
This paper is included in the Proceedings of the 

25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the 

25th USENIX Security Symposium 

is sponsored by USENIX 

Fingerprinting Electronic Control Units  
for Vehicle Intrusion Detection
Kyong-Tak Cho and Kang G. Shin, University of Michigan

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho



USENIX Association  25th USENIX Security Symposium 911

Fingerprinting Electronic Control Units for Vehicle Intrusion Detection

Kyong-Tak Cho and Kang G. Shin

The University of Michigan

{ktcho, kgshin}@umich.edu

Abstract

As more software modules and external interfaces are

getting added on vehicles, new attacks and vulnera-

bilities are emerging. Researchers have demonstrated

how to compromise in-vehicle Electronic Control Units

(ECUs) and control the vehicle maneuver. To counter

these vulnerabilities, various types of defense mecha-

nisms have been proposed, but they have not been able

to meet the need of strong protection for safety-critical

ECUs against in-vehicle network attacks. To mitigate

this deficiency, we propose an anomaly-based intrusion

detection system (IDS), called Clock-based IDS (CIDS).

It measures and then exploits the intervals of periodic

in-vehicle messages for fingerprinting ECUs. The thus-

derived fingerprints are then used for constructing a base-

line of ECUs’ clock behaviors with the Recursive Least

Squares (RLS) algorithm. Based on this baseline, CIDS

uses Cumulative Sum (CUSUM) to detect any abnormal

shifts in the identification errors — a clear sign of intru-

sion. This allows quick identification of in-vehicle net-

work intrusions with a low false-positive rate of 0.055%.

Unlike state-of-the-art IDSs, if an attack is detected,

CIDS’s fingerprinting of ECUs also facilitates a root-

cause analysis; identifying which ECU mounted the at-

tack. Our experiments on a CAN bus prototype and on

real vehicles have shown CIDS to be able to detect a wide

range of in-vehicle network attacks.

1 Introduction

Security has now become an important and real concern

to connected and/or automated vehicles. The authors

of [9] systematically analyzed different attack vectors in

vehicles (e.g., Bluetooth, Cellular), and showed that in-

vehicle Electronic Control Units (ECUs) can be compro-

mised for remote attacks. Through a compromised ECU,

the adversary can control the vehicle by injecting pack-

ets in the in-vehicle network [20, 23]. Researchers have

also been able to compromise and remotely stop a Jeep

Cherokee running on a highway [7, 25], which triggered

a recall of 1.4 million vehicles. Such a reality of vehi-

cle attacks has made automotive security one of the most

critical issues.

As a countermeasure against such attacks on in-

vehicle networks, two main lines of defense have been

pursued: message authentication and intrusion detec-

tion. Although message authentication provides a certain

level of security and is shown to be efficient for Internet

security, its adoption in in-vehicle networks is hindered

by (i) the limited space available for appending a Mes-

sage Authentication Code (MAC) in in-vehicle messages

and (ii) its requirements of real-time processing and com-

munication.

Various types of Intrusion Detection Systems (IDS)

have been proposed [16, 23, 30, 31]. The essence of

state-of-the-art IDSs is to monitor the contents and the

periodicity of in-vehicle messages and verify whether

there are any significant changes in them. Since they

are either constant or predictable in in-vehicle networks,

such approaches can be feasible in most circumstances.

However, there still remain critical attacks which exist-

ing IDSs can neither detect nor prevent, for two main rea-

sons: 1) in-vehicle messages do not carry information on

their transmitters, and thus one cannot tell whether they

originate from genuine transmitters; and 2) lack of the

transmitters’ information makes it very difficult or im-

possible for state-of-the-art IDSs to identify which ECU

has mounted an attack.

To overcome these limitations and defend against var-

ious vehicle attacks, we propose a new anomaly-based

IDS, called Clock-based IDS (CIDS). The need of CIDS

for vehicles is motivated through an analysis of three

representative in-vehicle network attacks — fabrication,

suspension, and masquerade attacks. Our analysis shows

that state-of-the-art IDSs are insufficient, especially in

detecting the masquerade attack due to the absence of

the transmitters’ information in messages. CIDS over-
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comes these limitations of existing IDSs by fingerprint-

ing in-vehicle ECUs. Researchers have proposed vari-

ous schemes for fingerprinting network devices by esti-

mating their clock skews through the timestamps carried

in their control packet headers [17, 19, 34, 42]. How-

ever, since such embedded timestamps are not available

for in-vehicle networks making them inapplicable, CIDS

fingerprints in-vehicle ECUs in a very different way.

CIDS monitors the intervals of (commonly seen) peri-

odic in-vehicle messages, and then exploits them to esti-

mate the clock skews of their transmitters which are then

used to fingerprint the transmitters. That is, instead of

assuming or requiring timestamps to be carried in mes-

sages for fingerprinting, CIDS exploits the periodic fea-

ture (seen at receivers) of in-vehicle network messages

for fingerprinting transmitter ECUs. This makes CIDS

invulnerable to attackers who use faked timestamps and

thus clock skews — a problem that timestamp-based fin-

gerprinting schemes cannot handle. Based on the thus-

obtained fingerprints, CIDS constructs a norm model

of ECUs’ clock behaviors using the Recursive Least

Squares (RLS) algorithm and detects intrusions with a

Cumulative Sum (CUSUM) analysis. This enables CIDS

to detect not only attacks that have already been demon-

strated or discussed in literature, but also those that are

more acute and cannot be detected by state-of-the-art

IDSs. Our experimental evaluations show that CIDS de-

tects various types of in-vehicle network intrusions with

a low false-positive rate of 0.055%. Unlike state-of-the-

art IDSs, if an intrusion is detected in CIDS, its finger-

printing capability facilitates identification of the (com-

promised) ECU that mounted the attack. We validate

these capabilities of CIDS through experimental evalu-

ations on a CAN bus prototype and on real vehicles.

We focus on building CIDS for Control Area Net-

work (CAN), which is the de facto standard in-vehicle

network. Its applicability to other in-vehicle network

protocols is also discussed in Section 6. Considering

the ubiquity of CAN and its direct relationship with the

drivers/passengers’ safety, it is critically important to

build as capable a CAN bus IDS as possible.

This paper makes the following contributions:

• Development of a novel scheme of fingerprinting

ECUs by exploiting message periodicity;

• Proposal of CIDS, which models the norm behav-

ior of in-vehicle ECUs’ clocks based on fingerprints

and then detects in-vehicle network intrusions;

• Implementation and validation of CIDS on a CAN

bus prototype as well as on 3 real vehicles.

The rest of the paper is organized as follows. Sec-

tion 2 provides the necessary background of CAN and

IDS-related work, and Section 3 details the attack model
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Figure 1: Format of a CAN data frame.

we consider. Section 4 details the design of CIDS, which

is evaluated in Section 5 on a CAN bus prototype as well

as on three real vehicles. Section 6 discusses CIDS fur-

ther, such as its overhead and extension to emerging in-

vehicle networks. Finally, we conclude the paper in Sec-

tion 7.

2 Background

For completeness, we first provide necessary background

on the CAN protocol, and then discuss the related work

on security solutions for in-vehicle networks.

2.1 Primer on CAN Protocol

CAN frame. CAN is the most widely deployed in-

vehicle communication protocol, which interconnects

ECUs/nodes through a multi-master, message broadcast

bus system [4]. To maintain data consistency and make

control decisions, data is exchanged between ECUs via

CAN frames, the format of which is shown in Fig. 1.

A CAN frame contains fields such as ID, Data Length

Code (DLC), Data, and CRC. Since CAN is message-

oriented, instead of containing the transmitter/receiver

address, a CAN frame contains a unique ID which rep-

resents its priority and meaning. For example, a frame

with ID=0x20 may contain wheel speed values whereas

a frame with ID=0x55 may contain temperature values.

