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Abstract

This paper considers the problem of fingerprinting localization in wireless networks based on

received signal strength (RSS) observations. First, the performance of static localization using power

maps (PM) is improved with a new approach called base station strict (BS-strict) methodology which

emphasizes the effect of BS identities in the classical fingerprinting. Second, dynamic motion models

with and without road network information are used to further improve the accuracy via particle

filters. The likelihood calculation mechanism proposed for the particle filters is interpreted as a soft

version (called BS-soft) of the BS-strict approach applied in the static case. The results of the proposed

approaches are illustrated and compared on an example whose data were collected from a WiMAX

network in a challenging urban area in the Brussels capitol city.
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I. INTRODUCTION

There are several ways to position a wireless network user. GPS is the most popular way, its

accuracy meets all the known location-dependent applications requirements. The main problems

with GPS, in addition to the fact that the user’s terminal must be GPS-enabled, are the high

battery consumption, the limited coverage and the latency. Furthermore, GPS performs poorly

in urban areas near high buildings and inside tunnels. Another way to position a user is to rely

on the wireless network itself by using the available information like Cell-ID which has been

used widely in GSM systems despite its limited accuracy [1]. Using other network resources

(information) like received signal strength (RSS), time of arrival (TOA) or time-difference of

arrival (TDOA) gives better accuracy, but requires making measurements by the wireless terminal

(terminal side measurements) or by the network (network side measurements) or by both [2, 3].

From this point on, we are going to refer to these measurements as network measurements

regardless of where these measurements have been conducted. Some of these measurements

are hard to obtain like TOA which needs synchronization and some are easy to obtain like

RSS measurements. Many localization approaches depending on network measurements have

been proposed in GSM networks and sensor networks. Most of the work focused on range

measurements depending on TOA, TDOA observations and RSS observations, see surveys [2, 4,

5] and the references therein. These approaches can improve the localization accuracy achieved

by using the Cell-ID. The basic idea in RSS based localization is to compare all measured RSS

values to a model of RSS for each position and then determine the position that gives the best

match. The two most common models are the general exponential path loss model and a dedicated

power map constructed off-line for the region of interest. The first alternative is the most common

strategy and the simplest to deploy. The exponential path loss model is known as the Okumura-

Hata model [6, 7], and in a log power scale it says that the RSS value decreases linearly with

distance to the antenna. This is quite a crude approximation, where the noise level is high and

further depends on multipath and non-line of sight (NLOS) conditions. In [8] the authors used

this alternative to track a target and proposed using different path loss exponents for the links
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between the terminal and the base stations. The proposed method achieved higher localization

accuracy than the conventional localization methods that use the same path loss exponent for all

the links. Also the authors of [9] proposed using RSS statistical log-normal model and sequential

Monte Carlo localization (MCL) technique to get better localization accuracy. The log-normal

model was also used in [10] to estimate mobile location, and the authors tried to mitigate the

influence of the propagation environment by using the differences of signal attenuations.

The second alternative is to determine the RSS values in each point and save this in a database

(i.e., a map). This can be done using off-line measurement campaigns, adaptively by contribution

from users or using cell planning tools. The advantage of this effort is a large gain in signal to

noise ratio and less sensitivity to multipath and NLOS conditions. The set of RSS values that are

collected for each position in the map from various BSs is called the fingerprint for that location.

The idea of matching observations of RSS to the map of the previously measured RSS values

is known as fingerprinting. It proved to provide better performance than the first alternative [1].

In [11] and [12], the authors used RSS information in fingerprinting positioning to improve the

accuracy obtained by the log-normal model. The authors of [13] used fingerprinting to overcome

the inconveniences related to the use of TOA, angle of arrival (AOA) and RSS log-normal model

for positioning.

In this paper, we propose to use fingerprinting localization depending on RSS-based observa-

tions for positioning and tracking in wireless networks. We first consider classical fingerprinting

and, based on the BS identities, we propose a method to increase fingerprinting performance. The

new method emphasizes the effects of the BS identities in classical fingerprinting and it is called

BS-strict method. Then, the use of dynamic motion models is suggested for further improvement.

In this regard, we use particle filters [14, 15, 16] with both unconstrained and road-constrained

motion models. The simultaneous use of the motion models and the road network information has

shown to yield quite good estimation performance. The special likelihood calculation mechanism

that the paper suggests for the dynamic case, called BS-soft method, is also interpreted as a soft

version of the BS-strict methodology proposed for the static case. We present our results along

with remarks on WiMAX networks which were the main motivation and the illustrative case study

for this research. However, our results equally apply to other type of networks. The importance

of the contributions of this paper can be summarized as follows:

• The proposed approaches yield direct methodologies for RSS-based localization balancing
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the effects of measured RSS values and the BS identities. Increasing the effect of BS

identities in location estimation is especially significant when the signal to noise ratio in

the RSS values is low and the effects of multipath and fading are dominant.

• Dynamic localization using particle filters gives a seamless integration of fingerprinting type

approaches with dynamical motion models and road network information.

We also argue that the approaches considered in the paper meet the requirements of most location-

dependent applications.

The paper is organized as follows: The measurement modeling methodologies for the RSS

measurements are summarized in Section II. The main building blocks of the proposed methods,

which are different likelihood calculation mechanisms, are given as separate algorithms in Sec-

tion III and Section V for the static and dynamic estimation cases respectively. These algorithms

are used in their corresponding positioning and tracking methods and their performances are

illustrated in Sections IV and VI respectively. Conclusions are drawn in Section VII.

