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Abstract 

In analogy to the friction ridges of a human finger, the functional connectivity patterns of the

human brain can be used to identify a given individual from a population. In other words, functional

connectivity patterns constitute a marker of human identity, or a ‘brain fingerprint’. Notably, very

little is known about whether brain fingerprints are preserved in brain ageing and in the presence of

cognitive decline.  Using fMRI data of 96 memory clinic subjects,  here we show that  individuals

functional  connectivity  profiles  remain  unique  even  when  cognitive  impairment  occurs.  Yet,  the

patterns of functional connectivity that make the healthy subjects more identifiable  change during

cognitive  decline,  suggesting  that  the  brain  undergoes  functional  reconfiguration.  Notably,  the

functional connections that were the most reliable in healthy cohorts disappeared during cognitive

decline, leaving room for other stable connections, adapting to the process of neurodegeneration. We

believe that these findings could help in moving towards a more personalised medicine and treatment

during cognitive decline, and we hope they will set the ground for clinical fingerprinting of brain

disease.
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Introduction

The  explosion  of  publicly  available  neuroimaging  datasets  1–3 in  the  last  few  years  has

provided an ideal benchmark for mapping functional and structural connections in the human brain.

At the same time, quantitative analysis of connectivity patterns based on network science has become

more commonly used to study the brain as a network 4,5, giving rise to the scientific field of  Brain

Connectomics 6. Seminal work in this research area 7,8 has paved the way to the new promising avenue

of detecting individual differences through brain connectivity features. These studies showed that an

individual’s functional connectivity patterns estimated from functional resonance magnetic imaging

(fMRI)  data,  also  known  as  functional  connectomes  (FCs),  can  constitute  a  marker  of  human

uniqueness,  as they can be used to identify a given individual in a set  of  functional  connectivity

profiles from a population 7. Given the analogy to well-known properties of the papillary ridges of the

human finger, the field has taken the name of ‘brain fingerprinting’ and, since then, the extraction of

“fingerprints'' from human brain connectivity data has become a new frontier in neuroscience. 

The  excitement  produced by  the  discovery  that  brain  fingerprints  can  be  extracted  from

matrices  summarising  human  brain  activity,  either  during  rest  or  when  performing  a  task,  is

unsurprising, for several reasons. Firstly, it confirms that studying the brain as a network can provide

useful tools to get insights into the individual features that distinguish our brains one from the other;

and second, it has been shown that brain fingerprints might relate to behavioural and demographic

scores  9,10.  Accordingly, efforts have been made to implement ways of maximising and denoising

fingerprints from brain data 11–13. These findings incentivized human neuroimaging studies to advance

from inferences at  the population level to the single-subject  level,  and allowed the field to move

towards individualised prediction of cognition and behaviour from brain connectomes 14–17. The next

natural  step is to explore whether this property of the human brain is maintained during disease.

Despite  promising  findings  towards  this  direction  18,19,  it  is  to  date  unclear  to  what  extent  FC-

fingerprints could be used for mapping disease from human brain data. 

Dementia and cognitive decline are the final consequence of a series of brain events. In the

case of Alzheimer’s Disease (AD) - the most common cause of cognitive decline - these entail the

accumulation  of  toxic  proteins  between  and  within  neurons  (e.g.,  β-amyloid  and/or

hyperphosphorylated tau, respectively) concomitant neuronal death and, ultimately, damage to wider

structural  and  functional  networks  20.  From  this  perspective,  AD  is  considered  a  ‘disconnection

syndrome’  21 and, over the years, a considerable amount of literature has focussed on connectivity

alterations in AD 22–24. 

Cognitive  decline  due  to  AD is  accompanied  by  loss  of  functional  connectivity  between

regions and loss of network organisation 25,26. Loss of connectivity however is often accompanied by

hyperconnectivity in other brain regions/networks  27–30,  and phases of hyperconnectivity have been

described  just  before  the  start  of  the  cognitive  symptoms  31–34.  Another  connectivity  feature  of

cognitive impairment is a change in hub regions 35,36. Hubs are regions that mediate a high proportion
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of functional connections and that are thought to be crucial for the integration of information from

domain-specific  systems in  the  healthy  brain  4,37.  Interestingly,  the  hubs often  correspond  to  the

epicentres  of  β-amyloid  accumulation  35,36,38,  and  some  suggest  that  this  susceptibility  to

pathophysiology could be due to  the  high metabolic  needs of  these regions  36.  In  line  with this,

individuals with AD show loss of nodal centrality in several hub regions, for example in the medial

temporal lobe, posterior portions of the default mode network (DMN), and occipital regions  39. In

addition, the connectivity strength of tau epicentres is strongly predictive of the topography of tau

accumulation, suggesting that tau could spread through functional connections  40–42.  Finally, graph

theory  studies  have  shown  that  the  global  network  organisation  changes  in  AD  and  becomes

characterised  by  shorter  path  lengths  between  connected  regions  (randomness)  and  an  increased

number of hubs (i.e., regularity  28). In sum, the literature suggests that the brain undergoes loss and

reorganisation of functional connectivity during pathological ageing, and that the changes are closely

linked to the underlying β-amyloid and tau pathophysiology. 