Arbitration. Once the CAN bus is detected idle,

nodes with buffered messages to transmit, attempt to ac-

cess the bus. Multiple nodes could attempt to access

the bus simultaneously, i.e., contention occurs for access.

Such a contention is resolved via bus arbitration as fol-

lows. Each node first transmits the ID value of its CAN

frame one bit at a time, starting with the most signifi-

cant bit. Since CAN is designed to logically behave as

a wired-AND gate, some contending nodes see an out-

put of 0 from the bus, although they had transmitted 1.

Such nodes withdraw from bus contention and switch

to the receive mode. As a result, among the contend-

ing nodes, the ECU sending the message with the lowest

ID value wins arbitration, and gains exclusive access for

message transmission. Those which have lost arbitration

re-attempt to transmit once the bus becomes idle again.

Synchronization. For proper bitwise message trans-

mission and reception, hard and soft bit synchronizations

are achieved, respectively, by using the Start-of-Frame

(SOF) signal and bit stuffing in CAN frames [4]. Al-
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though these provide alignment of bit edges for message

exchange, they do not synchronize the clocks of ECUs,

i.e., CAN lacks clock synchronization. Thus, since time

instants for ECUs are provided by their own quartz crys-

tal clocks, these clocks, in reality, run at different fre-

quencies, resulting in random drifting of clocks: a drift

of 2400ms over a period of 24 hours is possible [27].

2.2 Related Work

To defend against various types of vehicle cyber attacks,

there have been two main streams of security solutions:

message authentication and intrusion detection.

Message authentication. In the area of Internet se-

curity, cryptographic message authentication provides

strong protection against forgery. Thus, researchers have

attempted to borrow such approaches from the domain

of Internet security to address in-vehicle network secu-

rity problems. However, since the maximum payload

length allowed in the CAN data field is only 8 bytes, the

available space for appending a cryptographically secure

Message Authentication Code (MAC) is very limited,

i.e., the protocol specification limits its maximum cryp-

tographic strength. To overcome this difficulty, rather

than appending a MAC in one CAN frame’s data field,

the authors of [38] proposed to truncate it across multi-

ple frames. Instead of the data field, the authors of [33]

proposed to use multiple CRC fields to include 64 bits of

CBC-MAC. The authors of [15] suggested to exploit an

out-of-band channel for message authentication.

Although such preventive measures provide some de-

gree of security, they alone cannot guarantee complete

security due to their inability to handle certain critical

attacks, e.g., Denial-of-Service (DoS). Moreover, their

operations not only require a significant amount of pro-

cessing power but also increase message latencies and

bus utilization. Since in-vehicle networks must operate

in real time and ECUs are resource-limited for cost rea-

sons, unlike in the Internet, these “costs” of preventive

measures hinder their adoption [30]. More importantly,

when an adversary has full access to any data stored

in RAM and/or FLASH, including data used for imple-

menting security mechanisms (e.g., shared secret keys),

some cryptographic solutions become incapable [24].

Intrusion detection. To overcome such limitations of

preventive measures, different Intrusion Detection Sys-

tems (IDSs) have been proposed. Some state-of-the-art

IDSs exploit the fact that most CAN messages are peri-

odic, i.e., sent at fixed time intervals. The authors of [30]

proposed an IDS which monitors the intervals of periodic

messages, measures their entropies, and exploits them

for intrusion detection. Similarly, a method of model-

ing the distribution of message intervals, and utilizing it

for intrusion detection was proposed in [23]. In addition

to message frequency, researchers also proposed to ver-

ify the message contents. The authors of [31] exploited

in-vehicle sensors to verify message range, correlation,

etc. Abnormal measurements on brake-related sensors

were detected by using the tire-friction model [10].

Although existing IDSs are capable of detecting most

attacks through the above approaches, they fail to cover

some critical attacks which are more acute, and thus are

not sufficient to provide security. We will elaborate on

such shortcomings of state-of-the-art IDSs while ana-

lyzing the attack scenarios under consideration in Sec-

tion 3.3.

3 Attack Model

We first discuss the adversary model under considera-

tion, and then the three representative attack scenarios.

3.1 Adversary Model

Adversaries can physically/remotely compromise more

than one in-vehicle ECU via numerous attack surfaces

and means [9]. We consider an adversary who wants to

manipulate or impair in-vehicle functions. The adversary

can achieve this by either injecting arbitrary messages

with a spoofed ID into the in-vehicle network, which we

refer to as attack messages, or by stopping/suspending

message transmissions of the compromised ECU.

Strong and weak attackers. Depending on their

hardware, software, and attack surfaces, ECUs of dif-

ferent vehicles have different degrees of vulnerabilities,

thus providing attackers different capabilities. So, we

consider two different types of compromised ECUs: fully

and weakly compromised ECUs.

Through a weakly compromised ECU, the attacker is

assumed to be able to stop/suspend the ECU from trans-

mitting certain messages or keep the ECU in listen-only

mode, but cannot inject any fabricated messages. We

call such an attacker with limited capabilities a weak

attacker, and will use this term interchangeably with

“weakly compromised ECU”.

In contrast, with a fully compromised ECU, the at-

tacker is assumed to have full control of it and access

to memory data. Thus, in addition to what a weak at-

tacker can do, the attacker controlling a fully compro-

mised ECU can mount attacks by injecting arbitrary at-

tack messages. We call such an attacker with more attack

capabilities a strong attacker, and will use this term in-

terchangeably with a “fully compromised ECU”. Even

when preventive security mechanisms (e.g., MAC) are

built into the ECUs, since the strong attacker has full ac-

cess to any data stored in their memory, including data

used for implementing security mechanisms (e.g., shared

secret keys), it can disable them [24]. On the other hand,
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Figure 2: Three representative attack scenarios on in-vehicle networks.

a weak attacker can only stop, or listen to message trans-

missions, but cannot start a new one.

Foster et al. [13] have recently proved the possible ex-

istence of these two types of attackers in in-vehicle net-

works. They have shown that the firmware versions of

telematics units can affect/limit the attacker’s capabili-

ties in injecting and monitoring in-vehicle network mes-

sages. Specifically, for a certain firmware version of the

telematics unit, an attacker having control of that ECU

was shown to be able to receive CAN messages but un-

able to send the messages. On the other hand, for some

other firmware versions, the attacker was capable of both

sending and receiving CAN messages to and from the in-

vehicle network. In other words, the firmware version of

an ECU determines which type of an attacker — strong

or weak — it can become, if compromised.

To further comprehend how and why these two

different types of attackers can exist, let’s consider

one of the most common CAN controllers, Microchip

MCP2515 [1]. For ECUs with such a controller, various

operation modes like configuration, normal, and listen-

only can be selected by user instructions through the

Serial Peripheral Interface (SPI). Thus, user-level fea-

tures for configuring the CAN controller allow attackers

to easily enter different modes (e.g., listen-only mode

for a weak attacker). In contrast, there are no such

features allowing attackers to easily inject forged mes-

sages. In other words, the specification of the ECU hard-

ware/software, if compromised, can restrict the adver-

sary to become a weak attacker only. Note that the re-

quired functionalities of a strong attacker subsume those

of a weak attacker. It is thus easier for an adversary to be-

come a weak attacker than a strong attacker, let alone re-

searchers have already demonstrated how to create such

a strong attacker [9, 20, 23, 24].

3.2 Attack Scenarios

Based on the adversary model discussed so far, we con-

sider the following attack scenarios that can severely im-

pair in-vehicle functions: fabrication, suspension, and

masquerade.1

Fabrication attack. Through an in-vehicle ECU com-

promised to be a strong attacker, the adversary fabricates

and injects messages with forged ID, DLC, and data.

The objective of this attack is to override any periodic

messages sent by a legitimate safety-critical ECU so that

their receiver ECUs get distracted or become inoperable.

For example, as shown in Fig. 2(a), the strong attacker A

injects several attack messages with ID=0xB0, which is

usually sent by a legitimate ECU B, at a high frequency.

