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S U M M A R Y

We show how to ‘fingerprint’ individual diffractors inside an acoustic medium using interrog-

ative wave energy from arrays of sources and receivers. For any recorded multiply diffracted

wave observed between any source and any receiver, the set of such fingerprints is sufficient

information to identify all diffractors involved in the corresponding diffraction path, and the

sequential order in which diffractors are encountered. The method herein thus decomposes

complex, multiply diffracted wavefields into constituent, single-diffraction interactions.

Key words: Interferometry; Wave scattering and diffraction; Wave propagation; Acoustic

properties.

1 I N T RO D U C T I O N

Scattering is the physical phenomenon where propagating energy,

such as electromagnetic radiation, acoustic pressure or particle flux,

is affected by the presence of perturbations in the properties of the

medium through which they travel. Such perturbations are called

scatterers, and depending on their spatial distribution they may

cause different forms of energy redistribution such as reflection,

refraction or diffraction of wavefield energy. Scattering theory is

widely used to describe such phenomena in classical physics ap-

plications relying on Newton and Maxwell’s equations, including

radar sensing (Ferretti et al. 2001), medical ultrasound (Insana &

Brown 1993) and geophysics (Yilmaz 2001), and is also important

in the quantum physics of quantum mechanics (Chadan & Sabatier

1979).

Diffraction is the specific kind of scattering that occurs when

an incident wavefield interacts with structures of small spatial ex-

tent relative to the wavelength. Within geophysics, diffraction may

be caused by seismic waves interacting with subsurface angular

boundaries between rocks of different elastic parameters or density,

or with diffractors formed by voids (e.g. caves), faults or fractures

(Landa et al. 1987; Kanasewich & Phadke 1988; Liu et al. 1997;

Landa & Keydar 1998; Bansal & Imhof 2005).

The potential advantages of using diffracted waves for remote

interrogation have been studied in diverse fields since the seminal

works of Krey (1952) and Hagedoorn (1954). For example, within

seismic migration, diffracted events are used to extract velocity

information based on focusing properties of incorrectly migrated

events (Harlan et al. 1984; de Vries & Berkhout 1984), or to per-

form migration velocity analysis by collapsing diffraction signatures

(Sava et al. 2005). More recently, recognition of over- or undermi-

grated diffracted events was used in depth domain migration to

provide updates to velocity models and diffractor locations (Coim-

bra et al. 2013). Moreover, diffractions are of particular interest

as their processing can lead to superresolution and the recovery of

details smaller than the seismic wavelength (Derode et al. 1995,

2001; Blomgren et al. 2002; Khaidukov et al. 2004). Similar ap-

proaches were also used to perform high-resolution imaging of the

Earth’s subsurface using electromagnetic ground penetrating radar

data (Papziner & Nick 1998), and to identify geological strata which

have particularly strong internal heterogeneity such as karstic car-

bonates (Grasmueck et al. 2012). It is therefore often important

to identify diffracted events in recorded data, and algorithms have

been designed to discriminate diffracted from reflected wave energy

(Landa et al. 1987; Fomel et al. 2006; Fomel 2007; de Figueiredo

et al. 2013).

While in theory all scattered waves provide useful information,

in practice any distribution of strong diffractors also results in inter-

diffractor wavefield interactions in a process known as multiple-

diffraction. Recorded wavefields are then potentially extremely

complex, even for a low number of diffractors. Several studies have

developed methods to interpret (Harlan et al. 1984; Landa & Keydar

1998; Soellner & Yang 2002; Khaidukov et al. 2004; Shtivelman

& Keydar 2004; Sava et al. 2005; Taner et al. 2006; Fomel 2007;

Moser & Howard 2008; Dell & Gajewski 2011) or simply ignore

(Klem-Musatov 1994; Yilmaz 2001) this complexity. However, to

date there exists no published method to classify observed multiply

diffracted wavefields as ordered sequences of diffractors visited,

without first estimating a model or representation of the medium

(including the diffractors) and then modelling the resulting wave

propagation (which we refer to as ‘model-based’ methods). This

is an important omission, not least because many fields of endeav-

our focus on the wave propagation itself, or on the transmission of

encoded signals or information. In principle, such fields may not

require knowledge of the model of the medium through which the

energy propagates (Prada & Fink 1994; Fink et al. 2003), and in-

deed it may be seen as an advantage if they did not have to rely

on model-based methods. Hence, a ‘model-free’ method to un-

ravel and interpret complex wavefields might find diverse fields of

application.