However  and  despite  the  considerable  amount  of  literature  on  the  topic,  there  is  not  an

agreement on the functional connectivity signatures of the various stages and etiologies of cognitive

decline 23, and this has hindered its use as a clinical biomarker 32,43. This is partly due to the intrinsic

properties  of  resting-state  fMRI-connectivity,  a  technique  that  is  greatly  influenced  by  factors

affecting  the  signal  processing  (heterogeneity  in  acquisition  parameters,  scanners  characteristics,

motion  44) by differences in the analytical approaches chosen  32,  and also by the fact that existing

studies focused on group averages, overlooking heterogeneity among individuals. The existence of

inter-subjects variability in terms of cognitive phenotypes - but  also biological features - is well-

recognized in clinical practice and, as discussed above, there is evidence that this cognitive variability

can be explained by changes in functional organisation. Addressing the deep research question of

fingerprinting during brain disease could therefore open the door to individual characterization of

cognitive decline from functional connectivity data and open the way to its use in clinical settings.

Investigating  fingerprints  of  cognitive  decline  is  tightly  connected  to  the  concept  of  “precision

medicine” 45, since it might provide insights on the individual trajectories of pathological brain ageing

and/or  personalised  treatment  during  cognitive  decline,  advancing  medicine  in  its  quest  for

individualised biomarkers of neurodegeneration 46.

In this work, we investigated brain connectivity fingerprints using fMRI data collected from

96  individuals  at  different  stages  of  cognitive  decline.  We  started  by  estimating  functional

connectome fingerprints of an heterogeneous cohort of Cognitively Unimpaired (CU), Mild Cognitive

Impairment (MCI) and dementia, during the first and second half of the fMRI session. We found that

whole-brain functional connectivity patterns remained reliable across healthy and pathological brain

ageing; in other words, it was possible to correctly identify a patient solely based on its functional

connectome.  Yet,  significant  differences  in  the  spatial  organisation  of  the  brain  fingerprint  were

observed during cognitive decline. Notably, the functional connections that were the most reliable in
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healthy  cohorts  disappeared  during  cognitive  decline,  leaving  room for  other  stable  connections,

adapting to  the  process  of  neurodegeneration.  We hope that  the  findings will  help in  setting the

grounds for clinical fingerprinting in fMRI, and in improving our understanding of the link between

unique brain connectivity features and individualised biomarkers of neurodegeneration.  

Results

We investigated brain fingerprints of neurodegeneration in a cohort of N = 96 subjects at

different stages of cognitive decline: unimpaired (CU), with mild cognitive Impairment (MCI), and

dementia.  The approach can be summarised in  three steps:  (1) We first  estimated the functional

connectomes (FC) of each subject during the first 100 and second 100 volumes of fMRI acquisitions

respectively,  (cf.  Fig.  1 and see Methods for details).  (2) We then estimated the degree of brain

identification or “brain fingerprint” at the  whole-brain level,  through a mathematical object called

Identifiability matrix 12 (cf. Fig 1). 
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Figure  1.  Exploring  FC  fingerprints  of  neurodegeneration,  schematics  of  the  approach.  We  estimated  the  FC-

fingerprint in Cognitively Unimpaired, Mild Cognitive Impairment and dementia patients. Fingerprint was estimated as the

degree of similarity between Functional Connectivity at test (FC Test, first 100 volumes) vs. retest (FC Retest, second 100

volumes) and summarised in a mathematical object called Identifiability Matrix 12.

The identifiability matrix provides two useful metrics for brain fingerprinting: the degree of

similarity of each subject with themselves (ISelf) as opposed to others (IOthers), and the degree of

fingerprint,  conceptualised as  the  extent  to  which subjects  were more similar  to  themselves  than

others  (IDiff,  see  Methods).  We  further  explored  the  spatial  specificity of  brain  fingerprints  by

estimating  the  degree of  distinctiveness  of  each FC-edge at  the  individual  level,  using  intraclass

correlation (ICC, see Methods). (3) We finally explored the association between brain fingerprints and

connectome variability across time, conceptualised here as FC flexibility. 

1.0. Functional Connectivity fingerprints can be detected also in cognitive decline

At the whole-brain level, the success-rate of the identification procedure was 100%. All cases

showed  higher  similarity  with  themselves  (ISelf),  as  opposed  to  others  (IOthers),  and  IDiff  was

comparably high in the three groups. We also found that test-retest reliability (ISelf) was high in the

three  groups,  with  no  significant  differences  across  groups  [CU:  M(SD)=0.61(0.07);  MCI:

M(SD)=0.59(0.09);  Dementia:  M(SD)=0.60(0.08);  cf.  Fig.  2A].  Note  that  these  ISelf values  are

equivalent to those found by existing studies in healthy subjects of the Human Connectome Project

database  47.  Permutation  testing  showed  that  IDiff and  Success-rate were  different  from  null

distributions at p <.001 in all groups (Fig. 2A). In other words, it proved to be possible to correctly

identify an individual  in the cohort,  with significantly greater accuracy relative to  surrogate null

models  48 (see Methods for details), independently from the stage of cognitive decline, and solely

based on the patterns of brain activity. Note that the reported identification rates are computed at the

whole-brain  level,  hence  giving  no  information  on  the  functional  edges  most  influential  for

identification. The ensuing aim was therefore to understand how these results related to the local

properties of the individual functional connectomes. 