Thus, other nodes which normally receive message 0xB0

are forced to receive the fabricated attack messages more

often than the legitimate ones. We refer to such a case

as A mounting a fabrication attack on message 0xB0 or

its genuine transmitter B. Demonstrated attacks such as

controlling vehicle maneuver [20] and monopolizing the

CAN bus with highest priority messages [16] exemplify

a fabrication attack.

Suspension attack. To mount a suspension attack,

the adversary needs only one weakly compromised ECU,

i.e., become a weak attacker. As one type of Denial-of-

Service (DoS) attack, the objective of this attack is to

stop/suspend the weakly compromised ECU’s message

transmissions, thus preventing the delivery/propagation

of information it acquired, to other ECUs. For some

ECUs, they must receive certain information from other

ECUs to function properly. Therefore, the suspension at-

tack can harm not only the (weakly) compromised ECU

itself but also other receiver ECUs. An example of this

attack is shown in Fig. 2(b) where the weak attacker hav-

ing control of the Electric Power Steering ECU B stops

transmitting its measured steering wheel angle value. So,

the Electronic Stability Control (ESC) ECU A, which re-

quires the steering wheel angle value from B for detect-

ing and reducing the loss of traction, no longer receives

its updates and thus malfunctions.

Masquerade attack. To mount a masquerade attack,

the adversary needs to compromise two ECUs, one as

a strong attacker and the other as a weak attacker. The

1In this paper, we focus on only these three attack scenarios and

do not consider others as they may be less feasible or harmful, or be

detectable by existing IDSs.
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objective of this attack is to manipulate an ECU, while

shielding the fact that an ECU is compromised. Fig. 2(c)

shows an example where the adversary controls a strong

attacker A and a weak attacker B. Until time Tmasq, the

adversary monitors and learns which messages are sent at

what frequency by its weaker attacker, e.g., B sends mes-

sage 0xB0 every 20ms. Since most in-vehicle network

messages are periodic and broadcast over CAN, it is easy

to learn their IDs and intervals. Once it has learned the

ID and frequency of a message, at time Tmasq, the ad-

versary stops the transmission of its weak attacker and

utilizes its strong attacker A to fabricate and inject attack

messages with ID=0xB0. Stopping B’s transmission and

exploiting A for transmission of attack messages are to

overcome the weak attacker’s inability of injecting mes-

sages. After Tmasq, the original transmitter of 0xB0, B,

does not send that message any longer, whereas A sends

it instead at its original frequency. So, when the CAN

bus traffic is observed, the frequency of message 0xB0

remains the same, whereas its transmitter has changed.

We refer to such a case as A mounting a masquerade at-

tack on message 0xB0 or its original transmitter B.

In fact, in order to attack and remotely stop a Jeep

Cherokee running on a highway, Miller et al. [25] had to

control its ABS collision prevention system by mount-

ing a masquerade (not fabrication) attack. In contrast to

other vehicles which they had previously examined (e.g.,

Toyota Prius), the Jeep Cherokee’s brake was not con-

trollable via the fabrication attack as its ABS collision

prevention system, which was the attack vector for en-

gaging brakes, was switched off when the fabrication at-

tack was mounted. On the other hand, when mounting

the masquerade attack, the system was not switched off,

thus allowing them to control the Jeep Cherokee’s brak-

ing maneuver.

Using masquerade attacks, the adversary can

not only inject attack messages from the compro-

mised/impersonating ECU but also cause other severe

problems, significantly degrading the in-vehicle net-

work performance. The impersonating ECU sending a

message instead of another ECU implies that it would

generate more messages to periodically transmit than be-

fore, making its transmit buffer more likely overloaded.

This may, in turn, lead to severe consequences, such

as non-abortable transmission requests [12], deadline

violation [18], and significant priority inversion [32].

Moreover, the original sequence of messages may also

change, thus failing to meet the requirement of some

in-vehicle messages to be sent sequentially in a correct

order for proper vehicle operations. These network

problems from a masquerade attack occur while not

deviating much from the norm network behavior (e.g.,

message frequency remains the same). This is in sharp

contrast to the cases of mounting a fabrication attack

or a suspension attack, which may also incur similar

problems. Such problems have been identified to be

critical since they degrade the real-time performance

of CAN significantly, and thus undermine vehicle

safety [12, 18, 32]. The masquerade attack can thus

cause more problems to the in-vehicle network than just

injecting attack messages.

3.3 Defense Against the Attacks

When the fabrication or suspension attack is mounted,

the frequency of certain messages significantly and ab-

normally increases or decreases, respectively. Thus, if

state-of-the-art IDSs [16, 23, 30, 31], which monitor the

message frequencies, were to be used, the attacks can be

detected.

When mounting the masquerade attack, however, the

adversary does not change the original frequency of mes-

sages. Thus, the adversary may use this attack to evade

state-of-the-art IDSs. Moreover, if the adversary does

not change the content of messages as well, it can be-

have like a legitimate ECU. However, the adversary may

later mount other types of attacks (e.g., a fabrication at-

tack) through the impersonating ECU. Hence, defending

against the masquerade attack implies not only detect-

ing the attack reactively, but also preventing other attacks

proactively.

4 Clock-Based Detection

Although state-of-the-art IDSs are capable of detecting

some basic attacks such as fabrication attack and suspen-

sion attack, they fail to detect more sophisticated ones

such as the masquerade attack for the following reasons.

• No authenticity — CAN messages lack information

on their transmitters. So, existing IDSs do not know

whether or not the messages on the CAN bus were

sent by the genuine transmitter, and hence cannot

detect any changes of the message transmitter.

• Inability of identifying a compromised ECU —

Lack of the transmitter’s information makes it very

difficult or impossible for state-of-the-art IDSs to

identify which of compromised ECUs mounted an

attack.

If CAN frames do not carry any information on their

transmitters, how could an IDS identify them and de-

tect intrusions such as the masquerade attacks? Which

behavior of CAN should the IDS model for detection of

such intrusions? We answer these questions by devel-

oping a novel IDS, CIDS, which exploits message fre-

quency to fingerprint the transmitter ECUs, and models

a norm behavior based on their fingerprints for intrusion
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detection. We focus on detecting intrusions in periodic

messages as most in-vehicle messages are sent periodi-

cally [32, 36].

4.1 Fingerprinting ECUs

For each in-vehicle ECU in CAN, the time instants of

periodic message transmissions are determined by its

quartz crystal clock [27]. We follow the nomenclature

of clocks of the NTP specification [26] and Paxson [35].

Let Ctrue be a “true” clock which reports the true time at

any moment and Ci be some other non-true clock. We

define the terms “clock offset, frequency, and skew” as

follows.

• offset: difference in the time reported by clock Ci

and the true clock Ctrue. We define relative offset as

the offset between two non-true clocks.

• frequency: the rate at which clock Ci advances.

Thus, the frequency at time t is C�

i(t)≡ dCi(t)/dt.

• skew: difference between the frequencies of clock

Ci and the true clock Ctrue. We define relative skew

as the difference in skews of two non-true clocks.

If two clocks have relative offset and skew of 0, then

they are said to be synchronized. Otherwise, we consider

they are unsynchronized. Since CAN lacks clock syn-

chronization, it is considered to be unsynchronized.

Clock skew as a fingerprint. The clock offsets and

skews of unsynchronized nodes depend solely on their

local clocks, thus being distinct from others. As others

have also concluded [17, 19, 42], clock skews and offsets

can therefore be considered as fingerprints of nodes. Var-

ious studies have exploited this fact to fingerprint phys-

ical devices [17, 19, 34, 42]. However, they are not ap-

plicable to our problem as they exclusively rely on the

timestamps carried in the packet headers, which are, as

discussed before, not available in in-vehicle networks.

Kohno et al. [19] considered an alternative to embed-

ded timestamps: using Fourier Transform for clock skew

estimation. However, as their approach relies on the

unique characteristics of the Internet (e.g., multi-hop de-

lays, large network topology), it cannot be directly ap-

plied to in-vehicle networks.

