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Abstract—Most fingerprint recognition systems are based on the
use of a minutiae set, which is an unordered collection of minutiae
locations and orientations suffering from various deformations
such as translation, rotation, and scaling. The spectral minutiae
representation introduced in this paper is a novel method to
represent a minutiae set as a fixed-length feature vector, which
is invariant to translation, and in which rotation and scaling
become translations, so that they can be easily compensated
for. These characteristics enable the combination of fingerprint
recognition systems with template protection schemes that require
a fixed-length feature vector. This paper introduces the concept
of algorithms for two representation methods: the location-based
spectral minutiae representation and the orientation-based spec-
tral minutiae representation. Both algorithms are evaluated using
two correlation-based spectral minutiae matching algorithms. We
present the performance of our algorithms on three fingerprint
databases. We also show how the performance can be improved
by using a fusion scheme and singular points.

Index Terms—Biometrics, fingerprint recognition, minutiae
matching, template protection.

I. INTRODUCTION

A
MONG various biometric identifiers, such as face, sig-
nature, and voice, the fingerprint has one of the highest

levels of distinctiveness and performance [1] and it is the most
commonly used biometric modality. Compared with most other
biometric techniques, fingerprint recognition systems also have
the advantages of both ease of use and low cost. All these rea-
sons explain the popularity of fingerprint recognition systems.

Minutiae are the endpoints and bifurcations of finger-
print ridges. They are known to remain unchanged over an
individual’s lifetime [1] and allow a very discriminative clas-
sification of fingerprints. Each minutia can be described by
parameters , where is the location of the minutia
and its orientation [2].
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Today, many fingerprint recognition systems are based on

minutiae matching [3], [4]. However, minutiae-based fingerprint

matching algorithms have some drawbacks that limit their ap-

plication. First, due to the fact that minutiae sets are unordered,

the correspondence between individual minutia in two minutiae

sets is unknown before matching and this makes it difficult to

find the geometric transformation (consisting of translation, ro-

tation, scaling, and optionally nonlinear deformations [4]) that

optimally registers (or aligns) two sets. For fingerprint identi-

fication systems with very large databases [5], in which a fast

comparison algorithm is necessary, minutiae-based matching al-

gorithms will fail to meet the high performance speed require-

ments. Second, a minutiae representation of a fingerprint cannot

be applied directly in recently developed template protection

schemes based on fuzzy commitment and helper data schemes,

such as [6] and [7], that require as an input a fixed-length feature

vector representation of a biometric modality1.

The spectral minutiae representation as proposed in this

paper overcomes the above drawbacks of the minutiae sets,

thus broadening the application of minutiae-based algorithms.

Our method is inspired by the Fourier–Mellin transform, which

allows a representation of images in a way that is invariant

to translation, rotation, and scaling [9]–[11]. By representing

minutiae as a magnitude spectrum, we transform a minutiae set

into a fixed-length feature vector that at the same time does not

need registration to compensate for translation, rotation, and

scaling. Our algorithm does not distinguish between endpoints

and bifurcations, because the type of a minutia can be easily

confused due to acquisition noises or pressure differences

during acquisition. However, the orientation remains the same

when this occurs. By using a spectral minutiae representation

instead of minutiae sets, we meet the requirements of a template

protection system and allow for faster matching as well.

The spectral minutiae representation method can be easily in-

tegrated into a minutiae-based fingerprint recognition system.

Minutiae sets can be directly transformed to this new representa-

tion, which makes this method compatible with the large amount

of existing minutiae databases.

This paper is organized as follows. First, the concept of spec-

tral minutiae representation is explained in detail in Section II.

Next, in Section III, two spectral minutiae matching algorithms

are proposed. Then, Sections IV and V present the experi-

mental results and discussions. Finally, we draw conclusions in

Section VI.

1Other template protection systems exist [8] that do not pose this fixed-length
feature vector requirement.
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II. SPECTRAL MINUTIAE REPRESENTATION

The spectral minutiae representation is based on the shift,
scale, and rotation properties of the two-dimensional (2-D) con-
tinuous Fourier transform. If we have an input signal

(we denote the transpose of a vector as ), its con-
tinuous Fourier transform is

(1)

with . The Fourier transform of a translated
is

(2)

with the translation vector. The Fourier trans-
form of an isotropically scaled is

(3)

with the isotropic scaling factor. The Fourier trans-
form of a rotated is

(4)

with

(5)

Here is the (orthonormal) rotation matrix, and is the (coun-
terclockwise) rotation angle of .