2.0. The brain undergoes functional reconfiguration during cognitive decline. 

To address this question, we assessed spatial specificity of brain fingerprints using edgewise

intra-class  correlation  12 (ICC).  Interestingly,  we  found  that  the  FC-fingerprints  of  the  most

identifiable edges followed a U-shaped pattern along neurodegeneration, with an overall reduction in

MCI, and an increase in dementia (Fig. 2B and Fig. 2C). In addition, the spatial configuration of the

edges with the highest fingerprint changed during cognitive decline (Fig. 2B and Fig. 2D).

In order to further explore the patterns of functional reconfiguration that emerged from the

ICC matrices, we analysed the changes in the identification rate (in terms of IDiff) when iteratively

selecting the edges from highest to lowest fingerprint (ICC). Specifically, we first ranked the edges
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with the highest ICC in the healthy cohort, and we then calculated IDiff in CU and in the two clinical

groups. IDiff was computed on subsets of the first 100, 200, 300, … ranked FC edges in steps of 100,

eventually including all the FC edges (~40000). As reported in Fig. 2D, this analysis showed that the

edges with the highest fingerprint in CU are not the ones contributing to fingerprinting patients in the

two clinical groups. The IDiff scores for MCI and dementia were consistently lower (and stationary)

in the top CU edges. Of note, there was a slight decrease in  IDiff in the MCI and dementia curve

around 1200 edges (Fig. 2D). In conclusion, the edges that ranked as top in identifying the healthy

cohort, were not as prominent across pathological brain ageing. 

Figure 2. Functional Connectivity fingerprints during cognitive decline. A) Identifiability matrices show within- (ISelf)

and  between-subjects  (IOthers)  test-retest  reliability  as  Pearson  correlation  coefficient  in  CU,  MCI  and  Dementia.

Individuals’  ISelf  and  IOthers are displayed, respectively, in the diagonal and off-diagonal elements of the matrix. The

average ISelf, IDiff and Success-rate were similar in the three groups and IDiff and Success-rate differed at p < .001 from

random distributions. B) Spatial specificity matrices of FC-fingerprints for each group as measured using edge-wise intra-

class correlations (ICC). We display edges with ICC ≥ 0.4, which is considered good concordance for neuroimaging data
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49,50. VIS = visual network; SMT = somatomotor network; DA = dorsal-attention network; SA = salience network; L = limbic

network; FPN = fronto-parietal network; DMN = default-mode network; SBC = subcortical regions.  C) Boxplots show the

U-shaped pattern of the most identifiable edges across cognitive decline, already visible in the ICC matrices. D) Group-level

whole-brain estimate of fingerprint (IDiff, see methods below), across subsets of the top 100, 5000, 10000, … ~40000 edges

with highest edgewise fingerprints (ICC) in Cognitively Unimpaired. The IDiff curves for CU, Mild Cognitive Impairment

and dementia for those edges are shown, according to the highest to lowest ICC values in CU. Note that edges with the

highest fingerprint in CU do not correspond to those contributing to fingerprints in patients. 

We then explored the pattern of functional reconfiguration as expressed by the ICC nodal

strength of each brain region. When looking at the fingerprinting  hubs in MCI and dementia with

respect to CU, we found that individual identification relates to cognitive decline in two fundamental

ways (cf. Fig. 3).  (i) Regions that are  hubs of fingerprinting in CU (i.e., the top three regions with

highest ICC) dropped in their prominence in MCI and dementia, specifically: the left inferior frontal

gyrus (IFG; percentage difference in nodal strength: -17.8% in MCI and -29.70% in dementia), the

left  angular  gyrus (AG; -17.70% in MCI and 27.90% in dementia)  and the left  posterior middle

temporal gyrus (pMTG; -20.10% in MCI and -26.60% in dementia). Moreover, during dementia the

reduction of fingerprints was spread out wider and included neighbouring regions (note in Fig. 3 the

spread of blue around AG and pMTG). Finally, there was a notable drop in fingerprinting also in other

regions, e.g. see the bilateral posterior cingulate cortex (pCC, -27.90%), right primary visual cortex (-

19.20%),  left  paracingulate  gyrus  (-18.70%),  right  superior  frontal  gyrus  (-16.90%) in  MCI;  left

inferior  temporal  gyrus  (ITG,  -39.40%),  left  lingual  gyrus  (-34.30%),  left  planum  temporale  (-

33.50%),  and  right  anterior  cingulate  cortex  (-27.20%)  in  dementia.  (ii) Areas  that  were  not

fingerprinting hubs in the healthy, increased their identifiability in MCI and dementia, i.e., the right

ventral anterior temporal lobe (vATL, 39% in MCI and 51.20% in dementia), the inferior primary

motor area (iPMA, 40.20% in MCI and 44.30% in dementia) and right posterior superior temporal

gyrus  (49%  in  MCI  and  39.6%  in  Dementia),  the  left  superior  primary  motor  area  (sPMA)  in

dementia (37.70%) and bilateral precuneus (PCUN) in MCI (42%). Table 1 in the Supplementary

Materials provides an overview of % difference in nodal strength. Together with the previous results,

this  corroborates  the  finding  that  during  disease  there  is  a  reconfiguration  of  the  functional

connectivity patterns contributing to the brain fingerprint of an individual.

