of trends.

• Figures 9 and 10 show ROC curves. All the

non-analog curves were made under the implicit

assumption that for each decision threshold (number

of bit flips) an error-correcting code can be

constructed that enforces that threshold, i.e. decoding

succeeds only if the number of bit flips is below the

threshold. Unsurprisingly, we see in the figures that

quantisation causes a performance penalty.

Furthermore the penalty is clearly less severe when

the ZLHDS is used. Finally, it is advantageous to

discard some grid points that have bad signal-to-noise

ratio σX/σV . For the curves labelled ‘ZLHDS+reliable

components’ only the least noisy3 512 bits of k were

kept (1024 in the case of fusion). Our choice for the

number 512 is not entirely arbitrary: it fits

error-correcting codes. Note in Fig. 10 that ZLHDS

with reliable component selection performs better

than analog spectral functions without reliable
component selection. (But not better than analog

with selection.) For completeness we mention that

Verifinger’s privacy-less matching based on minutiae

(without spectral functions) has an EER of 0.58% for

3This is defined as a global property of the whole database. Our selection of
reliable components does not reveal anything about an individual and hence
preserves privacy. Note that [19] does reveal personalised reliable components
and obtains better FA and FN error rates.

FVC2000 (http://bias.csr.unibo.it/fvc2000/

participants/results/NEUR_db2_a.asp) and 0.52% for

the FVC2002 database (http://bias.csr.unibo.it/

fvc2002/results/res_db2_a.asp). Clearly the transition

to spectral functions causes a performance loss.

• The E2 and E3 enrollment methods perform better

than E1. Furthermore, performance increases with t.

A typical example is shown in Fig. 11.

• The spectral functionsMxθ andMxβ individually

have roughly the same performance. Fusion yields a

noticeable improvement. An example is shown in

Fig. 12. (We implemented fusion in the analog

domain as addition of the two similarity scores.)

• Tables 1, 2, 3, 4 and 5 show Equal Error Rates and Bit

Error Rates. We see that enrollment methods E2 and

E3 have similar performance, with E2 yielding a

somewhat lower genuine-pair BER than E3.

• In Table 1 it may look strange that the EER in the

rightmost column is sometimes lower than in the

‘analog’ column. We think this happens because there

is no reliable component selection in the ‘analog’

procedure.

• Ideally the impostor BER is 50%. In the tables we see

that the impostor BER can get lower than 50% when

the ZLHDS is used and the enrollment method is E2.

On the other hand, it is always around 50% in the ‘No

HDS’ case. This seems to contradict the Zero Leakage

property of the helper data system. The ZLHDS is

supposed not to leak, i.e. the helper data should not

help impostors. However, the zero-leakage property

is guaranteed to hold only if the variables are

independent. In real-life data there are correlations

between grid points and correlations between the real

and imaginary part of a spectral function.

http://bias.csr.unibo.it/fvc2000/participants/results/NEUR_db2_a.asp
http://bias.csr.unibo.it/fvc2000/participants/results/NEUR_db2_a.asp
http://bias.csr.unibo.it/fvc2002/results/res_db2_a.asp
http://bias.csr.unibo.it/fvc2002/results/res_db2_a.asp
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Fig. 7 Sorted noise-to-signal ratio ofMxθ for different databases

6.2 Error correction: Polar codes

The error rates in the genuine reconstructed k̂ are high, at

least 0.21. In order to apply the Code Offset Method with

a decent message size it is necessary to use a code that has

a high rate even at small codeword length.

Consider the case of fusion of Mxθ and Mxβ . The

codeword length is 1280 bits (1024 if reliable component

selection is performed). Suppose we need to distinguish

between 220 users. Then the message length needs to

be at least 20 bits, in spite of the high bit error rate.

Furthermore, the security of the template protection is

determined by the entropy of the data that is input into the

hash function (see Fig. 2); it would be preferable to have at

least 64 bits of entropy.

We constructed a number of Polar codes tuned to the

signal-to-noise ratios of the individual grid points. The

codes are designed to find a set of reliable channels, which

are then assigned to the information bits. Each code yields

a certain FAR (impostor string accidentally decoding cor-

rectly) and FRR (genuine reconstruction string failing to

decode correctly), and hence can be represented as a point

in an ROC plot. This is shown in Fig. 13. For the MCYT

database we have constructed a Polar code with message

length 25 at an EER around 1.2% (compared to 0.7% before

Fig. 8 Sorted noise-to-signal ratio ofMxβ for different databases
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Fig. 9 Performance result for several processing methods. FVC2000. Enrollment method E2 with t = 3

error correction). For the FVC2000 database we have con-

structed a Polar code with message length 15 at ≈6% EER

(compared to 3.3% EER before error correction). Note that

the error correction is an indispensable part of the privacy

protection and inevitably leads to a performance penalty.