To build an effective IDS, which can detect various

types of attack including the masquerade attack, it should

be capable of verifying the transmitter of each message.

However, since such information is not present in CAN

messages, we must fingerprint ECUs with other “leaked”

information. Unlike the existing approaches that exploit

embedded timestamps, we exploit message periodicity to

extract and estimate the transmitters’ clock skews, which

are then used to fingerprint the transmitter ECUs.
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Clock skew estimation. Consider an ECU A which

broadcasts a message every T ms and an ECU R which

periodically receives that message. From the perspec-

tive of R, since only its timestamp is available, we con-

sider its clock as the true clock. As shown in Fig. 3,

due to the clock skew, periodic messages are sent at

times with small offsets from the ideal values (e.g., T ,

2T , 3T , · · · ). Let t = 0 be the time when the first mes-

sage was sent from A, and Oi be the clock offset of A

when it sends the i-th message since t = 0. Then, after

a network delay of di, ECU R would receive that mes-

sage and put an arrival timestamp of iT +Oi + di + ni,

where ni denotes the noise in R’s timestamp quantiza-

tion [42]. Thus, the intervals between each arrival times-

tamp, Trx,i = T +∆Oi+∆di+∆ni, where ∆Xi denotes the

difference of X between step i and i − 1, and O0 = 0.

Since the change in Oi within one time step is negligible

and ni is a zero-mean Gaussian noise term [2], the ex-

pected value of the timestamp intervals, µTrx = E[Trx,i],
can be expressed as:

µTrx = E[T +∆Oi +∆di +∆ni]

= T +E[∆Oi +∆di +∆ni]

≈ T,

(1)

where the second equality holds since T is a pre-

determined constant. Since the data lengths of CAN pe-

riodic messages, i.e., DLCs, are constant over time, for

now, we consider E[∆di] = 0. Later in Section 4.4, we

will discuss the case when di is not constant, and how it

may affect the performance of CIDS.

Based on the arrival timestamp of the first message,

d0 +n0, and the average of timestamp intervals, µTrx , we

extrapolate and determine the estimated arrival time of

the i-th message as iµTrx + d0 + n0, whereas the actual

measured arrival time is iT + Oi + di + ni. As we are

estimating subsequent arrival times, µTrx is determined

by past measurements. Since T is constant over time and

thus again µTrx ≈ T , the average difference between the

estimated and measured times is:

E[D] = E[i(T −µTrx)+Oi +∆d +∆n]≈ E[Oi]. (2)

That is, from message periodicity, we can estimate the

average clock offset, E[Oi], which will indeed be dis-

tinct for different transmitters. Since clock offset is
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Algorithm 1 Clock skew estimation with RLS

1: Initialize: S[0] = 0, P[0] = δ I

2: function SKEWUPDATE(t,e) � RLS algorithm

3: G[k]←
λ−1P[k−1]t[k]

1+λ−1t2[k]P[k−1]

4: P[k]← λ−1(P[k−1]−G[k]t[k]P[k−1])
5: return S[k]← S[k−1]+G[k]e[k]
6: end function

7: for kth step do

8: a0 ← arrival timestamp of most recently rxed message

9: n ← 1

10: while n ≤ N do

11: if current time � an−1 then

12: /* No longer receives the message */

13: an, · · · ,aN ← significantly high values

14: Tn, · · · ,TN ← significantly high values

15: break

16: else

17: an ← arrival timestamp of nth message

18: Tn ← an −an−1 � Timestamp interval

19: n ← n+1

20: end if

21: end while

22: µT [k]←
1
N ∑

N
i=1 Ti � Avg. timestamp interval

23: O[k]← 1
N−1 ∑

N
i=2 ai − (a1 +(i−1)µT [k−1])

24: Oacc[k]← Oacc[k−1]+ |O[k]| � Accumulated offset

25: e[k]← Oacc[k]−S[k−1]t[k] � Identification error

26: S[k]← SKEWUPDATE(t,e) � Clock skew

27: end for

slowly varying and non-zero [17, 42], E[Oi] �= 0, whereas

E[∆Oi] = 0.

If ECU R were to determine the average clock offset

for every N received messages, since it is derived in ref-

erence to the first message (of N messages), it represents

only the average of newly incurred offsets. Thus, to ob-

tain the total amount of incurred offset, which we call

the accumulated clock offset, the absolute values of the

average clock offsets have to be summed up. By defini-

tion, the slope of the accumulated clock offset would thus

represent the clock skew, which is constant as we will

show and as others have also concluded [19, 29, 35, 40].

This enables CIDS to estimate the clock skew from ar-

rival timestamps and thus fingerprint the message trans-

mitter for intrusion detection. We will later show, via ex-

perimental evaluations on a CAN bus prototype and on 3

real vehicles, that the thus-derived clock skew is indeed

a fingerprint of an in-vehicle ECU.

4.2 CIDS — Per-message Detection

By determining the clock skew from observation of mes-

sage intervals, transmitter ECUs can be fingerprinted.

We exploit this in designing CIDS, a clock-based IDS

for in-vehicle networks which detects intrusions in two

different ways: per-message detection and message-

pairwise detection, where the latter supplements the for-

mer in reducing false positive/negative results. Next, we

first discuss per-message detection and then pairwise de-

tection.

Modeling. For a given message ID, CIDS derives the

accumulated clock offset inherent in the arrival times-

tamps. Since clock skew is constant, the accumulated

clock offset is linear in time, and hence CIDS describes it

as a linear regression model. A linear parameter identifi-

cation problem is thus formulated as:

Oacc[k] = S[k] · t[k]+ e[k], (3)

where at step k, Oacc[k] is the accumulated clock offset,

S[k] the regression parameter, t[k] the elapsed time, and

e[k] the identification error. The regression parameter

S represents the slope of the linear model and thus the

estimated clock skew. The identification error, e, repre-

sents the residual which is not explained by the model.

In CIDS, Oacc, S, t, and e are updated every N messages,

i.e., kN messages are examined up to step k.

To determine the unknown parameter S, we use the

Recursive Least Squares (RLS) algorithm [14], which

uses the residual as an objective function to minimize the

sum of squares of the modeling errors. Hence, in RLS,

the identification error skews towards 0, i.e., has 0 mean.

We will discuss the computational overhead of RLS as

well as other possible solutions in Section 6.

Algorithm 1 describes how the clock skew is estimated

using RLS. First, CIDS measures the arrival times and

their intervals of N messages for a given ID. If the in-

tended message has not been received for a long time —

possibly due to suspension attack — as in line 13–14,

CIDS sets the remaining timestamp and interval values

significantly higher. Once N values are measured, CIDS

determines the accumulated clock offset and accordingly,

the identification error. Based on the thus-derived value,

the gain, G, and the covariance, P, are updated with RLS

for identifying the regression parameter S, i.e., estimate

clock skew. This procedure of clock skew estimation

continues iteratively during the operation of CIDS and, if

uncompromised, outputs an identification error skewed

towards 0 and a constant clock skew. This way, the norm

clock behavior of the transmitter can be described as a

linear model with the clock skew being the slope. In

RLS, a forgetting factor, λ , is used to give exponentially

less weights to older samples and thus provide freshness.

In CIDS, we set λ=0.9995.

Detection. For a given message ID, CIDS runs RLS

for clock skew estimation, constructs a norm model on

clock behavior, and verifies whether there are any abnor-

mal measurements deviating from it, i.e., intrusions.

Consider a fabrication attack in which the adversary

injects an attack message with ID=0x01, which is orig-

inally sent every 10ms by some ECU. The fabrication
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attack significantly increases the absolute average differ-

ence between the estimated and measured arrival times

of 0x01. As a result, due to a sudden increase in the

rate at which the accumulated clock offset changes, a

high identification error results. Similarly, when the sus-

pension attack is mounted, the absolute average differ-

ence also increases and thus a high error is also incurred.