It can be seen from (2) that if only the magnitude of the
Fourier spectrum is retained, this results in a translation in-
variant representation of the input signal. Furthermore, from (3)
and (4), it follows that scaling and rotation of the input signal
results in a scaled and rotated Fourier spectrum.

In order to exploit the above properties of the 2-D Fourier
transform, we remap the Fourier spectral magnitude onto a
polar-logarithmic coordinate system, such that the rotation
and scaling become translations along the angular and radial
axes, respectively. The detailed steps are as follows. Consider
a signal that is a translated, scaled, and rotated replica of

(6)

then the magnitude of the Fourier transforms of and
are related by

(7)

which is a translation invariant representation of the input
signal. If we remap the Fourier spectral magnitude onto a
polar-logarithmic coordinate system as

(8)

(9)

(10)

then we have the Fourier spectral magnitude of and
on the polar-logarithmic coordinates

(11)

Equation (11) is a translation invariant description of the
input signal, while the rotation and scaling have become
translations along the new coordinate system axes. If we
would perform a second Fourier transform on , this is
called a Fourier–Mellin transform [12], [13]. By retaining the
magnitude of this Fourier–Mellin spectrum, we can obtain a
translation, rotation, and scaling invariant representation of the
input signal.

We will introduce a similar procedure as shown in (7)–(11),
which can be applied to minutiae sets in order to find a repre-
sentation that is invariant to translation and where rotation and
scaling are translations.

A. Location-Based Spectral Minutiae Representation (SML)

When implementing the Fourier transform there are two im-
portant issues that should be considered. First, when a discrete
Fourier transform is taken of an image, this results in a repre-
sentation of a periodic repetition of the original image. This is
undesirable because it introduces errors due to discontinuities at
the image boundaries. Second, the remapping onto a polar-log-
arithmic coordinate system after using a discrete Fourier trans-
form introduces interpolation artifacts. Therefore, we introduce
an analytical representation of the input minutiae, and then use
analytical expressions of a continuous Fourier transform that
are evaluated on a grid in the polar-logarithmic plane. These
analytical expressions are obtained as follows. Assume we have
a fingerprint with minutiae. With every minutia, a function

is associated where
represents the location of the th minutia in the finger-

print image. Thus, in the spatial domain, every minutia is rep-
resented by a Dirac pulse. The Fourier transform of is
given by

(12)

and the SML is defined as

(13)

In order to reduce the sensitivity to small variations in minu-
tiae locations in the spatial domain, we use a Gaussian low-pass
filter to attenuate the higher frequencies. This multiplication
in the frequency domain corresponds to a convolution in the
spatial domain where every minutia is now represented by a
Gaussian pulse. A 2-D Gaussian in the space domain
and its Fourier transform are

(14)
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Equation (14) shows that the parameter of the Gaussian in the
space domain appears as its reciprocal in the Gaussian in the
frequency domain.

Following the shift property of the Fourier transform, the
magnitude of is taken in order to make the spectrum invariant
to translation of the input and we obtain

(15)

Equation (15) is the analytical expression for the spectrum,
which can directly be evaluated on a polar-logarithmic grid. The
resulting representation in the polar-logarithmic domain is in-
variant to translation, while rotation and scaling of the input
have become translations along the polar-logarithmic coordi-
nates.

B. Orientation-Based Spectral Minutiae Representation

(SMO)

The SML only uses the minutiae location information. How-
ever, including the minutiae orientation as well may give better
discrimination. Therefore, it can be beneficial to also include the
orientation information in our spectral representation. The ori-
entation of a minutia can be incorporated by using the spatial
derivative of in the direction of the minutia orientation.
Thus, to every minutia in a fingerprint, a function
is assigned being the derivative of in the direction ,
such that

(16)

As in the SML algorithm, using a Gaussian filter and taking
the magnitude of the spectrum yields

(17)

C. Implementation

In the previous sections, we introduced analytical expres-
sions for the spectral minutiae representations of a fingerprint.
In order to obtain our final spectral representations, the contin-
uous spectra (15) and (17) are sampled on a polar-logarithmic
grid. In the radial direction , we use samples be-
tween and . In the angular direction , we
use samples uniformly distributed between and

. Because of the symmetry of the Fourier transform for
real-valued functions, using the interval between 0 and is suf-
ficient. This polar-logarithmic sampling process is illustrated in
Figs. 1 and 2.

The sampled spectra (15) and (17) will be denoted
by and , respectively, with

Fig. 1. Illustration of the polar-logarithmic sampling (SML spectra).
(a) Fourier spectrum in a Cartesian coordinate and a polar-logarithmic sam-
pling grid; (b) Fourier spectrum sampled on a polar-logarithmic grid.