However, we see that the penalty is not that bad, especially

for high-quality fingerprints.

We briefly comment on the entropy contained in the

extracted ‘message’ strings. In Appendix A we present a

method to compute the upper bound on the entropy of a

random vector, in the case where the probability distribu-

tion obeys a number of symmetries. We use this method

to get a rough estimate for the actual systems at hand. For

the MCYT database and message length 25, the message
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Fig. 10 Performance result for several processing methods. MCYT. Enrollment method E2 with t = 3

bitmeans vary between 0.49 and 0.51, and the off-diagonal

elements of the covariance matrix vary between −0.02

and 0.02. Applying the method of Appendix A with

constant off-diagonal covariance 0.02 yields an upper

bound of 24.3 bits of entropy. For FVC2000 with mes-

sage length 15 bits, the bit means vary between 0.44

and 0.58, and the off-diagonal elements of the covariance

matrix have magnitudes below 0.04. Applying the method

of Appendix A with constant off-diagonal covariance 0.04

yields an upper bound of 14.1 bits of entropy4. The actual

entropies may be a lot lower than the estimates that

we give here. Because of these low entropies, the data

4[12] extracts a 40-bit string.
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Fig. 11 Performance effect of the number of images used for enrollment

extracted from multiple fingers needs to be combined in

order to achieve a reasonable security level of the hash.

We do not see this as a drawback of our HDS; given that

the EER for one finger is around 1%, which is impractical

in real-life applications, it is necessary anyhow to combine

multiple fingers.

6.3 Error correction: random codebooks

There is a large discrepancy between the message length

of the Polar code (k ≤ 25) and reported numbers for the

information content of a fingerprint. According to Ratha

et al. [30] the reproducible entropy of a fingerprint image

with Z = 35 robustly detectable minutiae should be more



Stanko et al. EURASIP Journal on Information Security         (2019) 2019:12 Page 12 of 15

Fig. 12 Performance ofMxθ andMxβ individually, and of their fusion. MCYT database; enrollment method E1; analog domain

Table 1 Equal error rates and bit error rates

No. of images (t) Analog No HDS ZLHDS ZLHDS+r.c.

1 Mxθ 2.6% 3.7% 3.4% 3.2%

0.33 0.50 0.30 0.49 0.29 0.49

Mxβ 2.4% 3.7% 3.4% 3.2%

0.33 0.50 0.31 0.50 0.29 0.49

Fusion 2.1% 2.9% 2.6% 2.3%

0.33 0.50 0.30 0.49 0.29 0.49

2 Mxθ 2.1% 3.2% 2.3% 2.1%

0.33 0.50 0.28 0.46 0.27 0.46

Mxβ 1.7% 3.01% 2.4% 2.2%

0.33 0.50 0.28 0.47 0.27 0.47

Fusion 1.6% 2.3% 1.7% 1.4%

0.33 0.50 0.28 0.46 0.27 0.47

3 Mxθ 1.4% 2.2% 1.3% 1.1%

0.31 0.50 0.24 0.45 0.23 0.46

Mxβ 1.1% 2.0% 1.2% 1.1%

0.31 0.50 0.25 0.46 0.23 0.46

Fusion 1.1% 1.5% 0.9% 0.7%

0.31 0.50 0.24 0.46 0.23 0.46

4 Mxθ 1.2% 1.7% 1.0% 0.9%

0.29 0.50 0.22 0.45 0.21 0.45

Mxβ 1.0% 1.6% 0.9% 0.8%

0.30 0.50 0.22 0.45 0.21 0.45

Fusion 0.9% 1.1% 0.6% 0.5%

0.30 0.50 0.22 0.45 0.21 0.45

MCYT database. Enrollment methods E1 and E2. Numbers displayed as a
percentage are EERs. Numbers without a % sign are BERs: the left number is for
genuine pairs, right for impostors

Table 2 EERs and BERs for the FVC2000 database

No. of images (t) Analog No HDS ZLHDS ZLHDS+r.c.