When a masquerade attack is mounted, since the adver-

sary sends the message through a different ECU than its

original one, the increase rate of accumulated clock off-

set, i.e., clock skew, suddenly changes and also results in

a high identification error. In summary, unlike when the

mean of identification error should usually skew towards

0, which is the norm clock behavior, its mean suddenly

shifts towards a high non-zero value when there is an in-

trusion.

CIDS exploits the Cumulative Sum (CUSUM) method,

which derives the cumulative sums of the deviations from

a target value to detect sudden shifts. Since it is cumu-

lative, even minor drifting from the target value leads to

steadily increasing or decreasing cumulative values. It

is therefore optimal in detecting small persistent changes

and is widely used for change-point detection [8]. CIDS

detects intrusions via CUSUM as follows. At each step

of clock skew estimation, CIDS updates the mean and

variance of the identification errors (e), µe and σ2
e , re-

spectively. In CIDS, these values represent the CUSUM

target values of e (i.e., norm clock behavior), and thus

require proper tracking. Hence, as a precaution of ab-

normal values incurring from an attack to be reflected

into the target values, µe and σ2
e are updated only if

| e−µe

σe
| < 3. Then, per derived identification error e, the

upper and lower control limits of CUSUM, L+ and L−

are updated as [41]:

L+ ← max
[

0,L++(e−µe)/σe −κ
]

L− ← max
[

0,L−− (e−µe)/σe −κ
] (4)

where κ is a parameter reflecting the number of standard

deviations CIDS intends to detect. Note that κ can be

learned offline, or by monitoring normal in-vehicle traf-

fic. If either of the control limits, L+ or L−, exceeds a

threshold ΓL, a sudden positive or negative shift in value

has been detected, respectively, and thus CIDS declares it

as an intrusion. As the general rule of thumb for CUSUM

is to have a threshold of 4 or 5 [28], we set ΓL = 5.

4.3 CIDS — Message-pairwise Detection

In addition to per-message detection, CIDS also alarms

intrusions via message-pairwise detection, which exam-

ines the correlation between the average clock offsets in

two periodic messages. Consider two messages M1 and

M2 periodically sent by an ECU A. Since these messages

originate from the same transmitter, their instantaneous

average clock offsets are likely equivalent. Thus, the cor-

relation coefficient, ρ , between their average clock off-

sets (derived per step) would show a high value close to

1, i.e., correlated. On the other hand, if the two messages

were sent by different ECUs, ρ � 0, i.e., uncorrelated.

Modeling and detection. If clock offsets in two mes-

sages are highly correlated (ρ > 0.8), their relationship

can be linear. So, CIDS describes them as a linear re-

gression model: OM2
[k] = αOM1

[k]+ecorr[k], where OMi

denotes the average clock offset of message Mi at step

k, α the regression parameter, and ecorr[k] the identifica-

tion error. As per-message detection, message-pairwise

detection is also based on a linear model. Thus, we ap-

ply the same detection method, CUSUM. Since message-

pairwise detection seeks intrusions from a different per-

spective than per-message detection, it reduces false pos-

itive/negative results. Note, however, that message-

pairwise detection is only applicable when two mes-

sages’ clock offsets are highly correlated, whereas per-

message detection is applicable to any periodic message.

Moreover, albeit effective, it requires pairwise computa-

tions. Therefore, we use message-pairwise detection as

an optional feature of CIDS. We will later show via ex-

perimental evaluations how message-pairwise detection

further improves the performance of CIDS.

4.4 Verification

To reduce possible false positives/negatives, CIDS also

performs a verification process. Suppose that a possible

intrusion was alarmed due to a high identification error

when verifying message Vi, the i-th message of V . Al-

though such a high error can be due to an intrusion, it

can also be due to an incorrect computation of average

clock offset. In Section 4.1, we considered E[∆di] = 0

and could thus extract and determine the average clock

offset. Although this is true in most cases, occasionally

E[∆di] �= 0, which affects the accuracy of deriving the

true clock offset and thus the detection result. In CAN,

E[∆di] �= 0 only occurs if the transmission of Vi was de-

layed due to the bus being busy or its transmitter losing

arbitration when attempting to send Vi. Note that the lat-

ter also results in the bus being busy before the trans-

mission/reception of Vi. Thus, CIDS also checks if the

possibility of E[∆di] �= 0 is the main cause of a (possibly

false) alarm of intrusion by verifying whether the CAN

bus was busy right before receiving Vi. This way, CIDS

enhances its detection accuracy. However, as discussed

before, usually E[∆di] = 0 in an actual CAN bus due to

its high speed, its messages having short lengths, and low

bus load. In other words, the nature of CAN bus commu-

nication helps CIDS reduce false positives/negatives.
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(a) CAN bus prototype. (b) The vehicle used for experiment. (c) Connection to the vehicle.

Figure 4: Different evaluation settings: (a) CAN bus prototype; (b) Honda Accord 2013 used for experiments on real

vehicle; and (c) three prototype nodes communicating with real ECUs through the OBD-II port.

4.5 Root-cause Analysis

When an intrusion is detected for some message

ID, CIDS can also identify which compromised ECU

mounted the attack. It can extract the clock skew for

that attacked message ID, compare it with other clock

skew values extracted from other message IDs, and ex-

ploit the comparison result in determining whether they

originated from the same transmitter. This way, CIDS can

at least reduce the scope of ECUs which may (or may

not) have mounted the attack, thus facilitating a root-

cause analysis.

5 Evaluation

We now validate that clock skews can be used as finger-

prints of transmitter ECUs, and evaluate the performance

of CIDS on a CAN bus prototype and real vehicles.

CAN bus prototype: As shown in Fig. 4(a), we built

a prototype with 3 CAN nodes, each of which consists of

an Arduino UNO board and a SeeedStudio CAN shield.

The CAN bus shield consists of a Microchip MCP2515

CAN controller, MCP2551 CAN transceiver, and a 120Ω

terminal resistor to provide CAN bus communication ca-

pabilities. This prototype was set up to operate at a

500Kbps bus speed as in typical CAN buses. The first

node A was programmed to send messages 0x11 and

0x13 every 50ms, and the second node B to send mes-

sage 0x55 at the same frequency. The third node R was

programmed to run CIDS.

Real vehicle: A 2013 Honda Accord (Fig. 4(b)) is also

used for our experiments in an isolated and controlled

(for safety) environment. As shown in Fig. 4(c), via the

On-Board Diagnostic (OBD-II) system port [3], we con-

nected our CAN bus prototype nodes — which function

as an adversary or CIDS — to the in-vehicle network.

Through the OBD-II port, the three nodes were able to

communicate with real ECUs.

CAN log data: To further validate that CIDS’s fin-

gerprinting is applicable to other vehicles, we also re-

fer to CAN traffic data logged from a Toyota Camry

2010 by Ruth et al. [36] and data logged from a Dodge

Ram Pickup 2010 by Daily [11]. Both data were logged

through a Gryphon S3 and Hercules software. In the Toy-

ota Camry 2010, there were 42 distinct messages trans-

mitted on the CAN bus: 39 of them sent periodically at

intervals ranging from 10ms to 5 seconds, and 3 of them

sent sporadically. In the Dodge Ram Pickup 2010, there

were 55 distinct messages which were all sent periodi-

cally on the CAN bus.

In order to identify which messages originate from the

same real ECU and thus exploit it as a ground truth, we

used the naive method discussed in [32]. The messages,

which originate from the same ECU and have the same

preset message interval, were shown to have the same

number of transmissions on the bus, when traced for at

least a few minutes. Such a method can be an alterna-

tive to fingerprinting, but it requires pairwise compar-

isons and cannot be completed in real time as required

in the design of CIDS, which is essential for intrusion de-

tection in real in-vehicle networks.

While running CIDS, we determined offsets and skews

for every 20 received samples, i.e., N = 20, and set κ = 5.