. When no confusion can
arise, the parameter and the subscripts and will be
omitted.

Examples of the minutiae spectra achieved with SML are
shown in Fig. 3, and those achieved with SMO are shown in
Fig. 4. In these figures, (15) and (17). For
each spectrum, the horizontal axis represents the rotation angle
of the spectral magnitude (from 0 to ); the vertical axis rep-
resents the frequency of the spectral magnitude (the frequency
increases from top to bottom). It should be noted that the minu-
tiae spectrum is periodic on the horizontal axis.

III. SPECTRAL MINUTIAE MATCHING

After representing fingerprints by minutiae spectra, the next
step is matching: the comparison of two minutiae spectra. The
result of matching is either a “match” (the two spectra appear to
be from the same finger) or a “nonmatch” (the two spectra ap-
pear to be from different fingers). Normally, in this step, we will
first compute a number (similarity score), which corresponds
to the degree of similarity. Then, by using a threshold, we can
make a match/nonmatch decision [14].

In this paper, two matching algorithms are presented. In the
first algorithm (direct matching), the correlation of two spectral
images was chosen as a similarity score, which is a common
similarity measure in image processing. The second algorithm
is the Fourier–Mellin matching, in which the Fourier transform
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Fig. 2. Illustration of the polar-logarithmic sampling (SMO spectra).
(a) Fourier spectrum in a Cartesian coordinate and a polar-logarithmic sam-
pling grid; (b) Fourier spectrum sampled on a polar-logarithmic grid.

of the minutiae spectrum is taken, and only the magnitude is re-
tained. This will generate a complete translation, rotation, and
scaling invariant descriptor of the minutiae set, and then a cor-
relation-based method is used to calculate the similarity score
of the Fourier–Mellin spectra.

A. Direct Matching

Let and be the two sampled minutiae
spectra in the polar-logarithmic domain, respectively, achieved
from the reference fingerprint and test fingerprint. Both

and are normalized to have zero mean and
unit energy. We use the 2-D correlation coefficient between
and as a measure of their similarity.

In practice, the input fingerprint images are rotated and might
be scaled (for example, depending on the sensor that is used
to acquire an image). Since the minutiae spectra are transla-
tion invariant but not rotation and scaling invariant, this method
has to test a few different combinations of rotation and scaling,
which are translations in the minutiae spectra. To be specific,
the scaling becomes the shift (or translation) in the vertical di-
rection, and the rotation becomes the circular shift in the hori-
zontal direction. We denote as a shifted version
of , with a shift of in the vertical direction and a cir-
cular shift in the horizontal direction. Then, the correlation

Fig. 3. Examples of minutiae spectra using SML. (a) and (c) are fingerprints
from the same finger; (e) and (g) are fingerprints from the same finger. (b) Minu-
tiae spectrum of (a). (d) Minutiae spectrum of (c). (f) Minutiae spectrum of (e).
(h) Minutiae spectrum of (g).

coefficient between and is defined as

(18)

In most fingerprint databases, there is no scaling difference
between the fingerprints, or the scaling can be compensated for
on the level of the minutiae sets [15]. Therefore, in practice only
a few rotations need to be tested. We chose to test rotations from

15 units to 15 units in steps of three units, which corresponds
to a range from 10 to 10 in steps of 2 . The maximum
score from the different combinations is the final matching score
between and

(19)

with

for (20)
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Fig. 4. Examples of minutiae spectra using SMO. (a) and (c) are fingerprints
from the same finger; (e) and (g) are fingerprints from the same finger. (b) Minu-
tiae spectrum of (a). (d) Minutiae spectrum of (c). (f) Minutiae spectrum of (e).
(h) Minutiae spectrum of (g).

B. Fourier–Mellin Matching

The Fourier–Mellin transform is often used to obtain a com-
plete translation, rotation, and scaling invariant descriptor. It is
based on the scale-invariance property of the Mellin transform.
The Mellin transform [16] is defined for complex as

(21)

If we define the Mellin transform on the imaginary axis, thus
, then the Mellin transform becomes

(22)

The Mellin transform of a scaled with a scaling factor is

(23)

If we make a change of variable , thus , then
(23) becomes

(24)

Equation (24) shows that the scale change in the time domain
just becomes a phase change in the Mellin domain. Therefore,
the magnitude of the Mellin transform is scale-invariant

(25)

A standard Fourier–Mellin transform, sometimes called a cir-
cular Fourier and radial Mellin transform [17], is written as