II. MODELLING RSS MEASUREMENTS FOR FINGERPRINTING

In general, the received signal rt at the time instant t can be expressed as

rt = atst−τ + vt. (1)

Here, s denotes the transmitted (pilot) signal waveforms, at is radio path attenuation, τ is the

distance dependent delay and vt is a noise component. A WiMAX modem does not readily

provide information for time delay based localization, so we focus on the path loss constant at.

This value is averaged over one or more pilot symbols to give a sampled RSS observation

zk = h(xp
k) + ek, (2a)

yk =











zk, if zk ≥ ymin,

NaN, if zk < ymin.
(2b)

where k is the sample index (corresponding to time instant t = t0 + kT where t0 and T are the

time of the first sample (k = 0) and the sampling period respectively), xp
k is the position of the

target and NaN stands for Not a Number representing a “non-detection” event. This expression

includes one deterministic position dependent term h(xp
k) including range dependence, and ek is
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the noise that includes fast and slow fading. We also explicitly model the detector in the receiver

with the threshold ymin, since too weak signals are not detected.

The classical model of RSS measurements is based on the so-called Okumura-Hata model

[6, 7] which is given as

OH model: zk = PBS − 10α log10(‖pBS − xp
k‖2) + ek. (3)

where PBS is transmitted signal power (in dB); α is the path loss exponent; ek is the measurement

noise and pBS is the position of the antenna; the standard ‖ · ‖2 norm is used. This model has

been used in many proposed localization algorithms [2, 17]. Though being a global and simple

model, there are several problems associated with using it:

• The transmitted power needs to be known, which requires a protocol and software that

allows higher layer of applications to access this information.

• The position of the antenna needs to be known. This requires first building a database,

and second that the user application can access the identification number of each antenna

connected to the model. Third, the operators in some countries consider the position of their

antennas to be classified.

• The path loss constant needs to be known, while it, in practice, depends on the local

environment.

An alternative model is based on a local power map (LPM), which is obtained by observing the

measurement yk over a longer time and over a local area. Each LPM item is then computed as

a local average

LPM model: ẑ(x) = Ê(y) = Ê(h(x) + e) (4a)

ĥ(x) =











ẑ(x), if ẑ(x) ≥ ymin,

NaN, if ẑ(x) < ymin.
(4b)

where the operator Ê denotes the corresponding averaging. LPM provides a prediction of the

observation (2) in the same way as the OH model in (3). However, the LPM should be considered

more accurate since it implicitly takes care of the LOS/NLOS problems that are difficult to handle

[18]. The LPM model also partially includes the effects of slow and fast fading. The total effect

can be approximated as a gain in SNR with a factor of ten compared to the OH model, see [2].
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The collection of averaged measurements ĥ(x) for the same position in a single vector gives

us the fingerprint ĥ(x) for that position i.e.,

ĥ(x) ,

[

ĥ1(x) ĥ2(x) . . . ĥNBS
(x)

]T

(5)

where NBS is the number of BSs and ĥj(x) is the averaged measurement from the jth BS at

the position x. The advantage of collecting fingerprints in a database is that prior knowledge of

antenna position, transmitted power or path loss constant is not needed, enabling mobile-centric

solutions. The price for this is the cumbersome task to construct the LPM. Here, three main

alternatives are plausible:

1) Collect the fingerprints during an off-line phase. Measurements to be stored have to be

collected from all possible places where the target can be and under various weather

conditions at different times in the area under study. This method gives the most accurate

database but it is money and time consuming.

2) Use the principle of wardriving [19], where the users on-line contribute to the LPM. The

idea is that users with positioning capabilities (for instance GPS) report their position and

observations (2) to a database [20, 21], which is used for positioning other users.

3) Predict the fingerprints using Geographical Information System (GIS) planning tools [2].

Using the radio propagation formulas to predict the RSSs is not as accurate as measuring

them because it is not possible to model all the propagation effects. As a result, the

predicted data is not as accurate as the measured one but it is quite easy to obtain.

In this study, the first method was adopted, and the WiMAX RSS values have been collected

from all the possible roads in the area under study (we assume that the target or the user is

using the public road network) during an off-line phase. The LPM has been formed from this

database as follows.

• NLPM different grid points denoted as {pi , [xi, yi]
T
}NLPM

i=1 , where xi and yi denote the x

and y coordinates of the ith point respectively, have been selected on the road network. A

maximum distance of 10m has been left between these LPM points.

• For each piece of data that has been collected, the closest LPM grid point has been found.

• For each LPM grid point i, the vector ĥi (called “RSS vector” or fingerprint) is formed
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such that

ĥi =
[

ĥi
1 ĥi

2 . . . ĥi
NBS

]T

(6)

where ĥi
j is the mean of the RSS data from the jth BS assigned to the ith LPM grid point. If

there is no RSS data from the jth BS assigned to the ith LPM grid point, we set ĥi
j = NaN

representing a non-detection. Note that each fingerprint (or RSS) vector ĥi = ĥ(pi), is a

representative of the expected RSSs at the position pi.