1 Mxθ 6.0% 9.4% 9.0% 8.0%

0.39 0.50 0.37 0.50 0.36 0.50

Mxβ 6.1% 10.4% 9.5% 8.1%

0.39 0.50 0.38 0.50 0.37 0.50

Fusion 4.8% 7.3% 6.5% 5.5%

0.39 0.50 0.38 0.50 0.36 0.50

2 Mxθ 4.5% 7.2% 5.7% 5.0%

0.37 0.50 0.33 0.47 0.32 0.47

Mxβ 4.8% 7.9% 6.9% 5.6%

0.38 0.50 0.34 0.47 0.32 0.47

Fusion 3.9% 5.1% 5.0% 4.1%

0.37 0.50 0.33 0.47 0.32 0.47

3 Mxθ 3.0% 5.6% 5.3% 4.4%

0.36 0.50 0.31 0.46 0.29 0.46

Mxβ 3.2% 7.2% 5.3% 4.9%

0.37 0.50 0.32 0.46 0.30 0.46

Fusion 2.2% 4.5% 4.0% 3.3%

0.37 0.50 0.32 0.46 0.30 0.46

4 Mxθ 2.1% 5.5% 5.5% 4.8%

0.37 0.50 0.31 0.45 0.29 0.45

Mxβ 2.2% 7.1% 6.5% 5.0%

0.37 0.50 0.32 0.46 0.30 0.46

Fusion 1.3% 4.3% 4.3% 3.3%

0.37 0.50 0.31 0.45 0.30 0.45

Enrollment methods E1 and E2
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Table 3 EERs and BERs for the FVC2002 database

No. of images (t) Analog No HDS ZLHDS ZLHDS+r.c.

1 Mxθ 5.8% 12.1% 10.8% 8.8%

0.38 0.50 0.37 0.50 0.36 0.50

Mxβ 6.4% 10.9% 10.9% 9.2%

0.39 0.50 0.38 0.50 0.36 0.50

Fusion 5.5% 9.4% 9.3% 7.0%

0.39 0.50 0.38 0.50 0.36 0.50

2 Mxθ 5.4% 10.9% 9.8% 7.3%

0.39 0.50 0.35 0.48 0.33 0.48

Mxβ 5.5% 10.7% 8.4% 7.4%

0.39 0.50 0.36 0.48 0.34 0.48

Fusion 4.4% 9.8% 7.3% 5.9%

0.39 0.50 0.36 0.48 0.34 0.48

Enrollment methods E1 and E2

than 120 bits. Furthermore, the potential message size that

can be carried in a 1024-bit string with a BER of 23% is

1024[ 1 − h(0.23)]= 227 bits. (And 122 bits at 30% BER.)

We experimented with random codebooks to see if we

could extract more entropy from the data than with polar

codes. At low code rates, a code based on random code-

words can be practical to implement. Let the message size

be ℓ, and the codeword size m. A random table needs to

be stored of size 2ℓ · m bits, and the process of decod-

ing consists of computing 2ℓ Hamming distances.We split

the 1024 reliable bits into 4 groups of m = 256 bits, for

which we generated random codebooks, for various val-

ues of ℓ. The total message size is k = 4ℓ and the total

codeword size is n = 4m. The results are shown in Fig. 13.

In short: random codebooks give hardly any improvement

over Polar codes.

7 Summary
We have built a HDS from a spectral function represen-

tation of fingerprint data, combined with a Zero Leakage

quantisation scheme. It turns out that the performance

degradation w.r.t. unprotected templates is caused mainly

Table 4 EERs and BERs for the FVC2000 database

#images (t) Analog No HDS ZLHDS ZLHDS+r.c.

3 Mxθ 3.0% 5.8% 5.2% 4.2%

0.37 0.50 0.36 0.50 0.34 0.50

Mxβ 3.2% 8.1% 6.1% 5.4%

0.37 0.50 0.36 0.50 0.35 0.50

Fusion 2.2% 5.3% 4.0% 3.1%

0.37 0.50 0.36 0.50 0.34 0.50

Enrollment method E3

Table 5 EERs and BERs for the MCYT database

#images (t) Analog No HDS ZLHDS ZLHDS+r.c.

3 Mxθ 1.4% 2.4% 1.6% 1.4%

0.31 0.50 0.29 0.49 0.28 0.49

Mxβ 1.1% 2.2% 1.5% 1.4%

0.32 0.50 0.30 0.50 0.28 0.50

Fusion 1.1% 1.6% 1.0% 0.9%

0.32 0.50 0.30 0.49 0.28 0.50

Enrollment method E3

by the step that maps a list of minutiae to spectral func-

tions. The step from unprotected spectral functions to

HDS-protected spectral functions is almost ‘for free’ in

the case of high-quality fingerprints.