5.1 Clock Skew as a Fingerprint

We first evaluate the validity of CIDS’s fingerprinting

of the transmitter ECUs based on the estimated clock

skews. We evaluate skew estimates in microseconds per

second (µs/s) or parts per million (ppm).

CAN bus prototype. Fig. 5(a) plots our evaluation

results of CIDS’s fingerprinting on the CAN bus proto-

type: accumulated clock offsets of messages 0x11, 0x13,

and 0x55. Note that the slopes in this figure represent

the estimated clock skews. All the derived accumulated

clock offsets were found to be linear in time, i.e., con-

stant estimated skews. Messages 0x11 and 0x13, both of

which were sent from node A, exhibited the same con-

stant clock skew of 13.4ppm. On the other hand, the

message 0x55 sent from a different node B showed a dif-

ferent clock skew of 27.2ppm. Thus, the clock skews

derived by CIDS can be used to differentiate ECUs.
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(a) CAN bus prototype.
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(b) Honda Accord 2013.
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(c) Toyota Camry 2010.
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Figure 5: Accumulated clock offsets derived by CIDS in different evaluation settings.

Honda Accord 2013. For CIDS’s evaluation on a

real vehicle, the CAN prototype nodes logged the in-

vehicle CAN traffic of the Honda Accord 2013, and

ran CIDS on messages 0x1B0, 0x1D0, 0x1A6, 0x294,

0x295, and 0x309. The approach in [32] was adopted

to verify that messages {0x1B0, 0x1D0} were sent from

the same ECU, {0x294, 0x295} both sent from another

ECU, whereas others were sent from different ECUs.

Utilizing these facts, one can conclude from Fig. 5(b)

that the clock offsets and the skews derived in CIDS are

equivalent only for those messages sent from the same

ECU; 0x1B0 and 0x1D0 showed a skew of 78.4ppm,

0x294 and 0x295 showed a skew of 199.8ppm, while

messages 0x1A6 and 0x309 showed very different skews

of 265.7ppm and 95.78ppm, respectively. This result

again shows that clock skews between different ECUs

are distinct and can thus be used as the fingerprints of

the corresponding ECUs.

Toyota Camry 2010. To show that the applicability

of CIDS’s fingerprinting is not limited to the specific ve-

hicle model used, we also conducted experiments on a

different vehicle: running CIDS’s fingerprinting on the

Toyota Camry logged data. Similarly to the real vehicle

evaluation in Section 5.1, the approach in [32] was used

as the ground truth. It was verified that messages {0x20,

0xB2} within the CAN log data were all sent from some

ECU A. Also, {0x223, 0x224} were both sent from some

ECU B, whereas 0x2C1, 0x2C4, 0x3A0, 0x4C3, and

0x620 were each sent from a different ECU. As shown

in Fig. 5(c), messages 0x20 and 0xB2 both showed a

clock skew of approximately 345.3ppm, whereas 0x223

and 0x224 showed a different clock skew of 276.5ppm.

0x2C4, 0x3A0, 0x4C3, and 0x620 showed very different

clock skews of 460.1ppm, 142.5ppm, 26.1ppm and 58.7

ppm, respectively.

We made an interesting observation on message

0x2C1, showing a clock skew of 334.1ppm, which was

different from the skews of messages {0x20, 0xB2} only

by 3%, despite the fact that it was sent by a different

ECU. This may confuse CIDS in determining whether

they were sent by the same ECU or not. However, in

such a case, CIDS can further examine the correlation be-

tween clock offsets and can thus fingerprint with a higher

accuracy, which we will discuss and evaluate further in

Section 5.4.

Dodge Ram Pickup 2010. We also ran CIDS’s fin-

gerprinting on the CAN log data of a Dodge Ram

Pickup 2010. For this vehicle, it was verified that

message 0x200 was sent from some ECU A, {0x215,

0x300} sent from B, {0x6F9, 0x3E6, 0x6FD, 0x700}
sent from C, and {0x101, 0x6FE} sent from D. Fig. 5(d)

shows that CIDS determined that 0x200 has a clock

skew of 351.7ppm, {0x215, 0x300} to have approxi-

mately 295.3ppm, {0x6F9, 0x3E6, 0x6FD, 0x700} to

have 24.5ppm, and {0x101, 0x6FE} to have 110.3ppm,

thus correctly fingerprinting their transmitters.

These results of a Toyota Camry and a Dodge Ram

Pickup CAN log data again affirm the fact that the clock

skews derived by CIDS are diverse and can indeed be

used as fingerprints of in-vehicle ECUs. Moreover, they
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(b) Suspension attack.

Figure 6: CIDS defending fabrication attack (left) and

suspension attack (right) in a CAN bus prototype.

show that CIDS’s fingerprinting is not limited to a spe-

cific vehicle model, and can thus be applied to other ve-

hicle models.

5.2 Defending Against Fabrication and

Suspension Attacks

On both the CAN bus prototype and the real vehicle set-

ting (Honda Accord 2013), we launch the fabrication and

suspension attacks, and evaluate CIDS’s effectiveness in

detecting them.2 To this end, we consider CIDS to only

perform per-message detection, and will later evaluate

CIDS with message-pairwise detection.

CAN bus prototype. For evaluation of CIDS defend-

ing against fabrication attack on the CAN bus proto-

type, B was programmed to inject a fabricated message at

t = 400 secs with ID=0x11, which is a periodic message

usually sent by A, i.e., B launches a fabrication attack on

A. ECU R was running CIDS on message 0x11 and de-

rived accumulated clock offset (Oacc), identification er-

ror (e), and control limits (L+, L
−). For the suspension

attack, A was instead programmed to stop transmitting

0x11 at t = 400 secs.

Fig. 6(a) shows how such values changed for mes-

sage 0x11 in the presence and absence of a fabrication

attack. As soon as B mounted a fabrication attack, as dis-

cussed in Section 4.2, there was a sudden positive shift in

the accumulated clock offset, thus yielding a high iden-

2As the attacks cannot be emulated using the CAN log data, we do

not consider their use for evaluating CIDS against the attacks.
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(b) Suspension attack.

Figure 7: CIDS defending fabrication attack (left) and

suspension attack (right) in a Honda Accord 2013.

tification error. Due to such a shift, the upper control

limit, L
+, of CUSUM suddenly increased and exceeded

its threshold ΓL =5, i.e., detecting an intrusion. Sim-

ilarly, Fig. 6(b) shows that since the suspension attack

also shifted the accumulated clock offset significantly,

CIDS was able to detect the attack.

Real vehicle. To evaluate CIDS against the fabrication

attack under the real vehicle setting, one CAN prototype

node R was programmed to run CIDS, and another node

A as an adversary mounting the attack on a real ECU.

The attack was mounted by injecting a fabricated attack

message with ID=0x1B0, which was sent every 20ms by

some real in-vehicle ECU, i.e., A mounted the fabrica-

tion attack on a Honda Accord ECU sending 0x1B0. For

the suspension attack, the message filter of R was reset

at t = 420 secs so as to no longer receive 0x1B0, thus

emulating the suspension attack.

Fig. 7(a) shows how accumulated clock offsets (Oacc),

identification errors (e), and upper control limits (L+)

changed for both cases of with and without a fabrica-

tion attack. Again, the attack message injected at around

t = 420 secs caused a sudden increase in Oacc and e, thus

increasing L
+ to exceed ΓL =5. As a result, CIDS de-

clares the detection of an attack. After the attack, since

0x1B0 was still periodically sent by the real in-vehicle

ECU, the clock skew — i.e., the slope of Oacc graph —

remains unchanged. Similarly, as shown in Fig. 7(b), the

suspension attack increases the offset values, thus caus-

ing L
+ to exceed the threshold, i.e., the suspension attack

was detected by CIDS.
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Figure 8: Masquerade attack — Probability mass function of message intervals (left), changes in accumulated clock

offsets (middle), and control limits (right) derived in CIDS.