The measured RSS values at the time of localization are then collected in another RSS vector

y which is defined as

y =
[

y1 y2 . . . yNBS

]T

(7)

where the values yj are equal to the measured RSS values from jth BS or equal to NaN when

there is no value measured (no detection). The localization can then be done by defining distance

measures between the measurement vector y and the map RSS-vectors ĥi. In this study, we

will denote such measures in the form of likelihoods p(y|ĥi) of the measurement vector y

given the RSS vector ĥi which represents an hypothesis about the position of the target (i.e.,

pi). Note that this notational selection makes sense in the case of dynamic localization where

probabilistic arguments appear quite frequently. However, even in the static localization, use of

such a symbol for the distance measures, in spite of the fact that there is no stochastic reasoning

in their definition most of the time, emphasizes the similarity of the problems in both cases.

How to define the likelihoods is not straightforward and forms the backbone of localization.

Once they are defined, the localization procedure in fingerprinting can be posed mathematically

as the maximum likelihood estimation problem given below.




x̂

ŷ



 = pî (8)

î = arg max
1≤i≤NLPM

p(y|ĥi) (9)

where x̂ and ŷ are the estimated x and y-coordinates of the target.

III. LIKELIHOOD DEFINITIONS FOR STATIC ESTIMATION

In defining the likelihoods used for classical (static) fingerprinting (given in (8) and (9)), if the

vectors y and ĥi did not have NaN values, than any norm (or norm-like functions) would do the
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job. The same would be true in the case where the places of NaN values and the non-NaN values

would match in the two vectors. However, it is quite unlikely that this condition is satisfied in

any real application. The classical way of defining the likelihood function is as given in the

following algorithm, [1, 12].

Algorithm 1: Classical Fingerprinting

Ignore the NaN values and compute the likelihood as the distance between the two (sub-)vectors,

i.e.,

p(y|ĥi) , ‖Γi‖−1 (10)

where Γi , [γi
1, γ

i
2, . . . , γ

i
NBS

]T is the vector whose elements are defined as

γi
j ,







yj − ĥi
j, yj 6= NaN, ĥi

j 6= NaN

0, otherwise
. (11)

The norm ‖ · ‖, although its effects, most of the time, might be negligible, can be selected to be

any valid norm or distance. In our paper, for the comparisons, the standard ‖ · ‖2 norm is used.

On the other hand, the non-matching NaN values, as is going to be shown in this paper, carry

valuable information that should not be neglected in the localization. The information given by

them can be summarized for two different cases as given below:

• When the measurement vector y has NaN value for some BS (this means that the receiver

did not get any RSS measurement from that BS) the hypotheses ĥi that have a value for

that BS are unlikely. In other words, positions pi that are far from the BS are more likely.

• When the measurement vector has a value for some BS (this means that the receiver has

got a RSS measurement from that BS) the hypotheses ĥi that does not have a value for

that BS (these are the RSS vectors ĥi that have a NaN value for that BS) are unlikely, i.e.,

the positions pi that are close to the BS are more likely.

Usage of this, in a way, negative information in localization to different extents is the main

theme of our paper. The localization hypotheses ĥi having non-matching NaN values which

we call as non-matching hypotheses are punished by our proposed methods. Two different

likelihood calculation mechanisms (hence measurement models) are proposed for the static and

dynamic estimation cases respectively. The static estimation case involves no assumption of

temporal correlation of the estimated position values and therefore requires the full extent of the
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punishment of the non-matching hypotheses. Consequently, we call the likelihood calculation

mechanism proposed for this case as the BS-strict approach. The dynamic estimation case, on

the other hand, makes use of a dynamic motion model for the estimated position values, which

enables the positioning algorithm to accumulate information from consecutive measurements.

This requires a softer version of the BS-strict approach in the sense that it allows for the survival

of the unlikely hypotheses between consecutive times. Hence, we call the proposed algorithm

for this dynamical case as the BS-soft approach.

We delay the stochastic derivation of BS-soft approach to Section V and give below the

BS-strict approach which is going to be used in the static estimation in Section IV.

Algorithm 2: BS-strict

This approach calculates the likelihoods in the same way as Algorithm 1, but this time the

elements γi
j of the vector Γi are defined as

γi
j ,



















yj − ĥi
j, yj 6= NaN, ĥi

j 6= NaN

0, yj = NaN, ĥi
j = NaN

∞, otherwise

. (12)

Notice that the infinite punishment given to the non-matching NaN values in Algorithm 2 results

in the elimination of the corresponding hypotheses because their likelihood will vanish. Any

likelihood based method using Algorithm 2, therefore, will search for the strict match of the

NaN and non-NaN values in the two compared RSS vectors. This methodology will then increase

the effects of the BS identities in the estimation process. The methods based on this algorithm

can be more robust than the ones using the classical algorithm which relies only on the measured

RSS values. This is because the measured BS identities are much more reliable than the actual

measured RSS values under a significant range of effects like weather, NLOS and fading.

IV. FINGERPRINTING LOCALIZATION: THE STATIC CASE

For our study, the power maps of all available sites in the measurement area shown in Figure 1

have been generated and plotted in Figure 2. In the following sub-sections, fingerprinting as

defined in (8) and (9) is applied to RSSI and SCORE values where the likelihoods p(y|ĥi)

involved are calculated by either the classical method or BS-strict approach defined in Section III.

July 28, 2009 DRAFT



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 10

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

1800

X−coordinates[m]

Y
−

c
o
o
rd

in
a
te

s
[m

]

 

 

site1

site2

site3

measurement point

Fig. 1: The area under study (the measurement area). The average distance between two sites is

about 1150 m.