Finally, we assessed the degree to which edgewise-FC represented a fingerprint of cognitive

decline. In order to do so, we used ICC again, this time to quantify the degree to which each FC edge

was indicative of the similarity between subjects of the same group (CU, MCI, dementia separately)

as well as the degree to which it could distinguish among subjects belonging to the different groups.

We found that ICC was very low (ICC max = 0.03; for full results cf. Supplementary Materials),

confirming what emerged from the inconsistent results in the literature, i.e., that distinguishing among

groups using FC data is a difficult task, most likely because of the inter-subjects variability.
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Figure 3. The functional reconfiguration of fingerprints during cognitive decline.    Brain renders show the most reliable

(ICC ≥ 0.4) nodes (or areas) in CU (left). We labelled the top 3 nodes with the highest ICC in CU, namely: left inferior

frontal gyrus (IFG), left angular gyrus (AG), left posterior middle temporal gyrus (pMTG). For MCI (middle) and dementia

(right) we display percentage difference in nodal strength using CU as reference. Regions labelled in blue are those with the

highest fingerprint in CU. Note that these regions are amongst those with the biggest reduction in MCI and dementia. The

top regions with bigger  reduction in  ICC were:  for  MCI,  left  and right  posterior  cingulate  cortex (pCC,  -27.9%),  left

posterior middle temporal gyrus (pMTG, -20.1%), right primary visual cortex (V1, -19.2%), paracingulate gyrus (-18.7%),

left  inferior  frontal  gyrus  (IFG,  -17.8%),  left  angular  gyrus  (AG,  -17.7%),  right  superior  frontal  gyrus  (-16.9%);  for

dementia,  left  inferior temporal gyrus (ITG,  -39.4%),  left  lingual  gyrus (-34.3%),  left  planum temporale (-33.5%),  left

inferior frontal gyrus (IFG, -29.7%), left angular gyrus (AG, -27.9%), right anterior cingulate cortex (aCC, -27.2%), left

posterior middle temporal Gyrus (pMTG, -26.6%). Regions labelled in red are the top 4 regions with the bigger increase in

ICC; for MCI: right posterior superior temporal gyrus (pSTG, 49%), left and right precuneus (PCUN, +42%), right inferior

primary motor area (iPMA, +40.2%), right ventral portion of the anterior temporal lobe (vATL, +39%); for dementia: right

ventral portion of the anterior temporal lobe (vATL, +51.2%), left and right inferior primary motor area (iPMA, +44.3%),

right posterior superior temporal gyrus (pSTG, +39.6%), and left superior primary motor area (sPMA, +37.7%). 

4.0. Factors influencing fingerprint reconfiguration

We investigated  potential  causes  of  the  fingerprint  reconfiguration  by  exploring  whether

fingerprints were associated with functional connectome variability across time, here conceptualised

as dFC Flexibility (see Methods for details). First, we found that when looking at dFC Flexibility, the

U-shaped pattern across cognitive decline re-appeared (Fig. 4A). The most flexible links in CU were

between functional networks, specifically between DMN and FPN, and DMN and SAL, SMT and

VIS, as well as between VIS and DAN and SMT. This pattern dropped in intensity when transitioning

into the MCI condition.  Notably,  dFC Flexibility was scattered around in dementia,  and patterns

became less recognizable (Fig. 4A). The regions exhibiting the highest flexibility with the rest of the

brain in CU were within the DMN and FPN and corresponded, or were adjacent to those with high

fingerprints (cf. Fig. 4B and Fig. 2C). In addition, it can be noted that while the regions exhibiting the

highest drop in flexibility in MCI were within DMN and FPN, in dementia networks were no more
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recognizable and drops and increases in dFC Flexibility were limited to specific areas. For example,

there were increases in flexibility in the left medial and lateral temporal lobe, as well as in the right

insula, orbitofrontal cortex and ventral portion of the ATL. 

In order to assess the degree of overlap between fingerprints and flexibility, we assessed their

association by correlating their group-averaged edge-wise value (Fig. 4C). We found that although

significantly correlated in the three groups (p <.0001), flexibility only partially explained our findings

on brain  fingerprints  (low correlation  coefficient),  showing that  these  metrics  represent  different

features of the functional transition from normal to pathological brain ageing.

Finally, we checked possible associations between edge-wise fingerprint (i.e., ICC matrices)

and grey matter atrophy, quantified group-wise as structural covariance matrices (see Methods for

details). We found poor correlations between these two metrics across groups (see Supplementary

Figure 2).
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Figure 4. Flexibility and fingerprints: two sides of the same coin. A) Edge-wise connectome flexibility in CU,

MCI and dementia is displayed. Edges with high flexibility are displayed (> 75 th percentile).  B) Brain renders show the

flexible nodes (or areas) in CU (left) and the percentage difference using CU as reference in MCI (middle) and Dementia

(right). In the latter, red areas are those with higher flexibility with respect to CU, while areas in blue reflect a decrease in

flexibility. C) Correlation between group average edge-wise fingerprint (ICC) and flexibility. We show that fingerprint and

Flexibility (i.e., signal variability across time) are associated yet distinguishable, as shown by low correlation coefficients. 