In this paper, we present a method to classify diffractors based on

the variation of acoustic wave traveltime variations (their so-called
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‘moveouts’) across arrays of sources and receivers. We show that

this information is sufficient to allow the diffraction path of any

recorded, multiply diffracted wave to be determined: each recorded

wave can be associated with the concatenation of an ordered se-

ries of known, irreducible, interdiffractor paths, or equivalently by

an ordered series of single-diffractor interactions. These are deter-

mined purely by data analysis through inspection and comparison

of data from individual sources, and to individual receivers, without

the need for synthetic wavefield computation, or for modelling of

the medium through which energy propagates.

The method is effected by a new algorithm that identifies diffrac-

tion paths by wavefield analysis. Applications of the proposed algo-

rithm within the various fields above range from interpreting rever-

berating wave energy associated with multiply diffracted waves in

terms of the contributions of its individual diffractors, improved lo-

cation or characterization of diffractors or energy sources, removal

of multiply diffracted energy by muting or filtering to improve the

performance of methods designed only for singly diffracted energy,

and all of these may lead to improved imaging of the interdiffractor

medium.

In what follows, we begin by defining what we refer to as a

diffractor’s ‘fingerprint’. Then we introduce a new algorithm to

identify diffraction paths. Finally, we present results of applying

the algorithm to a synthetic example, before discussing various

implications of this work.

2 F I N G E R P R I N T I N G I N D I V I D UA L

D I F F R A C T O R S

A basic geometrical property of all waves diffracted last at a certain

diffractor is that their moveout (the difference in their arrival time

at different receiver positions: Sheriff 2002) across an array of re-

ceivers is invariant (Khaidukov et al. 2004). In other words, moving

the source or following a different diffraction path up to that last

diffractor, can only affect the constant (lag) component of diffracted

arrival times observed at an array of receivers, but not their variation

or moveout across the array (Fig. 1a). This property holds irrespec-

tive of the complexity of the medium, and can be demonstrated

rigorously by analysing the fully non-linear Lippmann Schwinger

equation for perturbed media (shown in the Appendix). This char-

acteristic of diffracted waves can be used to identify and remove

diffraction components, to enhance the diffracted wave signals by

removing reflected and refracted waves and to identify edge diffrac-

tion signals (Klem-Musatov 1994). By reciprocity, moveout across

a source array of all waves diffracted first at a certain diffractor

is invariant with respect to receiver position and to the subsequent

diffraction path (Fig. 1b). In addition, other than for pathological

cases (for example, where diffractors are located exactly symmet-

rically with respect to (on either side of) straight receiver arrays),

each diffractor exhibits a different moveout across source and re-

ceiver arrays. Pathological cases only exist when the data are non-

directional [e.g. pressure measurements in acoustic media]; when

directional measurements like particle velocity or displacement are

recorded, moveouts of each diffractor can be discriminated uniquely

in all cases and no pathologies exist. Therefore, each diffractor can

be ‘fingerprinted’ or tagged uniquely by their associated moveout,

without knowing any diffractor’s location. In the following, we dis-

cuss how this simple property is sufficient to analyse and identify all

diffractors in the path of any particular observed multiply diffracted

wave.

3 I D E N T I F Y I N G F I R S T A N D L A S T

D I F F R A C T O R S

When multiple diffractors are embedded within an otherwise

homogeneous or smoothly varying medium, measured seismo-

grams record direct (non-diffracted), singly diffracted and multiply

diffracted waves. Despite their complexity, the path followed by

energy in multiply diffracted wavefields can always be decomposed

into three subpaths (Fig. 2): a first connecting the source to the first

diffractor (dashed line in Fig. 2), a second connecting all of the

diffractors involved (solid line in Fig. 2) and a third connecting the

last diffractor to the receiver (dotted line in Fig. 2). Notwithstanding

the potential complexity of the interdiffractor component, for each

source and receiver the possible number of combinations for the

first or third of these subpaths is limited and equal to the number of

diffractors.

Figure 1. Diffracted wave ray paths. Stars and triangles are sources and receivers, respectively, and circles are diffractors. (a) A fixed source is fired at position

x on surface S, and the corresponding wavefield is recorded at receivers at locations x ′ on surface S ′. Arrivals that share identical last diffractor (dashed and

solid paths) exhibit the same receiver-array moveout. The receiver-array traveltime variation, or moveout, associated with diffracted waves does not depend on

the position of the source since relative traveltime differences are controlled only by the ray paths between the final diffractor and the receivers (bold rays).