A. Fingerprinting using RSSI values

In this section we suppose that the user can measure accurately (the same accuracy as the

power map) the received power (RSSI values). This can be done (and has been done for this

paper) using special calibrated modems with extra software installed and the measurements have

to be collected off-line, because only one channel can be measured at a time. Currently, it is

not practical to use such modems in applications but the purpose of using them in this study is

to check the possible achievable accuracy in case the user can make such measurements. The

validation data set was obtained using the trajectory shown in Figure 3 and used to position

a user. The two mentioned approaches were applied: the classical fingerprinting (Algorithm 1)
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(c) Site No. 3

Fig. 2: The power maps of the three WiMAX sites.

and the BS-strict fingerprinting (Algorithm 2). The results are shown in Figure 4. The strict BS

fingerprinting approach’s performance was significantly better than the classical one and this

is due to the fact that the BS number is more robust against the noise than RSS values, i.e.,

the same BS number will be obtained regardless of the presence of a strong noise or not, but

different RSS values will be collected.
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Fig. 3: The used target trajectory.

B. Fingerprinting using SCORE values

The SCORE values are used by the standard WiMAX modems to evaluate the connection

quality between the subscriber station (SS) and the available BSs and they can be collected

without adding any extra software or hardware to the modem. The advantage of using the

SCORE values is the possibility to obtain them for all the available BSs simultaneously, but the

disadvantage lies in their low accuracy compared to RSSI values. The relation between SCORE

values and RSSI values is given, according to the information provided by modem manufacturer,

by (13):

SCORE = (RSSI − 22) − (0.08 × AvgV iterbi). (13)

where, AvgViterbi value is computed statistically from the Viterbi decoder. This adds an extra

challenge for localization services, since even though the performance of the decoder is important
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for handover decisions, it is only nuisance for localization. Measurements were collected using

the same trajectory to validate the two fingerprinting approaches (using the same database built

using RSSI values). Figure 4 shows the cumulative distribution function (cdf) of the positioning

error. Two observations can be made:

1) Using the SCORE values gives less positioning accuracy than using the RSSI values. This

is logical because the SCORE values are less accurate than RSSI values.

2) The impact of using the BS-strict approach is larger in the case of SCORE values. The

SCORE values are subject to bigger changes than the RSSI values because SCORE values

do not depend only on the received power but also on the quality of the signal determined

by the Viterbi decoder.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error [m]

P
o

s
it
io

n
in

g
 e

rr
o

r 
C

D
F

 

 

SCORE (BS−strict)

SCORE (classical)

RSSI (BS−strict)

RSSI (classical)

CEP95

CEP67

Fig. 4: The positioning error CDFs. The two fingerprinting approaches were used (the classical

and the BS-strict) with the available measurements (RSSI and SCORE).
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V. LIKELIHOOD DEFINITIONS FOR DYNAMIC ESTIMATION

In static estimation, there is no temporal correlation between the consecutively made estima-

tions. In other words, once a measurement ytk is collected at time tk and an estimate x̂p
k of the

target position is obtained, in the next time step tk+1, the whole procedure is repeated by using

only ytk+1
and the new estimate x̂p

k+1 is independent of what x̂p
k is. In such a case, the use of

the information stored in the measurement ytk to its full extent is reasonable because by doing

this,

• we extract most out of a single measurement.

• even if we make a mistake in the current estimation, the estimation errors cannot accumulate

and affect the subsequent estimations.

Consequently, the negative information (i.e., non-detection events or NaN values) in the measure-

ments y have been used to eliminate some positioning hypotheses completely in Algorithm 2.

On the other hand, the dynamical estimation methods, which use models to take advantage

of the correlated information in consecutive position estimations, get their power from the accu-

mulation of the information in the algorithm along the time. Therefore, the survival of different

hypotheses about the position values is important in such methods for information gathering

process which enables higher estimation performance. Moreover, the complete elimination of

some hypotheses (like the assignment of infinite cost to non-matching hypotheses in Algorithm 2)

can result in error accumulation in a recursive procedure because an hypothesis deletion can never

be compensated in the future even if some contrasting evidence appears. Thus, assigning still

higher but finite costs to non-matching hypotheses and hence allowing them (or some of them)

to survive is more suitable in dynamic estimation procedures. Since such a cost assignment

procedure make the hypothesis punishment in a softer way than Algorithm 2 by assigning finite

costs to non-matching hypotheses (compared to the infinite punishment in Algorithm 2 which

results in the hypothesis elimination), we call the resulting methodology as the “soft” approach.

Below we give such a soft likelihood calculation mechanism to be used in a dynamic estimation

method. The algorithm that we will present is based on the following simple assumptions:

1) The elements {yj}
NBS

j=1 of the measurement vector y are conditionally independent given

the database RSS vector ĥi.
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2) Matching not-NaN values in the measurement and RSS values satisfy

yj = ĥi
j + ej if yj 6= NaN and ĥi

j 6= NaN (14)

where ej ∼ pej
(.) represents measurement noise for the jth BS.

Using the first assumption, the likelihood p(y|ĥi) can be written as

p(y|ĥi) =

NBS
∏

j=1

βij (15)

where βij , p(yj|ĥ
i
j) is the individual likelihood for the jth BS. The different combinations that

appear in the analysis due to NaN values are considered separately below:

• If yj 6= NaN (we get a measurement from the jth BS) and ĥi
j 6= NaN (the ith hypothesis

has an LPM data for jth BS), we have by assumption 2

βij = pej
(yj − ĥi

j) (16)

where pej
(.) can be selected considering the application requirements. A simple choice is

to set

βij = N (yj; ĥ
i
j, σ

2
j ) (17)

where N (yj; ĥ
i
j, σ

2
j ) denotes a normal density with mean ĥi

j and standard deviation σj

evaluated at yj . This corresponds to pej
(.) = N (.; 0, σ2

j ). If the number of data points

averaged for an LPM grid point are greater than e.g. 10, then, by the central limit theorem,

this Gaussian likelihood seems to be the most appropriate selection. The standard deviation

σj is a user selected parameter that could change from base-station to base-station.