Discussion

In this work, we propose a comprehensive exploration of human brain fingerprints during

normal  and  pathological  brain  ageing.  We  evaluated  the  identification  properties  of  functional

connectomes at different stages of cognitive decline using fMRI data, and found that individuals can

still  be  identified  during  MCI and dementia  (Fig.  2A).  That  is,  the  uniqueness  of  the  functional

connectivity of each individual allows to correctly identify a patient from her/his cohort of reference,

independently  from  how  far  the  neurodegeneration  has  advanced.  In  other  words,  our  findings

confirm that  functional  connectivity constitutes a marker of human identity also during cognitive

decline. 

It is known that the boundaries between stages of cognitive decline are often fuzzy, especially

in the  early phases,  posing critical  challenges  to  the  diagnostic  and clinical  practises.  Diagnostic

recommendations  are  periodically  reviewed  (and  debated),  and  the  clinical  phenotypes  must  be

analysed in conjunction with molecular pathology and genetics in order to define a comprehensive

diagnostic hypothesis  43,51,52.  However, this process is still  very much dependent on the subjective

clinical  judgement because of  the  individuals’  inter-variability.  Here  we show that  the  functional

connectome of  an individual  during  cognitive  decline  carries  this  individualised information  that

could  be  precious  for  patient-specific  and  patient-oriented  evaluation  and  treatment  during

neurodegeneration. 

To deepen this  first  observation,  we  looked at  the  functional  connections  contributing  to

identification and found that in MCI the fingerprint value of the most contributing edges (as measured

by ICC, Fig. 2B and Fig. 2C) is reduced across the whole-brain, whereas in dementia there is an

increase, creating a peculiar U-shaped pattern. This is in line with previous work where a similar drop

in  identification  between  healthy  elderly  and  amnestic  MCI  was  observed,  by  using

magnetoencephalography-based functional connectomes 18. The increase in identification in dementia

patients, however, was unexpected, and led us to a deeper investigation of the U-shaped behaviour of

brain fingerprints across pathological ageing. Notably, we observed that the edges and nodes with

higher fingerprints in the healthy are reconfiguring in patients (cf. Fig. 2D and Fig. 3). We identified

the regions with the highest drop (cf. regions in blue, Fig. 3) and increase (cf. regions in red, Fig. 3) in

fingerprint using healthy subjects as a reference. 

Intriguingly,  among the  regions  with  the  greatest  drop  we found areas  implicated  in  the

flexible retrieval of memory, namely left IFG (lying at the intersection between the DMN and the
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frontoparietal network) and left pMTG (between DMN, salience and dorsal-attention networks). An

extensive literature has shown that these two regions are key hubs of semantic cognition  53–56 (and

more specifically of ‘semantic control’) as they are necessary to flexibly retrieve knowledge to suit a

specific task or context (for example, to use a newspaper - canonically known for a different purpose -

to  chase  a  fly).  These areas  are  not  exclusively implicated in  semantic  memory,  but  also in  the

cognitive  control  of  other  memory  domains  57–60 (i.e.,  episodic  memory),  emotions  and  social

processes  61, suggesting that they may play a broader role in the cognitive control necessary for the

attribution of meaning to stimuli and experiences. Also, AG showed a decrease in fingerprint. This

region is a key hub of the DMN  62 and it is consistently activated in a variety of tasks, including

semantic and episodic memory 63,64, sentence reading 65, number processing and perception 66. It has

been proposed that this region subserves these processes by integrating multimodal representations

and by allowing manipulation of mental representations 63–65. 

Our results  show that  the FC of left  IFG, left  pMTG and left  AG makes healthy elderly

individuals identifiable and unique, and these same regions show a drop in fingerprinting through the

course of cognitive decline. In other words, the patterns of connectivity of these regions cease to be

variable across subjects and, arguably, the pattern of connectivity of these regions with the rest of the

brain might need to be highly variable in order to allow for flexible retrieval of memory. According to

the reported findings, this property seems to fade over the course of cognitive decline. If replicated on

larger cohorts, these results could help in narrowing down the cognitive processes and areas that could

be used as the primary targets of cognitive training and/or brain stimulation in the early phases of

decline (on the importance of tailored medicine approaches in brain stimulation in AD see  67,68). 

Our results also showed that the FC of other regions seems to make people unique even when

their  cognition  declines.  Amongst  those,  the  right  vATL,  which  together  with  its  contralateral

correspondent, is thought to act as a ‘repository’ of amodal conceptual knowledge, as confirmed by

the  detailed  study  of  the  striking  disorder  of  Semantic  Dementia,  where  selective  atrophy  and

hypometabolism of the ATLs is associated with selective degradation of semantic knowledge across

verbal and non-verbal modalities 69,70. In absence of the control of LIFG and pMTG, the activity of the

ATLs is thought to give rise to rampant and out-of-context retrieval of semantic information (as seen

in Semantic Aphasia 56,71). Our data showed that the connectivity of the right vATL with the rest of the

brain was not stable across test and retest in the patients, with a highly variable across subjects. This

suggests  that  this  region,  controlling  spontaneous  and  automatic  semantic  cognition,  might  start

exhibiting very unique patterns of connectivity during cognitive decline.