(26)

If we make a change of variable , thus , and
let , thus defining the radial Mellin transform on the
imaginary axis, then the Fourier–Mellin transform becomes

(27)

This is a 2-D Fourier transform of the function . Equa-
tion (27) shows that the Fourier–Mellin transform can be
implemented by a polar-logarithmic transform of the original
signal, and then using a 2-D Fourier transform. Therefore, by
performing a 2-D Fourier transform on the minutiae spectra,
we implement a Fourier–Mellin transform, and we can obtain
a Fourier–Mellin descriptor by only retaining the magnitude.
We denote and as the magnitude of the
2-D Fourier transform of the spectral minutiae spectra
and . In the Fourier–Mellin matching algorithm, the
correlation of two Fourier–Mellin magnitude and

was chosen as a similarity score

(28)

IV. EXPERIMENTS

A. Measurements

We test the spectral minutiae representation in a verification
setting. A verification system authenticates a person’s identity
by comparing the captured biometric characteristic with the
corresponding biometric template(s) prestored in the system.
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TABLE I
CHARACTERISTICS OF DATABASES USED IN OUR EXPERIMENTS

It conducts a one-to-one comparison to determine whether the
identity claimed by the individual is true [1].

The matching performance of a fingerprint verification
system can be evaluated by means of several measures. Com-
monly used are the false acceptance rate (FAR), the false

rejection rate (FRR), and the equal error rate (EER). When the
decision threshold of a biometric security system is set such
that the FAR and FRR are equal, the common value of FAR
and FRR is referred to as the EER. In this paper, we use FAR,
EER, and the genuine accept rate (GAR), GAR FRR, as
performance indicators of our scheme.

B. Experimental Settings

The proposed algorithms have been evaluated on MCYT
[18], FVC2000-DB2 [19], and FVC2002-DB2 [20] fingerprint
databases. The fingerprint data that we used from MCYT are
obtained from ten individuals. Each individual contributed data
from ten different fingers with ten samples per finger. We also
tested our algorithms on two FVC fingerprint databases because
they are public-domain fingerprint databases. Compared with
MCYT, the fingerprints in FVC have lower quality and bigger
displacements. For the FVC databases, we used the same
experimental protocol as in the FVC competition. Both FVC
databases contain 100 fingers, with eight samples per finger. In
FVC2002-DB2, we only used four samples (samples 1, 2, 7,
and 8) in our experiments2, while in FVC2000-DB2, we used
all eight samples from each finger. The characteristics of the
databases are summarized in Table I.

We generated two minutiae sets from MCYT. The first minu-
tiae set contains manually extracted minutiae, which serves as a
high-quality minutiae set. The second minutiae set is obtained
by the VeriFinger minutiae extractor [21] and will be called
“VeriFinger minutiae.” In order to be able to manually extract
reliable minutiae from fingerprint samples, we chose the ten
individuals from MCYT that have reasonably good quality
fingerprints. The quality measurement that we used here is
based on the fingerprint’s variance and coherence [22]. The
variance and the coherence of a fingerprint reflect the clarity
of its ridge-valley structures. In general, good-quality finger-
prints have higher variance and coherence than low-quality
fingerprints. Some samples that we accepted and rejected from
MCYT are shown in Fig. 5. For FVC databases, we only used
the minutiae sets that are obtained by the VeriFinger minutiae
extractor.

2In FVC2002 databases, samples 3, 4, 5, and 6 were obtained by requesting
the users to provide fingerprints with exaggerated displacement and rotation
[8]. In a security scenario where the user is aware that cooperation is crucial for
security reasons, he will be cooperative. Therefore, only samples 1, 2, 7, and 8
are chosen.

Fig. 5. Examples of fingerprint samples in MCYT: (a) and (b) are the finger-
prints that we accepted from MCYT; (c) and (d) are fingerprints that we rejected
from MCYT because of the low quality.

For each comparison, we chose two fingerprints from the data
set: one as a reference fingerprint, another as a test fingerprint.
For matching genuine pairs, we used all the possible combina-
tions. For matching imposter pairs, we chose one sample from
each identity. Therefore, we have 4500, 2800, and 600 genuine
scores for MCYT, FVC2000-DB2, and FVC2002-DB2, respec-
tively. For each database, we have 4950 imposter scores.