• If yj = NaN (we do not get any measurement from the jth BS) and ĥi
j 6= NaN, then we

have

βij =P (yj < ymin|ĥ
i
j) (18)

=P (ej < ymin − ĥi
j) (19)

=cdfej
(ymin − ĥi

j) (20)

where cdfej
(x) ,

∫ x

−∞
pej

(x)dx is the cumulative distribution function of ej . Here, while

passing from (19) to (20), we assumed that ej is a continuous random variable (i.e.,

no discontinuity in its cumulative distribution function). The probability density function
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appears in the calculation again as a design parameter. Notice here that, although it is

the same density that is required in the previous case, the density pej
(.) can be selected

differently for each case for design purposes. In fact, as observed from several preliminary

experiments, the Gaussian selection as in the previous case gives too much (exponential)

punishing for the non-matching hypotheses (i.e., hypotheses corresponding to ĥi for which

ĥi
j 6= NaN). Such a selection would therefore yield a hard approach which is similar to

BS-strict algorithm. Therefore, another selection has been made which leads to the softer

result

βij = µ

∣

∣

∣

∣

∣

ĥi
j

ymin

∣

∣

∣

∣

∣

, (21)

where µ ≤ 1 is a constant design parameter. This selection, in fact, corresponds to a

uniform density for ej between the values ymin and −ymin when µ = 0.5/ymin. Notice that

we always have ymin < ĥi
j ≤ 0 in our paper 1 and therefore, 0 ≤ βij < 1. Since we do not

get a measurement from the jth BS, we punish the hypotheses that have LPM values for

that BS and note that the larger the LPM value (i.e., power) the more the punishment is,

i.e., βij is smaller.

• If yj 6= NaN and ĥi
j = NaN (for the ith hypothesis, we do not have any data for the jth

BS), then a similar analysis would be

βij =p(yj|ĥ
i
j < ymin) (22)

=
P (ĥi

j < ymin|yj)p(yj)

P (ĥi
j < ymin)

(23)

which requires the prior likelihood p(yj) and probability P (ĥi
j < ymin) which are hard to

obtain. A straightforward approximation can be

βij ≈ P (ĥi
j < ymin|yj) (24)

which is simple to calculate in a way similar to (21) but has been seen to be giving low

performance in preliminary simulations. The reason for this has been investigated and is

1In fact, the data collected for our paper (i.e., {ĥi
j}

NLP M

i=1 for j = 1, . . . , NBS) satisfied this assumption but in

general, the collected data need not satisfy it. This is, however, not a restriction because one can always find the quantity

h̄ , max1≤j≤NBS
max1≤i≤NLP M

ĥi
j and subtract it from all the data and the online measurements when they are collected

to obtain an equivalent data and measurements that satisfy the assumption for a value of ymin.
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found to be that the term calculated using (24) can sometimes be much larger than the terms

calculated for the hypotheses that actually have a (non-NaN) value for that BS. We are going

to illustrate our argument on the following example case: Suppose that yj 6= NaN (i.e., we

have collected a measurement from the jth BS) and i1 and i2 are two positioning hypotheses

such that ĥi1
ℓ = ĥi2

ℓ for ℓ 6= j. Suppose also that ĥi1
j = NaN (for the i1th hypothesis, we do

not have any data for the jth BS) and ĥi2
j 6= NaN (for the i2th hypothesis, we have a data

for the jth BS). We would like to calculate the punishing terms (likelihoods) βi1j and βi2j

corresponding to these two hypotheses. Since the hypothesis i1 is non-matching (in terms

of only the jth BS, i.e., yj 6= ĥi1
j ) and the hypothesis i1 is matching (in terms of only the

jth BS, i.e., yj = ĥi1
j ), we expect that the punishment for i1 to be more than the one for

i2, that is, the inequality

βi1j ≤ βi2j (25)

must be satisfied. Note that, since βi2j depends on ĥi2
j and yj via (17), it can be arbitrarily

small. Therefore, if βi1j is selected irrespective of the βi2j values for the matching hypothe-

ses, it is a strong possibility that βi1j would happen to be much higher than βi2j and hence

a non-matching hypothesis will be promoted instead of the matching ones. In fact, in the

preliminary simulations using (24), this caused the matching hypotheses to be discarded.

Therefore, for this case, we (give up the formula (24) and) propose the following likelihood

calculation method

βij = min
m∈Mj

βmj (26)

where the set Mj is given as

Mj , {i|ĥi
j 6= NaN}. (27)

The likelihood (26) always satisfies the condition (25) and hence the non-matching hy-

potheses are punished more than or equal to the matching ones. One can actually replace

the punishment factor with any smaller value. Notice that when there are no hypotheses

which have values for the BS (i.e., the set Mj is empty), arbitrary punishing or (24) can

be applied.

• If yj = NaN and ĥi
j = NaN, then, since the vectors are matching for jth BS, one can set

βij = 1.
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The algorithm outlined above is summarized in the following from an implementation point of

view:

Algorithm 3: BS-soft

Suppose the current available hypotheses are shown as {ĥi}Nh

i=1 where Nh represents the number

of hypotheses.