The  precuneus  and  neighbouring  primary  motor  areas  also  increased  their  identifiability

during cognitive decline. The involvement of the motor cortex in AD has been documented in post-

mortem histological studies that showed a high load of ß-amyloid, but not tau, in this region 72 and

functional connectivity studies who found hyperactivity in this region 73. Of note, sensorimotor areas

are amongst the latest being affected by AD pathology  24.  We here speculate that the increase of
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identifiability observed might be related to increase in the functional segregation of these sensory

motor regions.   

When  ranking  the  edges  based  on  how  reliable  they  were  in  identifying  the  healthy

individuals,  we found that  these edges did not  contribute  to  the  identification in  the  two clinical

groups, but rather showed consistently lower identification scores (Fig. 3B). This is in line with the

results reported in Fig.2, and confirms the reconfiguration of fingerprints during pathological brain

ageing. Note for instance, in Fig. 3, the “drop” in IDiff for MCI and dementia, when considering the

top 1200 most identifiable edges for the healthy group (Fig. 3). Our results show that the FC of these

regions is what makes healthy elderly individuals identifiable and unique, and these same regions

show a drop in fingerprinting throughout the course of cognitive decline. 

What are the factors affecting this change in brain fingerprints? We looked at whether the

fingerprint was associated with dynamic variability in functional connectivity (connectome flexibility,

see Methods for detail). We found that a similar pattern appears across clinical groups. However,

connectome flexibility and fingerprints were weakly correlated (albeit significant at p<0.05), showing

that connectome variability (flexibility) and reliability (fingerprints) are two sides of the same coin:

two complementary axes through exploring the functional correlates of neurodegeneration. Hence,

even though we report a similar (U-shaped) behaviour of these two metrics across brain ageing, the

relationship between the two appears to be non-trivial and deserves further investigation. Similarly,

we found no association between fingerprint and level of atrophy. We hypothesise that the factors

affecting the  reconfiguration  of  fingerprints  during cognitive  decline are  multifaceted,  and  might

involve multiple other variables. Future studies should explore the extent to which atrophy, tau and

amyloid accumulations in patients relates to their changes in the fingerprinting spatial patterns.  

This study has some limitations. The impact of the choice of the brain atlas should be further

verified. It is known that connectivity measures are highly susceptible to artefacts arising from head

motion and respiratory fluctuations 74,75, and these effects are even more pronounced in pathological

conditions.  However,  the  data  points  with  high  motion  did  not  seem to  be  a  contributor  to  the

differences in fingerprinting across groups, neither in the percentage of censored volumes, nor in the

average FD between the groups (p>.513) and/or test-retest scans (p>.680). Nonetheless, future work

should  analyse  in  depth  the  effect  of  motion  at  shorter  time  scales,  where  these  artefacts  can

particularly dominate. Here we used two halves of the same scanning sessions, hence focusing more

on the temporal stability of brain identification within-session. Future studies should explore how

fingerprints change across scanning sessions, or even longitudinally during cognitive decline (i.e.,

over  days  or  months).  It  would  be  also  interesting  to  further  explore  the  temporality  of  brain

fingerprints in neurodegeneration 47.

Conclusions

The friction ridges of a human finger are nearly unique, difficult to alter, and durable over the

lifespan of an individual, making them suitable as  long-term markers of human identity. We found
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that brain fingerprints also remain unique across individuals in cognitive health and cognitive decline,

therefore constituting another marker of human identity. However and intriguingly, during cognitive

decline these features are fundamentally different from those of the cognitively normal, suggesting

that the brain undergoes a significant functional reconfiguration of its fingerprint during cognitive

decline. We provide preliminary evidence that cognitive decline impacts the individual features of FC

of the human brain connectivity, in the hope that these first findings could help in setting the grounds

for clinical fingerprinting in fMRI.
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Materials and Methods

1.0. Participants and demographics

N = 101 subjects from the Geneva Memory Center (GMC, Geneva University Hospitals,

Geneva, Switzerland) cohort having (i) a diagnosis made by a trained neurologist on the basis of

clinical  and  neuropsychological  assessment,  and  (ii)  fMRI  and  structural  MRI,  were  included.

Maximum  time  gap  between  measures  =  365  days.  Five  subjects  were  excluded  when  motion-

censored volumes (see below) were > 25%, leaving a total of N = 96 subjects. 

These included patients diagnosed as mild cognitive impairment (MCI, N=58) or dementia

(N=14), and cognitively unimpaired (CU, N=24). The latters were either individuals with subjective

cognitive decline (SCD) and/or healthy volunteers with MMSE ≥ 24 and CDR = 0 (cf. Table 1). In

line with 76, SCD was defined based on the following criteria: persons asking for help and consulting

to the GMC for self-experience of deterioration in cognitive abilities,  without objective cognitive

impairment  detected  through  formal  neuropsychological  testing.  MCI  was  defined  based  on  the

following  clinical  criteria:  (i)  objective  evidence  of  cognitive  impairment,  (ii)  cognitive  concern

reported by the patient  and/or  informant  (family or  close  friend),  and (iii)  little  or  no functional

impairment in daily living activities 51. Individuals living with dementia are defined based on the same

(i) and (ii) above criteria for MCI but differ from them for the impairment in the activities of daily

living 77. Aetiology was defined based on the French National Alzheimer Database diagnostic model
78.  Differences across groups in age, years of education and MMSE were tested using Kruskal-Wallis

test. Patients (MCI and Dementia) were on average older [p = .064], significantly less educated [p