In the spectral minutiae representation, we used a Gaussian
low-pass filter on the spectrum to attenuate the higher frequen-
cies [see (15) and (17)]. From our experiments, we noticed that
for SML and SMO, we need to choose different Gaussian pa-
rameters ( and ) to achieve the best performances. Figs. 6
and 7 show the influence of the Gaussian parameter to the
performances on MCYT VeriFinger minutiae set (using direct
matching algorithm). We noticed that the Gaussian parameter
has larger effects on SML than on SMO. Moreover, a Gaussian
kernel is needed for SMO for achieving a better performance,
while for SML it is not. The reason is that because the minutiae
orientation is incorporated as a derivative of the delta function
[see (16)], this will amplify the noise (both in minutiae location
and orientation) in the high frequency part in SMO. Therefore,
a Gaussian kernel is needed for SMO to attenuate the higher fre-
quencies. In SML, the high frequency part contains discrimina-
tive information, while the noise is evenly distributed in all fre-
quencies; therefore, a Gaussian kernel does not help for a better
performance. In our experiments, we finally chose for
SML (in this case, no multiplication with Gaussian in the fre-
quency domain) and for SMO. In case the fingerprint
resolution is 500 dpi, the Gaussian parameter (pixel)
in the spacial domain is about 0.21 (mm) in reality.

From our experiments, we also noticed that the careful selec-
tion of frequency ranges ( and ) of spectral minutiae are
essential for a high performance, especially for SMO. For low
quality fingerprints or an unreliable minutiae extractor (where
the errors on minutiae location and orientation are higher), we
need to use the lower frequencies that are more robust to noise.
The final settings of and for the databases are shown in
Table II.

C. Results of SML and SMO

We tested both SML and SMO representation methods. The
EERs we achieved are shown in Tables III –V, and the receiver

operating characteristic (ROC) curves are shown in Figs. 8–10.
For MCYT VeriFinger minutiae sets, the genuine and imposter
distributions (resulting from direct matching) are shown in
Fig. 11.
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Fig. 6. Relation of the Gaussian � (in the spacial domain) and SML perfor-
mances (MCYT VeriFinger minutiae set, using direct matching algorithm).

Fig. 7. Relation of the Gaussian � (in the spacial domain) and SMO perfor-
mances (MCYT VeriFinger minutiae set, using direct matching algorithm).

From Tables III–V, we can see that the direct matching algo-
rithm received better results than the Fourier–Mellin matching
algorithm. The Fourier–Mellin matching algorithm first imple-
mented a 2-D Fourier transform, and then achieved a rotation
and scaling invariant descriptor by only retaining the magni-
tude. In this step, the phase information was discarded. How-
ever, in our application, the spectral minutiae do not suffer from
the scaling problem, and the rotation range is also limited. From
the result, we can see that by discarding phase to achieve this ro-
tation and scaling invariant degraded the performance. For the
direct matching algorithm, SML received better results if the
minutiae are with high quality (MCYT manual minutiae case).
When using automatically extracted minutiae sets (in which the
minutiae suffer more noise), SMO performed better.

From the results, we can also see that for both SMO and SML,
the manually extracted minutiae received better results than the
VeriFinger minutiae for MCYT. Also, MCYT received much
better results than the two FVC databases. These show that our
algorithms are sensitive to the minutiae quality and fingerprint

TABLE II
SETTINGS OF THE FREQUENCY RANGE

TABLE III
MCYT: DIRECT MATCHING RESULTS

TABLE IV
MCYT: FOURIER–MELLIN MATCHING RESULTS

TABLE V
FVC: DIRECT MATCHING RESULTS

Fig. 8. ROC curves (MCYT: using direct matching).

quality. In Section V, we will present a further discussion about
the factors that can influence the performance of our algorithms.

D. Fusion Results of SML and SMO

In Section IV-C, we showed the recognition results for both
SML and SMO. To illustrate the relation of the SML and SMO
results, we made a scatter plot for the genuine and imposter
scores in the MCYT manual minutiae case (direct matching re-
sults), shown in Fig. 12.

From Fig. 12, we can see that the genuine scores from SML
and SMO are correlated. At the same time, the imposter scores
seem relatively uncorrelated. From the picture it can also be seen
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Fig. 9. ROC curves (MCYT: using Fourier–Mellin matching).

Fig. 10. ROC curves (FVC2000-DB2 and FVC2002-DB2: using direct
matching).

that the genuine and imposter distribution can be better sepa-
rated using a fusion approach [23]. For this reason, we use the
matching score based fusion to improve the performance. A sum
rule with equal weights for SML and SMO is used [24], whose
decision boundary is shown as the dashed line in Fig. 12. The
fusion results are shown in Tables VI–VIII (for comparison, the
results of SML and SMO are also listed). The ROC curves are
shown in Figs. 13 and 14 (using the direct matching algorithm).
We can see that the fusion results are much better than the SML
and SMO results.