5.3 Defending Against Masquerade Attack

We now evaluate the performance of CIDS in detecting a

masquerade attack.

CAN bus prototype. To evaluate CIDS’s defense

against the masquerade attack in the CAN bus prototype,

nodes A and B were considered to have been compro-

mised as strong and weak attackers as in Fig. 2(c), re-

spectively. A was programmed to mount a masquerade

attack on B, i.e., stop B transmitting message 0x55 and

instead send it through A onwards, once Tmasq = 250 secs

had elapsed. As usual, messages 0x11 and 0x13 were pe-

riodically sent by A, and CIDS was run by R.

Fig. 8(a) (left) shows the Probability Mass Function

(PMF) of the intervals of message 0x55: before and af-

ter the attack was mounted. In contrast to the fabrica-

tion attack, since the attacker sent the attack message at

its original frequency after masquerading, the distribu-

tion did not deviate much from that before the attack.

However, at Tmasq, since there was some delay when the

transmitter was switched from one node to another, the

first masquerade attack message was sent 51.04ms after

its previous transmission, whereas it should have been

approximately 50ms which is the preset message interval

of 0x55. Due to such a slightly mistimed masquerade at-

tack, the PMF graph shows a message interval with an

abnormal deviation from the mean. We will later eval-

uate the perfectly timed masquerade attack — a much

more severe case than a mistimed attack — on a real ve-

hicle, and show the efficacy of CIDS in detecting it.

The resulting changes in Oacc, L+, and L− at R are

also shown in Fig. 8(a) (middle and right). The change

in the ECU transmitting message 0x55 caused the slope

(i.e., clock skew) in Oacc graph to change after the at-

tack was mounted. Since the measurements of Oacc af-

ter Tmasq significantly deviated from their expected val-

ues, which is determined by the estimated clock skew of

t < Tmasq, the CUSUM lower control limit, L−, in CIDS

exceeded the threshold, thus declaring detection of an in-

trusion. Since the transmitter of 0x55 was changed (to

ECU A), its clock skew after t = Tmasq was equivalent

to the clock skew in 0x11. Accordingly, via root-cause

analysis, CIDS identifies the compromised ECU to be

ECU A. Unlike the previous results, since the change

in slope was negative, persistent identification error with

high negative values caused L− to exceed the threshold.

Real vehicle. To evaluate CIDS’s defense against the

masquerade attack in a real vehicle, we consider a sce-

nario in which real in-vehicle ECUs V1 and V2 trans-

mitting 0x1A6 and 0x1B0 are compromised as a strong

and a weak attacker, respectively. Of the three CAN pro-

totype nodes (A, B, and R), which were connected to

the real in-vehicle network via OBD-II, we programmed

node R to run CIDS on in-vehicle message 0x1B0 and an-

other node B to simply log the CAN traffic. To generate a

scenario of real ECU V1 mounting a masquerade attack

on real ECU V2, R was programmed further to receive

message 0x1A6 instead of 0x1B0, but still record the

received messages’ ID to be 0x1B0, once Tmasq = 1100

seconds had elapsed. That is, we let R interpret 0x1A6

as 0x1B0 for t > Tmasq, i.e., the transmitter of 0x1B0

changes from V2 to V1. Such a change in interpretation

was achieved by programming R to modify its message

acceptance filter from only accepting 0x1B0 to only ac-

cepting 0x1A6. Since 0x1B0 and 0x1A6 were observed

to be always transmitted nearly at the same time, such a
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Figure 9: Correlated and uncorrelated clock offsets.
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Figure 10: Defense against the worst-case masquerade attack via message-pairwise detection.

setting replicates the timed masquerade attack. During

such a process, B continuously logged 0x1B0 so that we

can obtain a reference for circumstances when no attacks

are mounted.

Fig. 8(b) (left) shows the PMF of the message inter-

vals of 0x1B0 before and after the attack. Since the mes-

sage periodicity remained the same, the distribution of

the messages intervals did not change. Moreover, since

we considered a timed masquerade attack, in contrast to

the result in Fig. 8(a), there were no such abnormal mes-

sage intervals. Such a result indicates that state-of-the-

art IDSs, which try to find abnormal message frequen-

cies, cannot detect such an attack. Although the distri-

bution of message intervals remained unchanged, due to

the change in ECU transmitting 0x1B0 (V2 → V1), the

accumulated clock offset suddenly exhibited a different

trend in its change, i.e., a different clock skew after the

attack. Here, the original trend in offset changes was de-

termined by the data obtained from B. So, as shown in

Fig. 8(b) (right), CIDS was able to detect a sudden shift in

its identification error and thus outputted a high level of

CUSUM upper control limit, i.e., an intrusion detection.

CIDS’s capability of detecting various types of masquer-

ade attack is evaluated further in Section 5.5.

In conclusion, through its modeling and detection pro-

cesses, CIDS can detect not only the fabrication attack

but also the masquerade attack, i.e., is capable of doing

not only what existing solutions can do, but also more.

5.4 Message-pairwise Detection

We evaluate the feasibility and efficiency of message-

pairwise detection in CIDS. To validate its practicabil-

ity in the real-world, we first examine whether there ex-

ists pairs of messages inside real vehicles with correlated

clock offsets — the condition for CIDS to run message-

pairwise detection.

Fig. 9(a) shows two cases of correlated and uncorre-

lated clock offsets of in-vehicle messages collected from

the Honda Accord 2013. Fig. 9(a) (left) shows that the

average clock offsets of messages 0x1B0 and 0x1D0,

which were determined to have been sent from the same

ECU, showed a high correlation of 0.9213, i.e., linear re-

lationship. In contrast, as shown in Fig. 9(a) (right), aver-

age clock offsets of messages 0x1B0 and 0x1A6, which

were sent every 20ms from different ECUs, showed a

near 0 correlation.

By the Birthday paradox, some ECUs in the vehicle

may probably have near-equivalent clock skews — as it

was for messages 0x20 and 0x2C1 in the examined Toy-

ota Camry 2010 (see Fig. 5(c)). Although clock skews

may be near-equivalent, instantaneous clock offsets of

two different ECUs cannot be near-equivalent and are

thus uncorrelated as they run different processes. The

results in Fig. 9(b) corroborate such a fact by showing

that clock offsets of messages 0x20 and 0xB2, which

were sent by the same ECU, had a high correlation of

0.9860, whereas offsets of messages 0x20 and 0x2C1 —
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Figure 11: ROC curves of CIDS in the real vehicle.

sent by different ECUs with similar clock skews — had

a low correlation of 0.0331. Thus, for messages with

near-equivalent clock skews, CIDS can further examine

the correlation between their clock offsets, and correctly

determine their transmitters.3 These facts and observa-

tions indicate the feasibility and efficiency of message-

pairwise detection in CIDS.

To show that message-pairwise detection can sup-

port per-message detection in decreasing false posi-

tives/negatives by examining offset correlations, we con-

sider a scenario in which an attacker V1 has mounted

a masquerade attack on a Honda Accord ECU V2 at

tmasq = 800 secs. We refer to V2 as the ECU which orig-

inally transmits message 0x1B0. To consider the worst

case in detecting the masquerade attack, we assume that

the clock skews of V1 and V2 are nearly equivalent,

similarly to messages 0x20 and 0x2C1 in the Toyota

Camry. We replicated such a worst-case scenario by ran-

domly permuting the acquired offset values of 0x1B0 for

t > tmasq, and considering the permuted values to be out-

put from V1. As shown in Fig. 10(a), this leads to a situ-

ation where the clock skew does not change even though

the message transmitter has been changed from one ECU

to another. Although the clock skew remained equivalent

at t = tmasq, the correlation between offsets of 0x1B0 and

0x1D0 suddenly dropped from 0.9533 to 0.1201, i.e., a

linear to non-linear relationship. As a result, as shown in

Fig. 10(b), the control limits in CIDS’s message-pairwise

detection exceeded the threshold ΓL = 5. On the other

hand, since the clock skews before and after the attack

were equivalent, per-message detection was not able to

detect the intrusion.