= .001] and with lower MMSE scores [p < .001]. There were no gender differences across groups

[χ2=3.84, p=.147]. In the majority of MCI and dementia cases, cognitive impairment was due to AD

pathology (54.2%);  the  remaining was either  non-AD cognitive  impairment  (13.9%) or  unknown

(31.9%).  As  expected,  AD  aetiology  was  more  frequent  in  the  cognitively  impaired  (MCI  and

dementia)  relative to  the unimpaired [χ2=27.25,  p<.001].  Aetiology was unknown mostly in CUs

[χ2=13.44, p=.001] and the prevalence of non-AD aetiology did not differ across groups [χ2=2.46,

p=.348]. 
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Table 1. Demographics

CU MCI Dementia p-value

N 24 58 14 -

% Female 45.8 56.9 71.4 0.147

% AD aetiology 4.2 53.4 57.1 <.001

% non-AD aetiology 12.5 12.1 21.4 0.292

% Unknown aetiology 83.3 34.5 21.4    0.001

AGE M(SD) 69.6 (8.7) 74.2 (6.3) 73.9 (6.7) 0.064

YoE M(SD) 15.7 (3.7) 13.4 (3.9) 10.4 (3.7) 0.001

MMSE M(SD) 28.2 (1.7) 25.8 (2.6) 18.8 (4.8) <.001

Legend: CU = cognitively unimpaired; MCI = mild cognitive impairment; YoE = years of education;

MMSE = Mini-Mental State Examination; M(SD) = mean (standard deviation); p-value was estimated using

Chi-squared test for gender and aetiology, and Kruskall-Wallis test for AGE, YoE and MMSE; Etiology was

determined by a neurologist on the basis of biomarkers and clinical assessment.

2.0. Image acquisition parameters

Structural and functional data were acquired using a 3T Siemens Magnetom Skyra utilising a

64 phased array head coil, at the radiology and neuroradiology division, Geneva University Hospitals,

Geneva, Switzerland. An EPI-BOLD sequence was used to collect functional data from 35 interleaved

slices (slice thickness = 3mm; multi-slice mode = interleaved; FoV = 192x192x105mm; voxel size =

3mm isotropic;  TR = 2000ms,  TE = 30ms;  flip-angle  =  90°;  GRAPPA acceleration  factor  =  2,

timepoints = 200). Whole-brain T1-weighted anatomical images were acquired using a 3D MPRAGE

sequence (slice thickness = 0.9mm; FoV = 263x350x350mm; voxel  size = 1mm isotropic;  TR =

1930ms; TE = 2.36ms, flip-angle = 8 °; GRAPPA acceleration factor = 3).

2.1. Image processing

fMRI data were preprocessed using in-house MATLAB code based on state-of-the-art fMRI

processing guidelines 44,75,79. Below follows a brief description of these steps. 

Structural  images  were  first  denoised  to  improve  the  signal-to-noise  ratio  80,  bias-field

corrected, and then segmented (FSL FAST) to extract white matter, grey matter and cerebrospinal

fluid (CSF) tissue masks. These masks were warped in each individual subject's functional space by

means of subsequent  linear and non-linear registrations (FSL flirt  6dof,  FSL flirt  12dof and FSL

fnirt).  BOLD volume unwarping with applytopup, slice timing correction (slicetimer), realignment

(mcflirt),  normalisation  to  mode  1000,  demeaning  and  linear  detrending  (MATLAB  detrend),

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.04.479112doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?37vIBg
https://www.zotero.org/google-docs/?tisfTH
https://doi.org/10.1101/2022.02.04.479112
http://creativecommons.org/licenses/by-nc-nd/4.0/


regression (MATLAB regress) of 18 signals: 3 translations, 3 rotations, and 3 tissue-based regressors

(mean  signal  of  whole-brain,  white  matter  (WM)  and  cerebrospinal  fluid  (CSF),  as  well  as  9

corresponding derivatives (backwards difference; MATLAB). A scrubbing procedure censoring high

head motion volumes was based on two metrics: frame displacement (FD, in mm), and DVARS (D

referring to temporal derivative of BOLD time courses, VARS referring to root mean square variance

over voxels) from 44. Specifically, we used the standardised DVARS as proposed in 81. We also used

SD (standard deviation of the BOLD signal within brain voxels at every time-point). The FD and

DVARS vectors (obtained with fsl_motion_outliers) were used to tag outlier BOLD volumes with FD

>  0.3  mm and standardised DVARS  >  1.7. The SD vector obtained with Matlab was used to tag

outlier  BOLD  volumes  higher  than  the  75th percentile  +1.5  of  the  interquartile  range  per  FSL

recommendation 82. Note that there was no significant difference neither in the percentage of censored

volumes nor in the average FD between the groups (p>.513) and/or test-retest scans (p>.680).

