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Abstract—Internet applications rely on strong encryption tech-
niques to protect the content of all communications between client
and server. These encryption algorithms ensure that third parties
are unable to obtain the plain text data but also make it hard
for the network administrator to enforce restrictions on the types
of traffic that are allowed. In this paper we show that we can
train accurate machine learning models which can predict the
type of traffic going through an IPsec or TOR tunnel based on
features extracted from the encrypted streams. We use small, fast
to execute machine learning models that work on small windows
of data. This makes it possible to use our approach in real-time,
for example as part of a Quality of Service (QoS) system.

I. INTRODUCTION

Modern internet technologies such as video streaming,

Voice over IP (VoIP) and Peer-to-Peer (P2P) file sharing

systems all require large amounts of bandwidth. To ensure a

smooth user experience a Quality of Service (QoS) system

can allocate bandwidth for every stream based on the type of

traffic. It is however not always easy to discover the type of

traffic contained in each stream. The most straight-forward

approach would be to look at the source and destination

port numbers. This is very fast but not always reliable.

Most applications allow the user to change the port numbers

and some applications (like Bittorrent clients) can even use

random port numbers. Various works have shown that a

simple port based fingerprinting technique performs poorly

on real world data [1][2][3].

A more robust approach is to look at the actual content

of the network packets. Different applications each follow

a different protocol that is easy to recognize. Deep packet

inspection techniques can examine the payload to extract this

information but only if the required data is transmitted as

plain text. Virtual Private Networks (VPNs) allow the user

to encapsulate network traffic through an encrypted tunnel

which hides the content and the actual destination of the

network stream. Because of this additional security layer it is

hard to enforce any restrictions on the types of traffic that are

allowed in the network.

Even more privacy is offered by technologies such as

The Onion Router (TOR) [4]. TOR uses a network of relay

nodes to provide anonymity to its users. It does so by

routing all traffic over three relay nodes before it is routed

to its actual destination. Each relay node only knows the

previous and the next node, resulting in anonymity for the

user. To provide data confidentiality, TOR establishes a TLS

connection between the client and every relay node. This

produces several layers of encryption, comparable with the

layers of an onion, hence the name.

In this paper we describe a machine learning pipeline

that is able to discover the type of traffic going through a

VPN (IPSec) or TOR tunnel using only features extracted

from the encrypted network stream. We distinguish between

four types of traffic: Web browsing (HTTP), VoIP (Skype),

Video streaming (YouTube) and P2P (Bittorrent). We define

features based on the timing and size of the encrypted

packets and train three different machine learning models for

classification (naive Bayes, logistic regression and random

forest) on this data. We show that these simple models are

sufficient to predict the traffic type with a high accuracy.

This paper is organized as follows: we start with an

overview of related work in Section II. In Section III we

describe our machine learning pipeline and in Section IV

we present our results both for IPSec and TOR encrypted

network traffic. We conclude in Section V and discuss some

interesting possibilities for future work.

II. RELATED WORK

Network traffic analysis has gathered a lot of interest

both from industry and academia. We focus only on passive

fingerprinting approaches which do not interfere with the

packet streams. Active network fingerprinting techniques on

the other hand rely on injecting traffic or on compromised or

malicious nodes in the network [5].

Technologies such as TOR and IPSec can protect the

content of the communications from eavesdroppers and if

used correctly they can also provide anonymity. Even though

the actual payload is unavailable for third parties, it is still

possible to extract information based on the timing and size

of individual packets.

Common features extracted from timing and size information

are packet size combined with direction (upstream or

downstream) and inter-arrival time. These features are used

in [6] to distinguish between five types of network traffic.

Features can also be observed at an aggregated level of

multiple packets. A burst is such a possible aggregation, and

is defined as a sequence of packets sent in one direction that

lie between two packets sent in the opposite direction[7].



Both the timing and the sizes of bursts can be useful.

Another interesting aggregation proposed in literature is the

“Surge Period”. A Surge Period marks the parts of a traffic

trace where the channel is continuously busy transmitting

packets upstream or downstream. These features are used in

[7] combined with the first n components of Haar Wavelet

Transformations to predict the website a user is visiting

through a VPN tunnel. It is shown that these features can

be used to distinguish between eleven popular websites with

dynamic content.

A similar experiment was performed by Liberatore and

Levine who used a naive Bayes classifier to predict the

visited web page out of a set of 2000 different pages, based

on the packet size combined with the direction (downstream

or upstream) [8]. They ignored all timing information

but found that they were still able to predict which website

from a list of 2000 was visited with an accuracy of up to 90%.

Most works that apply machine learning to this problem

use relatively simple machine learning techniques based on

manually defined features. Deep learning on the other hand

allows us to learn the features from data instead of having

to engineer them. The Deep packet paper [9] introduces an

end-to-end approach to train neural networks both for traffic

categorization and application identification.