The best results were obtained with the ‘superfinger’

enrollment method (E2, taking the average over multiple

enrollment images in the spectral function domain), and

with fusion of the Mxθ ,Mxβ functions. The superfinger

method performs slightly better than the E3 method and

also has the advantage that it is not restricted to an odd

number of enrollment captures.

For the high-quality MCYT database, our HDS ach-

ieves an EER around 1% and extracts an noise-robust

25-bit string that contains less than 24.3 bits of entropy.

In practice multiple fingers need to be used in order to

obtain an acceptable EER. This automatically increases

the entropy of the hashed data. The entropy can be further

increased by employing tricks like the Spammed Code

Offset Method [31].

8 Conclusions
Any form of privacy protection (excepting perhaps homo-

morphic crypto) causes fingerprint matching degradation.

Building a good template protection system is therefore

an exercise in ‘damage control’: protect privacy while

limiting the performance loss. We have pushed the two-

dimensional spectral function approach to its limits, but

even after the omission (in [20]) of the second invariant

angle is corrected we still see that the transition from a

minutia list to spectral functions destroys a lot of infor-

mation. It remains a topic for future work to determine

whether a higher-dimensional spectral function can retain

more information while still yielding a practical template

size. Given the experiences in [4] and the current paper,

we expect that the ZLHDS privacy protection technique

will do a good job there too, i.e. cause only little perfor-

mance degradation, as long as the biometric data is of

reasonable quality.

We see that Polar codes perform extremely well at the

high BER caused by noisy biometrics. Polar codes have

been used in a HDS before [23], but under somewhat

different circumstances, namely a simple a priori known
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Fig. 13 FRR versus FAR achieved by Polar codes and random codebooks (average over three random codebooks). The �markers denote random
codebook, and happen to coincide with the line connecting the Polar markers

noise distribution. The results of Section 6.2 demonstrate

the efficiency of Polar codes also in the case where the

noise distribution is unknown and has to be estimated

from the training data.

We briefly comment on the computational effort of

our scheme in the verification phase. The number of

(complex-valued) summation terms in the computation of

a spectral function is
(Z
2

)

Ngrid ≈
(35
2

)

· 20 · 16 = 1.9 · 105.

The reconstruction step of the first-stage ZLHDS has

negligible cost compared to that. Successive Cancellation

Decoding of Polar codes is lightweight, with complexity

O(n log n), n = 1024. On a modern processor, comput-

ing a hash takes less than 100 clock cycles per input byte.

Clearly the bottleneck is the computation of the spectral

functions. We have observed that reducing the number of

grid points from the current 20 · 16 causes severe degra-

dation of the matching performance, while increasing the

number of points does not yield much improvement.

As topics for future work wemention (i) testing the HDS

on more databases; (ii) further optimisation of parame-

ter choices such as the number of reliable components,

and the number of minutiae used in the computation of

the spectral functions; (iii) further tweaking of the Polar

codes; (iv) other (spectral?) representations that cause less

performance degradation while still allowing for a HDS to

be constructed.

Appendix A
Entropy upper bound

LetX ∈ {0, 1}n be a random variable with probability mass

function px. Using the Lagrange multiplier technique

it is readily ascertained that the maximum-entropy

distribution for X, for given first and second moment,

must be of the Gaussian form px ∝ exp
[

−aTx − xTMx
]

,

where x is interpreted as a column vector, a is a vec-

tor and M is a matrix. In general the a and M are very

complicated functions of the first moments mi
def
= Exi

and the covariances cij
def
= Exixj − mimj (i 
= j). The

computations become more tractable if we impose per-

mutation invariance on X as well as 0 ↔ 1 symbol

symmetry. Then we have px = N−1
β exp

[

β
(

|x| − n
2

)2
]

,

where β is a parameter and the normalisation constant

Nβ is defined as Nβ =
∑n

w=0

(n
w

)

exp
[

β
(

w − n
2

)2
]

. Fur-

thermore the imposed symmetries yield mi = 1
2 for

all i, and constant covariance cij = c for i 
= j. The

relation between β and c is given by the 2nd moment con-

straint N−1
β

∑n
w=0

(

w − n
2

)2 (n
w

)

exp
[

β
(

w − n
2

)2
]

= n
4 +

(

n2 − n
)

c. This equation has to be solved numerically

for β . Then, with the numerical value of β , we can

evaluate the entropy (in nats) as E ln 1
px

= lnNβ −

β
[

n
4 +

(

n2 − n
)

c
]

.
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