The traveltime between the source and the diffractor (solid and dashed rays) only changes the constant component of all traveltimes (t1, or t2 lags are due to

different source positions or diffraction paths). (b) As for (a), but for a fixed receiver: waves that share an identical first diffractor exhibit the same source-array

moveout.
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Diffractions fingerprinting 1703

Figure 2. Any multiply diffracted wave can be divided into three subpaths:

the source-to-first-diffractor (dashed ray), the interdiffractor path (solid ray)

and the last-diffractor-to-receiver path (dotted ray). The complexity of the

interdiffractor component (which may also have zero length for a singly

diffracted wave) does not affect the simplicity of the first and third compo-

nents. Symbol key as in Fig. 1.

Since each and every diffracted wave has a first and last diffrac-

tor (which may coincide in the case of first-order diffraction), in

principle a classification of all diffracted waves can be made based

on this information. However, in order to be useful for the analysis

of real wavefields, this classification needs to be identifiable from

recorded data. We now show how this can be achieved.

Say a source is fired at x, a point on surface S and waveform

recordings are acquired at receivers at x ′ along surface S ′, where

S and S ′ may differ (Fig. 1a). Among the many diffraction com-

binations, two paths are shown as solid and dashed thin lines in

Fig. 1(a). Both paths have last diffractor D, and therefore exhibit

identical moveout across the receiver array (the moveout of the bold

ray paths in Fig. 1a). All waves diffracted last at D will share this

moveout, and only in pathological cases would any other wave share

this moveout. Thus all waves diffracted last at D can be identified

and classified as such. A similar classification can be made for every

other last diffractor. As a result, in the case that the distribution of

receivers on S ′ is dense enough to identify the moveouts of each

diffractor without ambiguity, any diffracted wave can be classified

according to its last diffractor.

By reciprocity, a similar argument holds for moveout across the

source array on S, and the ‘first’ diffractor of any diffracted wave can

always be identified for any recorded event (Fig. 1b). It is important

to note here that the means by which each first and last diffractor

are identified is exactly by matching the moveouts in the fingerprint

of that diffractor, as introduced in the previous section.

For singly diffracted waves, the first and the last diffractor co-

incide and the corresponding common-receiver/common-source

moveout pairs fully fingerprint the diffractor involved. At no point

above or below, do we need to identify where the diffractors are lo-

cated or any ray paths; we only identify diffractors by their moveout

based fingerprints.

In the derivation of the expression for the scattered field in the

Lipmann–Schwinger equation, no assumption is made about the

background model (see Appendix). This system of classification

therefore also extends to diffractors embedded in inhomogeneous

backgrounds. It therefore begins to decompose the complexity

of wavefields associated with quite a general class of multiple-

diffraction problems into more readily identifiable subcomponents.

4 I D E N T I F I C AT I O N O F F U L L

D I F F R A C T I O N PAT H S

We now present an algorithm that identifies all diffractors involved

in the multiple-diffraction path corresponding to any particular

observed wave arrival, and their order in the sequence of single

diffraction interactions. The ray geometries employed within the

algorithm are depicted in Figs 3 and 4. They require only densely

sampled distributions of sources and receivers along sections S and

S ′, respectively, of some surface or boundary. Source and receiver

density, and the spatial extent of S and S ′ only have to be sufficient

to allow different moveouts to be discriminated, and S and S’ need

not span the same physical surface.

We first explain the method conceptually, assuming that events

in the data corresponding to the rays invoked in each step (namely,

first- and second-order diffractions) are known. To foster clarity

in the explanation, we draw illustrative, simplified data gathers that

only include the diffraction events of immediate interest at each step

of the algorithm (Figs 3b, d, f and h). Thereafter, we work through

a synthetic example that shows how these particular events can be

identified for every ray path in practice, using only recorded data.

Note that a gather (in the terminology of exploration seismology,

which is useful here) is a subset of a recorded data subset: a common-

source gather is the data subset recorded at all receivers for a single,

fixed source (which all of those data have in common), and vice

versa for a common-receiver gather.

Consider a specific event associated with a source at x1 and a

receiver at x2 (as indicated by a black star in the illustrative gather

of Fig. 3b), and let x2 be one of the set of receivers on boundary S ′. In

order to analyse its diffraction path marked as α in Fig. 3(a), we first

need to identify its last diffractor (L in Fig. 3a). This information is

identified by its unique moveout or fingerprint with respect to the set

of receivers. This is indicated by the two identical solid moveouts in

3(b), offset by a constant time-shift: the red corresponds to a first-

order event [x1-to-L-to-x2], the black to the complete diffraction

path α.

Our aim is to identify the full diffraction path. The way our algo-

rithm works is to identify also the penultimate diffractor (L-1), and

the recorded energy that corresponds to its ‘partial’ path [x1-to-1-

to-2-. . . -(L-1)-to-x2], that is, to path α but omitting the last scatterer

L (Fig. 3g). By induction (iterative application of the algorithm to

this newly identified energy), this procedure can therefore be used

to identify diffractors L-2, L-3, . . . , 1 and thus the full diffraction

path α.