• Calculate the quantities αij for i = 1, . . . , Nh and j = 1, . . . , NBS as

αij =







N (yj; ĥ
i
j, σ

2
j ), yj 6= NaN, ĥi

j 6= NaN

NaN, otherwise
. (28)

• Calculate the quantities βij for i = 1, . . . , Nh and j = 1, . . . , NBS using {αij} as

βij =



































1, yj = NaN, ĥi
j = NaN

µ

∣

∣

∣

∣

ĥi
j

ymin

∣

∣

∣

∣

, yj = NaN, ĥi
j 6= NaN

min
m

αmj, yj 6= NaN, ĥi
j = NaN

αij, yj 6= NaN, ĥi
j 6= NaN

(29)

where only numeric values are considered in the minimization.

• Calculate the likelihoods {p(y|ĥi)}Nh

i=1 from {βij} as

p(y|ĥi) =

NBS
∏

j=1

βij (30)

for i = 1, . . . , Nh.

The punishment terms in the likelihood calculation can be thought of as a softened version

of the BS-strict approach considered previously in this section. In a way, by assigning lower

weights to hypotheses that do not match the measurement, one lowers their effect in the overall

estimate instead of discarding them completely (similar to BS-strict) which can be quite harmful

in dynamic approaches.

VI. FINGERPRINTING LOCALIZATION: THE DYNAMIC CASE

For the positioning methods used in Section IV, one does not consider the time information

(stamps) available with the measurements. When the target is localized with good accuracy for

one measurement, in the next measurement when the user is possibly quite close to the previous

location (because only a small amount of time has passed), the previous accurate localization
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is completely discarded and a new localization is done based on the new measurement. This is

one type of static target localization and the dynamic information coming from the fact that the

user does not move much between consecutive measurements is not used. One of the ways to

use this extra information in localization is to use a dynamic model for the target (user) position

given as:

xtk+1
= ftk+1,tk(xtk , wtk+1,tk) (31)

where

• xtk ∈ R
nx is the state of the target at time tk,

• wtk+1,tk ∈ R
nw is the process noise representing the uncertainty in the model between time

instants tk and tk+1. If the process noise term is selected to be small, this means that the

target model is known with good accuracy and vice versa.

• ftk+1,tk(., .) is in general a nonlinear function of its arguments.

This type of models is generally used in target tracking [22, 23] to model target motion dynamics.

At each time instant tk, we get a measurement ytk which is related to the state of the target as

ytk = h(xtk) + vtk (32)

where

• h(.) is, in general, a nonlinear function. In our application, it is the power map whose

information is collected off-line. The likelihoods p(ytk |xtk) will be formed from the power

map using Algorithm 3. The details will be given below in sub-section VI-B2.

• vtk is the measurement noise representing the quality of our sensors.

The state estimation with this type of probabilistic model, given by (31) and (32), is a mature

area of research [24, 25]. The optimal solution when the functions f(.) and h(.) are linear

and the noise terms wtk+1,tk and vtk are Gaussian is the well-known Kalman filter [26]. Some

small nonlinearities can be handled by approximate methods such as the extended Kalman filter

(EKF) [27] and the methods called as sigma-point Kalman filters [28], of which the unscented

Kalman filter (UKF) [29, 30] is one type, have been shown to be suitable for a much larger

class of nonlinearities (see the extensive work [31]). These approaches are possible alternatives

in the cases where the posterior density of the state is unimodal. On the other hand, if one

assumes that the user is moving on the road, the state density would be highly multi-modal,
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which can be approximated with a single Gaussian distribution quite poorly. Complicating the

facts, the measurement function h(.) that is represented by the power map is highly nonlinear

and furthermore it is discontinuous. Therefore, in this work we are going to use the relatively

recent algorithms in the literature called particle filters [14, 15, 16]. Two particle filters are

used to track the target (user). The first one exploits the target dynamic information (motion

model) only, and the second filter makes use of the public road information map in addition to

the dynamic information. We call these filters off-road and on-road particle filters for obvious

reasons. Knowing that the user is on the public road network is a valuable information to position

him/her. The TeleAtlas maps have been used as assisting data in addition to the measured data

[32].

A. Particle Filter

Particle filters are recursive implementation of Bayesian density recursions [14, 15, 16]. The

main aim in the method, as in many Bayesian methods, is to calculate the posterior density of

the state xtk given all the measurements yt1:k , {yt1 ,yt2 , . . . ,ytk}; i.e. we calculate the density

p(xtk |yt1:k). While doing this, the particle filter approximates the density p(xtk |yt1:k) with a

number of state values {x(i)
tk
}

Np

i=1 (called particles) and their corresponding weights {η(i)
tk
}

Np

i=1

(called particle weights) i.e.,

p(xtk |yt1:k) ≈

Np
∑

i=1

η
(i)
tk

δ
x

(i)
tk

(xtk) (33)

Then, at each time step, the particle filter needs to calculate the particles and weights {x(i)
tk

, η
(i)
tk
}

Np

i=1

from the previous particles and weights {x(i)
tk−1

, η
(i)
tk−1

}
Np

i=1. We are going to use the basic particle

filtering algorithm which is called bootstrap filter and which was proposed first in [33]. At each

step of the algorithm, one can calculate the conditional estimate x̂tk and the covariance Ptk of

the state as

x̂tk ,

Np
∑

i=1

η
(i)
tk

x
(i)
tk

, (34)

Ptk ,

Np
∑

i=1

η
(i)
tk

[

x
(i)
tk

− x̂tk

] [

x
(i)
tk

− x̂tk

]T

. (35)

It is possible to calculate other types of point estimates like maximum a posteriori (MAP)

estimates etc. [34] from the particles and the weights of the posterior state density, however, this
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would require a kernel smoothing of the particles in general [35]. Note that the particle filter

described above is one of the simplest and computationally cheapest algorithms among more

complicated ones as given in [36] and in [14]. In the following subsection, we will describe

the specific models and parameters that are used in the two different (off-road and on-road)

implemented particle filters.