For fingerprint identification systems with very large
databases, the matching speed is crucial. Because our algo-
rithms use a fixed-length feature vector and avoid fingerprint
alignment, the matching speed is promising. For both SML and
SMO using the direction matching algorithm, we need to imple-
ment 360 448 real multiplications and 360 437 real additions.
We tested the matching speed for the fusion case of SML and
SMO and we can implement 8000 comparisons (or matchings)

Fig. 11. Genuine and imposter distributions (VeriFinger minutiae sets, using
direct matching).

Fig. 12. Scatter plot of scores in MCYT manual minutiae case.

TABLE VI
MCYT: FUSION RESULTS OF SML AND SMO (DIRECT MATCHING)

TABLE VII
MCYT: FUSION RESULTS OF SML AND SMO (FOURIER–MELLIN MATCHING)

per second using optimized C language programming on a PC
with Intel Pentium D processor 2.80 GHz and 1 GB of RAM.
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TABLE VIII
FVC: FUSION RESULTS OF SML AND SMO (DIRECT MATCHING)

E. Improvements by Using Singular Points of Fingerprints

In a fingerprint, singular points (SPs) can be identified.
Henry [25] defined two types of SPs, the core and the delta.
One fingerprint contains 0–2 cores and 0–2 deltas. Some
methods used SPs to pre-align the fingerprints [6], [26]. How-
ever, some fingerprints do not contain SPs. Therefore, using
SPs for pre-alignment is not reliable. In Table IX, we show
the percentages of fingerprints in which SPs are not detected
by the VeriFinger minutiae extractor. There are three cases for
the failure of SPs detection: 1) the finger does not contain SPs;
2) SPs are not present in the fingerprint image because of a big
displacement; and 3) the extractor fails to find the SPs. If we
only accept the fingerprints containing SPs, it will cause a high
failure-to-capture rate (FTCR). Therefore, we have designed
an algorithm in which SPs can assist the verification, while they
will not cause FTCR.

In our algorithm, SPs are used to avoid the limited-overlap
problems between the reference and test fingerprints. We use the
direct matching algorithm for the experiment and the matching
score without SP information is denoted as . Taking SML
as an example, the procedure is as follows.

1) In a minutiae set, only take the minutiae within distance
from the SPs as a new minutiae set to generate a

subset spectral minutiae representation (sub-SM). Thus,
depending on the number of SPs, each fingerprint can
generate 0–4 different sub-SMs.

2) During matching, if both the reference and test fingerprints
have the same type of SPs (both having at least 1 core
or 1 delta), 1–4 comparisons (the matching scores are de-
noted as ) will be generated. For example, if the
reference fingerprint has one core, while the test fingerprint
has two, the sub-SM from the reference fingerprint will be
compared with each of the sub-SMs from the test finger-
print. If the reference and test fingerprints have both two
cores, two comparisons will be generated by comparing the
sub-SMs from the upper-left core, and the sub-SMs from
the lower-right core, respectively.

3) The largest score among and is chosen as the
new matching score, denoted as .

4) A sum-rule fusion as presented in Section IV-D for
and is used as the final result for SML.

Finally, the steps 1–4 are also applied to SMO, and a sum-rule
fusion as presented in Section IV-D for SML and SMO is used
for a final result using SPs. We performed the experiments on the
three databases (using VeriFinger minutiae sets). Considering
the resolution and image size of fingerprints from each database
(see Table I), we chose the distance (pixel) for MCYT
and FVC2000-DB2, and (pixel) for FVC2002-DB2.
The results are shown in Table X and the ROC curves of FVC
databases are shown in Fig. 15 (for comparison, the ROC curves
without SPs improvement are also shown).

Fig. 13. ROC curves (MCYT: using direct matching).

Fig. 14. ROC curves (FVC: using direct matching).

TABLE IX
PERCENTAGES OF FINGERPRINTS WITHOUT SPs

TABLE X
RESULTS USING SPs (DIRECT MATCHING)

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on September 30, 2009 at 03:37 from IEEE Xplore.  Restrictions apply. 



406 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 3, SEPTEMBER 2009

Fig. 15. ROC curves using SPs.