Some of these techniques can pose severe privacy risks

for the end users. There has been some work on practical

countermeasures that make it harder to extract privacy

sensitive information from the network streams. TOR for

example packs all data into 512-byte cells and even includes

an experimental feature where random HTTP pipelining is

used to make it harder to discover which website was visited

[10]. Other techniques pad packets to 2k bytes or to the MTU

[11]. It is even possible to transform the traffic to make it

look like traffic from a different application by mimicking the

distribution of packet sizes [12]. Unfortunately most of these

countermeasures fail at hiding the information completely

[13].

III. FEATURE EXTRACTION

We propose to represent the extracted features as two-

dimensional histograms. This allows us to easily visualize

the relationship between different features. We defined two

feature spaces that each visualize the relationship between

two features: packet size-interarrival time and burst time-burst

size. We extracted windows containing 1024 packets from

each trace and generated the histograms for each window

independently. This windowed approach allows us to use

the classifier after every 1024 packets that are captured, for

example as part of an online QoS system. We use a logarithmic

data representation to focus more on the relative magnitude

rather than on the actual value of a feature.

(a) Skype (b) Bittorrent

Figure 1: The packet size - interarrival time feature space for

a Skype and a Bittorrent window.

(a) Skype (b) Bittorrent

Figure 2: The burst size - Surge period feature space for a

Skype and a Bittorrent window.

A. Packet size - interarrival time

Packet size and interarrival time (IAT) are the two most

straight-forward features that we can extract from encrypted

network traffic streams. The size of a packet is directly linked

to the contained payload, which follows an application specific

profile and can thus be used for classifying the application.

We indicate the direction of the packet (downstream or

upstream) by the sign, a negative value indicates downstream

traffic, a positive value indicates upstream traffic.

The main drawback of using packet sizes as a feature

is the ease by which privacy providing protocols can

influence this feature by padding the encrypted payload with

a pseudorandom number of bytes or by padding all packets to

the same size. The timing of packets is less adaptable, since

it would have a direct impact on the performance of the web

service [14]. We combine both packet size and IAT to create a

two-dimensional histogram. An example of this visualization

is shown in Figure 1 for a window of Skype and Bittorrent

traffic. Each bin in these histograms is colored according to

the amount of packets in it. For example, Skype traffic consist

primarily of small packets with short interarrival times while

Bittorrent traffic typically has larger interarrival times and

larger packet sizes.



B. Burst size - Surge period

A burst is defined as a sequence of (non-acknowledgement)

packets sent in one direction that lie between two packets

sent in the opposite direction. The bandwidth of a burst is

the total size of all packets contained in the burst, in bytes,

and the burst count is the number of packets within the burst

[7][13]. This two-folded, aggregated feature describes the

properties of the network traffic at a higher level, because it

does not only take packet features into account, but also the

correlation between packets. A burst can typically be used to

identify a web page fetch.

Together with the burst size we also use the surge period.

The surge period marks the parts of a traffic trace where the

channel is continuously busy transmitting packets upstream

or downstream. Any packet within the surge period should

be separated from its predecessor and subsequent packets

by a time period no larger than a predefined time window size.

An example of this feature space is visualized in Figure 2.

The same reasoning as with the packet size-interarrival time

histograms applies here. Figure 2 shows that Skype windows

contain mostly longer bursts, and Bittorrent bursts tend to be

more of medium length.

IV. RESULTS

In this section we present the results obtained by training

three machine learning models for classification (naive Bayes,

logistic regression and random forest) on the feature repre-

sentations described in the previous section. We generated our

own dataset of traffic traces. A VoIP trace starts just before

starting or receiving a voice call and goes on for a brief

moment of the actual call. The Bittorrent traces start when we

added a torrent file to the torrent client, and some time of the

download. The HTTP browsing covers a Google search and

following one of the suggested links, and the YouTube traffic

consists of visiting the YouTube homepage, clicking a video

link and watching the video play for some time. For each

experiment we captured 40 traces (ten for each application)

and extracted windows containing 1024 packet each. This

results in around 500 windows. We used 20% of these samples

as a test set and used the remaining 80% for training and

validation.

A. Unencrypted data

As a baseline we trained our models on unencrypted net-

work streams. The results are summarized in Table I. This

table shows that all three machine learning models achieve

a high accuracy which indicates that these features capture

enough information to distinguish the different traffic types,

at least on unencrypted data. The logistic regression classifier

consistently performs the best and we also find that a combi-

nation of both feature spaces results in the highest accuracy

for all machine learning models.

Accuracy
Naive
Bayes

Logistic
Regression

Random
Forest

Size - IAT 94.55% 99.09% 97.27%

Burst features 96.36% 99.09% 97.27%

Combined 97.27% 100.00% 99.09%

Table I: Classification accuracy for the different feature spaces

for three different machine learning models using data from

unencrypted streams.

Accuracy
Naive
Bayes

Logistic
Regression

Random
Forest

Size - IAT 93.55% 95.70% 96.77%

Burst features 87.10% 94.62% 93.55%

Combined 94.62% 95.70% 96.77%

Table II: Classification accuracy for the different feature spaces

for three different machine learning models using data from

IPsec encrypted streams.