A bandpass first-order Butterworth filter [0.01 Hz, 0.15 Hz] was applied to all BOLD time-

series at the voxel level (MATLAB butter and filtfilt). The first three principal components of the

BOLD  signal  in  the  WM  and  CSF  tissue  were  regressed  out  of  the  gray  matter  (GM)  signal

(MATLAB, pca and regress) at the voxel level.  A whole-brain data-driven functional parcellation

based on 278 regions, as obtained by 83, was projected into each subject’s T1 space (FSL flirt 6dof,

FSL flirt 12dof and finally FSL fnirt) and then into the native EPI space of each subject. We also

applied FSL boundary-based-registration 84 to improve the registration of the structural masks and the

parcellation to the functional volumes. 

Due to the top-to-bottom extension of the FoV, BOLD signal from some ROIs was missing in

some cases. When signal from an ROI was not available in more than 25% of subjects it was excluded

from the analyses for all (i.e. for a total of 25 ROIs, corresponding to 67% of the cerebellum ROIs and

16% of ROIs from subcortical regions); when signal was absent in less than 25% of subjects (this

concerned a total of 44 ROIs) FC value was replaced in the missing cases with the average FC of the

intact ROIs in the rest of the sample. This allowed to a) maintain constant across subjects the number

of ROIs included in the analyses, b) avoid to drop data in the entire sample when signal was not

available only for a few cases, c) avoid to introduce bias driven by ROIs with no value.   

We estimated  individual  FC matrices  using Pearson’s  correlation  coefficient  between the

averaged signals of  all  region pairs.  The resulting individual FC matrices were composed of 278

cortical and subcortical nodes. Finally, the resulting functional connectomes were ordered according

to  seven  cortical  resting  state  networks  (RSNs)  as  proposed  by  85,  plus  one  additional  network

including subcortical regions (similarly to 86, see also Fig. 1B).

3.0. Functional Connectivity and Fingerprinting

We first assessed the reliability or fingerprinting of FC. At the whole-brain level, fingerprint

was calculated for each subject(s) as test-retest similarity between the FCs computed across the first
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100 and second 100 volumes within the same scan (ISelf, Fig 1C). Let us note that N is the total

number of subjects in each group, and we denote the set of subjects as . 

Then,  for  each  subject(s)  we  computed  an  index  of  the  FCs  similarity  with  the  other

subjects(i) in their group (IOthers), as follows: 

A second metric,  IDiff  (Fig. 1B), provides a group-level estimate of the within- (ISelf) and

between-subjects (IOthers) test-retest reliability distance:

  

  Finally, we measured the Success-rate  7 of the identification procedure as percentage of

cases with higher within- (ISelf) vs. between-subjects (IOthers) test-retest reliability.

 These metrics have been introduced and estimated in healthy populations in previous work 12.

We performed a permutation testing analysis to compare Success-rate and IDiff from 1000 surrogate

datasets of random ID matrices against the real value 48.

Spatial specificity of FC fingerprints was derived using edgewise intra-class correlation (ICC)

for each group. ICC coefficients quantify the degree of similarity between observations/measures and

find  high  applicability  in  reliability  studies  87.  The  higher  the  ICC coefficient,  the  stronger  the

agreement between two observations. Here, ICC quantifies the similarity between test and retest for

each edge (FC between 2 regions), such that the higher the ICC of an edge, the more that edge’s

connectivity is similar across test and retest or, in other words, the higher the ‘fingerprint’ of that

edge.  In  order  to  control  for  sample  size  differences  across  groups,  bootstrapping  was  used  to

accurately estimate edgewise fingerprints: for each group, ICC was calculated across test and retest

for subsets of randomly chosen N=10 subjects, across 100 bootstrap runs, and then averaged within

each group.

4.0. Dynamic Functional Connectivity and connectome flexibility

In addition to the exploration of FC fingerprints across brain ageing, we also assessed the

functional flexibility of individual FCs across time using sliding window analyses  88. In the sliding

window approach, the input data is the time course of regional BOLD activity and FC is computed as

pairwise Pearson correlation across ROIs as in static FC, yet this time over a temporal window of a

shorter chosen length (Wlength, i.e., from time t=1 to time t=W). Then, the window is shifted by a step
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T [t=1+T, t=W+T] and the calculations are reiterated over a number of windows, depending on the

length of the entire acquisition protocol. This process results in a set of connectivity matrices (i.e., the

dynamic FC, dFC Fig. 1D).

We calculated dFC across 278 brain regions 83 with window Wlength=30 volumes and step T=5

volumes, for a total of N=35 windows, each lasting 6s [W length*TR = 30*2000ms]. For each subject,

we defined edge-wise (i,j) connectome flexibility index as the standard deviation (σ) of the specific) of the specific

FC edge over N=35 windows:

This resulted in a 278x278 “flexibility matrix” for each subject, revealing the individuals’

flexibility  of  functional  connections  across  regions  over  time.  Edge-wise  dFC  Flexibility  was

averaged across groups using bootstrapping to control for sample size differences, i.e., average was

calculated for N=100 times for subsets of randomly chosen N=10 subjects for each group and then

averaged. 

5.0. Grey matter volume quantification

For each subject, grey matter volume was quantified from T1 weighted images as the number

of  voxels  within  each  parcel  of  Shen parcellation,  and  then  normalised  by  the  total  intracranial

volume.  Group-wise,  structural  covariance  matrices  were  derived  as  across-subject  Spearman

correlation of grey matter volume, yielding a 278x278 covariance matrix, where positive correlations

indicate a similar grey matter volume trend within a given ROI pair 89 . 
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