B. Implementation Details of the Particle Filters

We implemented two different bootstrap particle filters using different target motion models

but with the same measurement model (i.e., likelihood).

1) State Models: The first particle filter (called off-road filter) uses a classical (nearly) constant

velocity model with state xk =
[

px
k+1, p

y
k+1, v

x
k+1, v

y
k+1

]T
where variables p and v denote the

position and velocity of the the target respectively. The motion model is given














px
k+1

py
k+1

vx
k+1

vy
k+1















=





I2 Tk+1I2

0 I2



















px
k

py
k

vx
k

vy
k















+





T 2
k+1

2
I2

Tk+1I2



wk+1 (36)

where wk is a two dimensional white Gaussian noise with zero mean and covariance 52I2 and

In is the identity matrix of dimension n. Tk+1 = tk+1 − tk is the difference between consecutive

time stamps of the measurements.

The second particle filter (called on-road filter) makes use of the road database information.

The literature is abundant with a large number of publications on target tracking with road

network information. Although the early studies used multiple model (extended) Kalman filter

based approaches [37, 38, 39], the particle filters, in a short time, have proved to be one of

the indispensable tools in road constrained estimation [40, 41]. This is confirmed in the large

number of publications on the subject like [42, 43, 44, 45, 46, 47], which appeared only in the

last five years. Our approach here considers a single reduced-order on-road motion model with

a bootstrap filter. The state of the particle filter is denoted by xr
k where r stands for emphasizing

road-information, and it is given as xr
k = [pr

k, v
r
k, i

r
k]

T
where the scalar variables pr

k, vr
k denote the

position and speed values of the target on the road segment, which is identified by the integer
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index irk. The following model is used for the dynamics of xr
k.











pr
k+1

vr
k+1

irk+1











= f r





















p
r
k+1

v
r
k+1

irk











, IRN , wrd

k+1











(37)

where




p
r
k+1

v
r
k+1



 =





1 Tk+1

0 1









pr
k

vr
k



 +





T 2
k+1

2

Tk+1



wrc

k+1. (38)

The continuous process noise wrc

k is a scalar white Gaussian acceleration noise with zero mean

and 0.2m/s2 standard deviation. The predicted position and speed values p
r
k+1, v

r
k+1 might not

be on the road segment indicated by irk. The function f r(.), therefore, projects the values p
r
k+1,

v
r
k+1 into the road segment denoted by irk+1. If there is more than one candidate for the next

road segment index irk+1 due to the junctions, the function also selects a random one according

to the value of the discrete on-road process noise term wrd

k+1 ∈ {1, 2, . . . , Nr(x
r
k)} where Nr(x

r
k)

is the number of possible road segments that the target with on-road state xr
k might go in the

following Tk+1 seconds.
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Fig. 5: Positioning error CDFs for the proposed fingerprinting approach and the conventional

approach (based on the OH-model).
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Fig. 6: Positioning error comparison between dynamic positioning (on-road and off-road) and

static positioning.

2) Likelihoods: The measurement model is the same for both particle filters. At a single time

instant tk, the measurement vector is in the following form

ytk =
[

y1 y2 . . . yNBS

]T

(39)

as has also been given in Section II. The likelihood value p(ytk |x
(i)
tk

) is calculated using the

LPM as given in the following algorithm:

Algorithm 4: Calculation of p(ytk |x
(i)
tk

)

• Calculate the distance of the particle to all of the LPM grid points as

dj = ‖p(i)
tk

− pj‖
2

(40)

where p
(i)
tk

denotes the vector composed of the position components of x
(i)
tk

.

• Find the closest point in the LPM to the particle position as

ĵ = arg max
1<j<NLPM

dj. (41)

• Calculate p(ytk |x
(i)
tk

) as

p(ytk |x
(i)
tk

) =











p(ytk |ĥ
ĵ), if dĵ ≤ dthreshold

p(ytk |h̄), otherwise

(42)
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TABLE I: Parameter values used for Algorithm 3 for likelihood calculation.

Parameter Name Value

σj Measurement Noise Covariance 7

µ Scaling constant 1

ymin Minimum detectable RSS -100

Nh Number of hypotheses Np

where p(ytk |ĥ
ĵ) and p(ytk |h̄) are calculated using Algorithm 3 whose specific parameters

are given in Table I. In (42), h̄ denotes a NBS-vector with all elements equal to NaNs.

dthreshold is a user selected distance threshold that determines the largest distance between

a particle and an LPM grid point that the LPM grid point can be used to calculate the

likelihood of the particle. This is going to be especially important in the offroad particle

filter where the particles can frequently go outside of the area of interest. In this case, using

p(ytk |h̄) instead of p(ytk |ĥ
ĵ) punishes such a particle implicitly. We selected dthreshold =

100m in our simulations.

3) Initialization: Particle filters were initialized with a large Gaussian spread of particles with

mean at the true positions and zero velocities; i.e.