B. IPsec VPN encrypted data

IPsec is a network protocol operating in the Internet Layer

of the Internet Protocol Suite that can be used to authenticate

and encrypt network traffic. We configured IPsec to use tunnel

mode with Encapsulated Security Payload (ESP) to provide

both encryption and authentication. In this configuration the

original packet is encrypted and encapsulated in a new packet.

Since both packet size and timing determine the feature

spaces, it is useful to understand the effect of IPsec on

these characteristics. The timing is only influenced by the

time needed for the encryption/decryption and authentication

check of the packets. In our configuration, IPsec uses the

Advanced Encryption Standard (AES), with a 128-bit key for

encryption. This encryption is combined with SHA-256 as

hash function to provide data integrity and authentication. The

delays caused by AES-128 and SHA-256 are negligible. The

size of the packets is altered by the protocol specifications

for ESP packets and the use of tunnel mode. Tunnel mode

introduces and additional IP header (typically 20 bytes)

because of the encapsulation. The format of an ESP packet

adds another 8 bytes of protocol parameters and 32 bytes for

the integrity check value.

The results obtained on IPsec encrypted data are summarized

in Table II. We again find that our features contain sufficient

information to allow a high classification accuracy.

C. TOR encrypted data

TOR is more complex than IPsec since it uses a network

of Tor relay nodes to provide anonymity to its users. Table

III shows our results on TOR encrypted data. As expected the

accuracy is much lower compared to IPsec but we still achieve

an accuracy of up to 86%.



These results are again explained by looking at the impact of

TOR on the packet sizes and timing characteristics. The effect

on the timing is twofold. First of all, there is the longer path

that is taken by Tor because of the three relay nodes through

which all packets are routed. This circuit changes regularly

[4], resulting in different delays. The effect of TOR on the

packet sizes is caused by the TLS encryption added by each

of the relay nodes which make up the circuit.

Accuracy
Naive
Bayes

Logistic
Regression

Random
Forest

Size - IAT 80.56% 77.78% 84.72%

Burst features 86.11% 80.56% 86.11%

Combined 83.33% 80.56% 80.56%

Table III: Classification accuracy for the different feature

spaces for three different machine learning models using data

from TOR encrypted streams.

D. The role of background traffic

So far we have only considered the ideal situation in which

all captured packets originate from a single application. In a

more realistic scenario however, several background processes

may be running and sending/receiving packets as well. We

mimicked a more realistic scenario by replaying background

packets. We examined the effect of different background

packet rates on the classification accuracy for IPsec encrypted

traffic. We only report the results for the Random Forest

classifier since this classifier consistently performed best on

encrypted data. Figure 3 shows that the accuracy drops as we

increase the background traffic rate but even for a rate of 300

background packets/s we are still able to achieve an accuracy

of 87.5%.

Figure 3: The effect of background traffic on the classification

accuracy.

E. Multi label classification:

In a real world application it is possible that a single window

contains packets belonging to different applications. A person

can watch YouTube videos while downloading content via a

Bittorrent client for example. We now extend our approach to

multi-label classification where every window can have one

up to four labels.

Due to the nature of the chosen feature spaces, the

histograms for multi-labeled samples are not simply the

addition of their single-labeled components. Although packet

sizes might show this behaviour, inter-arrival times do not.

They tend to shorten as packets from different applications

interleave each other. Also burst from one application may

be interrupted by packets from the other application.

We summarized the results in Table IV. We only report

the results for the Random Forest classifier since this

classifier consistently performed best on encrypted data. In

addition to the accuracy we also report the Hamming loss.

With multi-label classification it is possible to have partially

correct results. The Hamming loss is defined as the fraction

of the wrong labels to the total number of labels. A Hamming

loss of 4% for example means that on average, 4% of the

predicted labels are incorrect.

Accuracy Accuracy Hamming loss

Size - IAT 83.87% 4.62%

Burst features 76.83% 6.89%

Combined 83.58% 4.62%

Table IV: Classification accuracy and Hamming loss for the

different feature spaces for the random forest classifier using

data from TOR encrypted streams.

V. CONCLUSION AND FUTURE WORK

We have shown that size and timing features, at both

individual packet level and at aggregated burst level, can

be successfully used to fingerprint encrypted network traffic

types. We first validated our approach on an unencrypted

baseline. IPsec did not alter the features significantly and

similar accuracy measures were obtained. TOR on the other

hand does have an effect on the timing characteristics of a

network stream because of the circuit of relay nodes that

it uses in order to provide anonymity. This resulted in a

noticeable accuracy drop. We do however believe that more

data, captured from different TOR circuits can make our

models more robust against the delay introduced by the

protocol.

In future work we will look at more real-world settings

with a wider variety of network protocols. We will increase

our dataset to include traffic from different devices with

different operating systems and network stacks.
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