TABLE XI
RESULTS COMPARISON ON FVC2002-DB2

F. Comparison

We compared our results with other well-known minutiae
matchers on the FVC2002-DB2 database: VeriFinger3 and
Fuzzy Vault according to the protocol in [8]. The results are
shown in Table XI. We notice that the commercial minutiae
matcher VeriFinger received much better results than ours. One
reason is that the VeriFinger matcher uses some fingerprint
features that are not defined in ISO minutiae template [15].
Another reason is that, with our global representation, we
cannot perform minutiae pair searching, which is a crucial step
for minutiae-based matching. These two reasons may cause the
degradation of our algorithm compared with VeriFinger.

We also compared the performance of our method with a
minutiae-based fingerprint recognition system combined with a
template protection scheme based on fuzzy vault, which is pre-
sented in [8]. The reason of this comparison is that in [8] an
alignment between a fingerprint pair using minutiae informa-
tion is also not possible. Please note that [8] includes a template
protection scheme, whereas our system does not. Moreover, be-
cause [8] implemented an alignment using high curvature points
derived from the fingerprint orientation field, this caused a 2%
FTCR, while our method does not suffer from this.

V. DISCUSSION

The spectral minutiae representations are minutiae-based al-
gorithms. A false rejection from a minutiae-based fingerprint
recognition system can be caused by several factors: 1) trans-
lation, rotation, and scaling deformations of minutiae; 2) non-

3VeriFinger Extractor Version 5.0.2.0 and VeriFinger Matcher version 5.0.2.1
are used.

linear distortions of minutiae; 3) limited overlap between the
reference and test fingerprints; 4) missing minutiae (the minu-
tiae extractor fails to detect the existing minutiae) and spurious
minutiae (the minutiae extractor falsely identifies a minutia);
and 5) errors on minutiae location and orientation.

The spectral minutiae matching algorithms have been de-
signed to cope with the minutiae translation, rotation and
scaling deformations (factor 1). Table VI shows that the man-
ually extracted minutiae receive a better recognition accuracy
than the automatically extracted minutiae (VeriFinger minutiae
sets). We assume that the manual extraction is accurate to detect
the true minutia and obtain its location and orientation, then
the performance degradation of the automatically extracted
minutiae is mainly caused by factors 4 and 5. However, the
manual minutiae cannot avoid errors related to limited overlap
and nonlinear distortions (factors 2 and 3). Therefore, we will
analyze our algorithms’ sensitivity to factors 3–5 in this sec-
tion. The nonlinear distortions (factor 2) can be included into
minutiae errors (factor 5). To measure the influences of these
three factors, we simulated them on the 1000 minutiae sets that
we manually extracted from MCYT. We used the parameter
setting in Section II-C and the direct matching algorithm to
perform the simulations.

A. Limited Overlap Between the Reference and Test

Fingerprints

During the verification phase, the finger may be placed at dif-
ferent locations and in different angles on the sensor, which re-
sults in a limited overlap between the reference and test finger-
prints. In both the SML and SMO algorithms, all the extracted
minutiae are used in the fingerprint representation; therefore, a
limited overlap between a fingerprint pair will cause an insuf-
ficient percentage of matching minutiae, and will lead to a re-
duced performance.

In order to study this effect, we performed simulations where
minutiae in a certain area were removed from the extracted
minutia set. During the simulation, based on the minutiae lo-
cation, we removed a fraction of minutiae at the top of a fin-
gerprint to obtain the reference minutia set. For the test minutiae
set, we removed a fraction of minutiae from the same finger-

print at the bottom (see Fig. 16). All the corresponding minutiae
are without any errors on both location and orientation. After the
minutiae removals, the corresponding minutiae fraction
between the reference and test fingerprints is

(29)

The matching results for different percentage are shown in
Fig. 17.

From the results we can see that when the removal percentage
is below 20% (in which case the corresponding minutiae per-
centage is above 75%), it will hardly cause any error
recognition in both the SML and SMO algorithms. When
increases, the performances of both algorithms degrade. Com-
pared with SMO, SML is more robust to the limited overlap
between a fingerprint pair.

B. Missing and Spurious Minutiae

An unreliable minutiae extractor or bad quality fingerprints
can bring a great number of missing and spurious minutiae,
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Fig. 16. Creation of limited overlap between a fingerprint pair.

Fig. 17. Simulation of limited overlap between the reference and test finger-
prints.

which will lead to an insufficient number of corresponding
minutiae, and then lead to a reduced performance. During the
simulation, we first discarded a fraction of randomly chosen
minutiae from a minutiae set to obtain a reference minutiae
set. Next, we discarded another fraction of minutiae from
the original minutiae set to obtain the test minutiae set. The
matching results for different are shown in Fig. 18.