5.5 False Alarm Rate

We also examined the false alarm rate of CIDS under the

real vehicle setting. The results obtained from the CAN

3If the two ECUs’ clock behaviors are still not distinguishable,

CIDS can be set up to exclude them for examination so that the risk

of false positives significantly decreases. However, this may impact

CIDS’s capability of detecting attacks mounted through those ECUs.

bus prototype are omitted due to their insignificance, i.e.,

not many false alarms occurred due to its less complex

bus traffic. Based on data recorded for 30 minutes from

the Honda Accord 2013 — approximately 2.25 million

messages on the CAN bus — four attack datasets were

constructed to each contain 300 different intrusions. The

intrusions either had different injection timings, suspen-

sion timings, or changes in clock skews: each in the form

of fabrication attack, suspension attack, mistimed mas-

querade attack, and timed masquerade attack. For each

dataset, we varied the κ parameter of CIDS to acquire one

false positive rate (false-alarm rate) and one false nega-

tive rate (1−detection rate).

Fig. 11(a) shows the Receiver Operating Characteris-

tic (ROC) curve of CIDS, which represents its trade-off

between false alarm and detection, executing only per-

message detection on the attack datasets. Clearly, CIDS

is shown to be able to detect fabrication, suspension, and

masquerade attacks with a high probability. Since the

timed masquerade attack is the most difficult to detect,

it showed the highest false positive rate among all the at-

tack scenarios considered: a false positive rate of 0.055%

while not missing any anomalies (100% true positives).

Even for false positives < 0.055%, 97% of the anoma-

lies were detected by CIDS. However, these false pos-

itives can be of great concern for in-vehicle networks.

Therefore, to eliminate such false positives, CIDS can

additionally run message-pairwise detection. Fig. 11(b)

shows the ROC curve of CIDS executing not only per-

message detection but also message-pairwise detection

for further verification. Accordingly, CIDS was able to

detect all types of attacks considered without having any

false positives, which is in contrast to CIDS with only

per-message detection, i.e., all false positives were elim-

inated via message-pairwise detection.

6 Discussion

Discussed below are the overhead, deployment, limita-

tions, and applications of CIDS.
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Identification algorithm. To estimate clock skew,

one can also use other algorithms than RLS, such as Total

Least Squares (TLS) and Damped Least Squares (DLS),

which perform orthogonal linear and non-linear regres-

sion, respectively. Although they might identify the

clock skew with a higher accuracy than RLS, their gains

are offset by the accompanying high complexity. TLS

requires Singular Value Decomposition (SVD), which

is computationally expensive, and DLS requires a large

number of iterations for curve fitting. RLS is known to

have a computation complexity of O(N2) per iteration,

where N is the size of the data matrix. However, in CIDS,

only a scalar clock offset is exploited for identification,

and thus the computational complexity is relatively low.

Defeating CIDS. There may be several ways the ad-

versary may attempt to defeat CIDS. First, the adversary

may try to compromise the ECU running CIDS and dis-

able it. However, if cross-validation for CIDS was to be

exploited, such an attempt can be nullified. For the detec-

tion of intrusions, CIDS only requires an ECU to record

the timestamps of message arrivals. Such a low overhead

makes it feasible for CIDS to be installed distributively

across several in-vehicle ECUs for cross-validation. Sup-

pose using CIDS, ECU A monitors attacks on messages

{M1, M2}, ECU B monitors {M2, M3}, and ECU C mon-

itors {M1, M3}. Since CIDS regards the receiver’s time

clock as the true clock, cross-validation provides mul-

tiple perspectives of clock behaviors for each message

ID, e.g., two different perspectives of M2 from A and

B. Thus, even when an ECU running CIDS gets com-

promised, cross-validation via CIDS can handle such a

problem.

Another way the adversary may try to defeat CIDS is to

adapt to how its algorithm is running and thus deceive it.

The adversary may figure out the clock skew of the tar-

get ECU and then heat up or cool down the compromised

ECU so that its clock skew changes to match that of the

target. In such a case, the clock skew can be matched and

thus may bypass CIDS’s per-message detection. How-

ever, as discussed in Section 5.4, unless the adversary

also matches the instantaneous clock offset, which is af-

fected by the ECU’s momentary workload and tempera-

ture, CIDS can detect the intrusion via message-pairwise

detection.

Upon intrusion detection. False alarms for intrusion

detection systems, especially in in-vehicle networks, are

critical. Thus, CIDS should also deal with them as accu-

rately as possible. To meet this requirement, if an intru-

sion has been determined, even after going through the

verification process, CIDS can follow the following steps

for further examination:

1. If an intrusion was detected while using only per-

message detection, examine it further via message-

pairwise detection.

2. If still alarmed as an intrusion and the attacked ECU

is a safety-critical ECU, go straight to step 4.

3. If not, communicate with other ECUs for cross-

validation as they would provide different perspec-

tives of the clock skew results. If communicat-

ing with other ECUs incurs too much overhead (in

terms of bus load, processing overhead, etc.), send

traffic data for a remote diagnosis.

4. Request re-patching of firmware and advise the

driver to stop the vehicle.

Limitation of CIDS. CIDS is shown to be effective in

detecting various types of in-vehicle network intrusions.

One limitation of CIDS might be that since it can only

extract clock skews from periodic messages, it would be

difficult to fingerprint ECUs which are sending aperiodic

messages. That is, if the attacker injects messages ape-

riodically, although CIDS can still detect the intrusion,

it would not be able to pinpoint where the attack mes-

sage came from, i.e., finding the root-cause of attacks

launched with or on aperiodic messages. Recall that

CIDS can achieve this only for periodic messages. In fu-

ture, we would like to find new features other than clock

skew, which can fingerprint ECUs, regardless of whether

they send messages periodically or aperiodically.

Applicability to other in-vehicle networks. Al-

though most modern in-vehicle networks are based on

CAN, some may be equipped with other protocols, such

as CAN-FD, TTCAN and FlexRay, for more complex

operations. CAN-FD is an enhanced version of CAN,

providing flexible and higher data rates [5]. Since its

basic components conform to CAN and thus also lacks

synchronization, CIDS can be applied to CAN-FD. For

protocols such as TTCAN [21] and FlexRay [22], nodes

are periodically synchronized for determinative timing of

message exchanges. The interval between two consecu-

tive synchronizations depends on how each protocol is

deployed [32]. For TTCAN, it can be up to 216 = 65536

bits long, i.e., 131ms in a 500Kbps bus [37]. This lets

some messages be sent multiple times between consec-

utive synchronizations. So, if the time interval is long,

CIDS would still be able to extract clock skews from

messages which are sent multiple times, whereas, if the

period is short, CIDS may not be feasible. However, the

fact that TTCAN and FlexRay have high implementation

cost, whereas for CAN-FD it is minimal, makes CAN-

FD a favorite candidate for next-generation in-vehicle

networks [6, 39]. This means that CIDS can be applicable

to not only current but also future in-vehicle networks.

7 Conclusion

New security breaches in vehicles have made vehicle se-

curity one of the most critical issues. To defend against
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vehicle attacks, several security mechanisms have been

proposed in the literature. They can cope with some at-

tacks but cannot cover other safety-critical attacks, such

as the masquerade attack. To remedy this problem,

we have proposed a new IDS called CIDS, which ex-

tracts clock skews from message intervals, fingerprints

the transmitter ECUs, and models their clock behaviors

using RLS. Then, based on the thus-constructed model,

CIDS detects intrusions via CUSUM analysis. Based on

our experiments on a CAN bus prototype and on real ve-

hicles, CIDS is shown to be capable of detecting various

types of in-vehicle network intrusions. CIDS can address

all attacks that existing IDSs can and cannot handle as

well as facilitates root-cause analysis. Thus, it has po-

tential for significantly enhancing vehicle security and

safety.
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