[

p
x,(i)
0 p

y,(i)
0 v

x,(i)
0 v

y,(i)
0

]T

∼ N (., m0, P0) (43)

for i = 1, . . . , Np where

m0 ,

[

p̄x
0 p̄y

0 0 0
]T

, (44)

P0 , diag
([

1002 1002 102 102

])

. (45)

Here, [p̄x
0 , p̄

y
0] is the true target coordinates at time t0 and the operator diag(.) forms a diagonal

matrix from the elements of the input vector. The results that have been obtained in our study

does not change with different initial distribution selection as long as the initial distribution

covers the true target position with some probability mass. The initial Gaussian density given

above has position standard deviation of 100m’s which is in a way an indirect assumption of a

prior information for the initial target position with that quality. It is unfortunately not possible

to distribute the particles to the whole area of study initially and then start the estimation. This

is because in such a case, the percentage of the probability mass that is spread around the
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true position would be too small. Therefore, a suggestion for the general case, where no prior

information of the initial target position is available, can be to initialize the particles around an

initial estimate obtained by the static fingerprinting with the first collected measurement.

In the off-road particle filter, we use the initial particles directly. On the other hand, in the on-

road particle filter, which always needs particles that are on the road network, the corresponding

particles are obtained by projecting the ones defined above onto the road network.

In order to compare our fingerprinting based bootstrap filters, we have implemented two

additional (onroad and offroad) bootstrap PFs that use only the OH-model in (3) for likelihood

calculation. For this purpose, we have estimated transmitted powers (PBS) and measurement

variances for each BS and the path loss exponent α using the least squares method with our

previously collected data (that has been used for forming the LPM). The estimation results for

our fingerprinting based bootstrap filters and OH-model based bootstrap filters are shown in

Figure 5. Notice that using SCORE or RSSI measurements with OH model in the offroad filter

gives almost the same results because the dominating model errors like fading overcomes the

effect of the accuracy of the measurements and the difference is no longer visible. In the onroad

case the difference is more evident. The fingerprinting approach reduces the effect of modeling

errors and therefore, the quality of the measurements gains more importance in the results. The

performance of the fingerprinting methodology in dynamic filtering exceeds the OH-model based

approach significantly. The performance gain with fingerprinting is overwhelming in the offroad

case but still visible in the onroad filters, especially with the SCORE measurements where SNR

is lower. It is remarkable that onroad OH-model based PF is almost equivalent to the offroad

fingerprinting based filter in terms of estimation errors, which clearly illustrate the effect of

strong modeling capability of the fingerprinting approach.

As a last point, we make a comparison between the results of the dynamic and the static cases,

which are depicted in Figure 6. A very interesting observation is that in the high accuracy parts

of the RSSI case, static approach makes better estimations than the dynamic ones although the

dynamic estimation algorithms, in the overall results, are seen to be much more robust. Note

that there is about 10m’s performance loss in the RSSI based dynamic onroad filter compared

to the static result. We attribute this difference to the fact that the static estimation calculates a

maximum likelihood (ML) estimate whereas the dynamic onroad filter calculates a mean square

estimate (MSE). Since there are about 10m’s between the LPM grid points and since the particle
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filter calculates the likelihood of a particle as the likelihood of the closest LPM point, there can

appear many particles with the same weights in a 5m radius. Calculating the average of these

particles which may be biased towards one side of the optimal result due to the road constraints

can give an error of about 5m’s. Considering the error terms added by averaging over all the

particles, we can expect an error of about 10m’s in the result compared to the ML based static

approach which would directly give the position of most likely LPM grid point when SNR is

high (like the case with RSSI). Calculation of the MAP estimate in the particle filter can be

an alternative for this problem. In the offroad case, since the particles are even more separated

we can expect this lower performance effect (under high SNR) to be more visible. Further, we

think that the lack of the road network information also makes the estimates of the offroad filter

suffer from low prior information compared to static estimates which are always constrained to

the road segments. Note that with the SCORE measurements which represents a more practical

low SNR case, there are no similar important sufferings. In the global behavior (95% lines),

the performance gains with the dynamic approaches make it clear that these methods should be

preferred when highly robust estimators are required. The results show that for 95% lines, the

positioning accuracy improvement caused by the motion model comparing to the static case is

about 33 % when SCORE values are used, and about 50% when RSSI values are used. The

localization accuracy improvement achieved by using the road information comparing to the

dynamic case is about 50% in case of SCORE values and about 40% in case of RSSI values,

which indicates the strong effect of the road network information on the localization accuracy.

VII. CONCLUSION

This paper has discussed the use of fingerprinting positioning in wireless networks based

on the RSS measurements: RSSI and SCORE with specific remarks on WiMAX networks.

The introduced work has been divided into two main parts as static and dynamic localization.

In the latter, the information of the target’s motion model was used with and without road

information. In both of the approaches, the effect of BS identities, which are more robust

to propagation effects, on the estimates has been increased via designing specific likelihood

calculation mechanisms. The results obtained show that fingerprinting positioning is a strong and

robust approach to overcome the RSS’s high variability. The positioning accuracy obtained by

using the motion model and the road network information is notable. The accuracy improvement

July 28, 2009 DRAFT



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 27

was very promising and new location-dependent applications could be seen in the horizon. The

positioning accuracy achieved by using fingerprinting positioning approach with motion model

and road information can therefore be seen as a further step toward more accuracy demanding

applications and new type of LBSs.
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