Similar as the simulation results from the limited overlap
case, missing and spurious minutiae do not influence the EERs
if the removed fraction is below 20%. When increases, the
performances of both algorithms degrade. When is relatively
small (below to 35%), SML performances better than SMO.
When is bigger, SML degrades faster than SMO, which leads
to a worse performance.

C. Errors on Minutiae Location and Orientation

Many factors can cause errors on minutiae location and ori-
entation, such as an unreliable minutiae extractor, noisy fin-
gerprint images, and elastic deformations of fingerprints. The
latter one is even unavoidable for manually extracted minutiae.
During the simulation, the original minutiae sets are used as
reference minutiae sets. Then we add zero-mean Gaussian dis-
tributed noise to the minutiae location or/and orientation to build
test minutiae sets.

For the SML algorithm, we simulated the case of errors on the
minutiae location. For the SMO algorithm, we simulated three

Fig. 18. Simulation of missing and spurious minutiae.

cases: (a) errors only on the minutiae location; (b) errors only
on the minutiae orientation; and (c) errors on both the minutiae
location and orientation.

Fig. 19 shows the influence of minutiae location errors to
SML and SMO (the errors that we added are measured by pixels,
for our fingerprints, 1 pixel is about 0.05-mm distance in re-
ality). We can see that if the location errors are relatively small
(the standard deviation is smaller than 3 pixels), this will not
cause any false recognition. When the errors increase, the per-
formances of both SML and SMO degrade. When is smaller
than 7, SML performs better than SMO. When is bigger than
7, SML degrades faster than SMO, and finally leads to a worse
performance.

Fig. 20 shows the influence of different error cases to SMO.
To simulate a similar error scale on minutiae location and ori-
entation, we scaled to orientation such that 1 pixel error on the
location corresponds to 0.04 rad error on the orientation. Com-
pared with cases (a) and (b), we can see that the errors on minu-
tiae orientation cause much less performance degradation than
the errors on minutiae location. The case (a) and (c) show that
adding errors on orientation does not degrade the result greatly.

From Figs. 19 and 20, we also notice that when the errors
become bigger (for example, changes from 6 to 7), the EERs
can degrade with 6%. That is a big influence which cannot be
ignored.
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Fig. 19. Simulation of errors on the minutiae location (SML and SMO).

Fig. 20. Simulation of errors on the minutiae location and orientation (SMO).

VI. CONCLUSION

The spectral minutiae representation is a novel method to
represent a minutiae set as a fixed-length feature vector, which
enables the combination of fingerprint recognition systems
and template protection schemes. In order to be able to apply
the spectral minutiae representation with a template protection
scheme, for example based on a fuzzy extractor [27], the next
step would be to extract bits that are stable for the genuine user
and completely random for an arbitrary user. For example, we
can apply 2-D Gabor filters for bit extraction, which has been
used in iris codes [28]. Another possibility is to first apply
additional dimensionality reduction by a combination of PCA
and LDA and then apply single bit extraction according to the
reliable component scheme or multibit extraction [29].

The spectral minutiae representation avoids the difficulties of
minutiae registration by representing a minutiae set as a trans-
lation-invariant spectrum, in which rotation and scaling become
translations, which can be easily compensated for. Moreover,
this method is compatible with the large number of existing

minutiae databases and the additional cost to integrate this new
scheme is relatively low.

This paper introduces two spectral minutiae representation
methods: the SML and the SMO. Both algorithms are evalu-
ated using a correlation-based spectral minutiae matching al-
gorithm (direct matching) and a Fourier–Mellin matching al-
gorithm. From the experiments, the direct matching algorithm
gives a better performance. Comparing SML and SMO, SML
shows better results if the fingerprints are of good quality and the
minutiae extractor is reliable, while SMO is more robust against
the minutiae noise. After investigating the relation between the
SML and SMO results, a matching score based fusion is ap-
plied, which obtains better results. Finally, a method using SPs
showing a better performance is presented.

In this paper, we also discussed three factors that can de-
grade our algorithms’ performances: limited overlap between
the reference and test fingerprints; missing and spurious minu-
tiae; errors on minutiae location and orientation. It shows that
in general SML is more robust to all three factors. However,
if the percentage of missing and spurious minutiae is too high
( %), or the errors on minutiae location are too big [stan-
dard deviation (pixel)], then SMO shows a better per-
formance. Therefore, in case the fingerprints have good quality
and/or the minutiae extractor is reliable, SML shows a better
recognition performance. Overall, the performance can be im-
proved by implementing fusion of SML and SMO. However,
these three factors are unavoidable in a fingerprint recognition
system. To cope with the limited overlaps and to be more robust
against the minutiae errors are topics of further research.
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