To analyse the gather associated with source x1, we need to intro-

duce an additional source. Let x be this arbitrary source which lies

on surface S (Fig. 3c). Step 1 of the algorithm involves subtracting

the traveltimes of the wavefield corresponding to the second-order

diffraction path [x-to-V-to-L-to-x2] from that of path α. This is re-

peated for each of the possible penultimate diffractors V (since at

this stage we do not know which one is correct). In Fig. 3 and

subsequent figures, traveltimes of waves propagating along dashed

rays are subtracted from those along the solid ray paths; hence

traveltimes along common solid and dashed ray segments cancel

out. When V is chosen to be the correct penultimate diffractor of

α as it is in Fig. 3(c), the subtraction of traveltime of the second-

order diffraction path [x-to-V-to-L-to-x2] (this event is indicated

by a dashed curve in the illustrative gather of Fig. 3d) results in

cancellation of the traveltime of the common segment [(L-1)-to-

L-to-x2], and subtraction of the time along segment [x-to-(L-1)]

from the traveltime for the remainder of path α. Note for later

that if V is not the penultimate diffractor then the result of this
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1704 G. A. Meles and A. Curtis

Figure 3. Schematic representation of the geometry required to identify all diffractors in a wave path. Symbol key as in Fig. 1. (a) A recorded multiply

diffracted arrival corresponds to a source at some location x1, recorded at any receiver x2 (black star in b) that is part of a set of receivers along section S ′ of

a surface. The final diffractor, L, is uniquely identified by its moveout with respect to these receivers (as indicated by the repetition of the same moveout as

the primary, red curve in the illustrative gather in b, corresponding to source x1). (c) Step 1 of the algorithm involves subtraction from the traveltime of the

multiply diffracted arrival in (a) of the time of the second-order diffracted energy corresponding to the path [x-to-V-to-L-to-x2] (dashed curve in the illustrative

gather corresponding to source x, shown in panel d). Here, x is an arbitrary source on S. The procedure to identify second-order diffracted waves (the dashed

ray in c) is explained in Figs 7–9. (e) The third step of the algorithm involves addition of the previous result with the traveltime of the first-order diffracted

energy (or fingerprint) corresponding to the path [x-to-V-to-x ′] where x ′ is an arbitrary receiver on S ′ (bold solid line in the illustrative gather corresponding to

source x, in f). For our synthetic examples below we have chosen x ′ = x2, but this is not necessary as both x2 and x ′ can be varied arbitrarily across the receiver

array. (g) If and only if V = (L-1), that is, V is chosen to be the penultimate diffractor of the multiply scattered path in question, then the result of the previous

operation provides the traveltime of an arrival with the kinematics of physical, observed energy in the original seismogram from the source at x1 recorded at

x ′ as shown, for all x ′ on S ′ (as indicated by the solid line in the illustrative gather corresponding to source x1 in panel h); thus the penultimate diffractor V =

(L-1) is identified. Note that moveout difference in (f) is the same as in (h).

operation has a more complex geometrical interpretation as shown

in Fig. 4.

The result of this operation is then added to the traveltime of

the primary diffracted wave [x-to-(V)-to-x ′] (solid bold lines in Figs

3e and f), x ′ being the location of any arbitrary receiver on sur-

face S ′. As illustrated in Fig. 3(e) and shown below, if and only if

V is the penultimate diffractor of α (i.e. V = L-1) then the above

set of operations reproduces the traveltime of a real wave travelling

along the partial path [x1-to-1-to-2-. . . -(L-1)-to-x ′], that is observed

in the recorded data at receiver x ′, for all x ′ on S ′ (Figs 3g and h).

The main result expressed in Fig. 3 is therefore that the difference

between the traveltimes of any multiply diffracted wave and another

diffracted wave following the same path but omitting the last diffrac-

tor (Fig. 3g) is controlled by the difference between the traveltimes

of a primary diffracted wave [involving the penultimate diffractor

(Fig. 3e)] and a twice-diffracted wave [involving the penultimate

and the last diffractor (Fig. 3e)]. This is shown by the difference

(shaded areas) between the moveouts in Fig. 3(f), which is demon-

strably the same difference as that in Fig. 3(h), and this is true for

any intermediate source x used in Fig. 3(e).

Crucially, if we have chosen V to be the correct penultimate

diffractor (L-1), we should be able to observe physical energy

in the wavefield recorded along S ′ from source x1 at the travel-

times predicted by the above sequence of steps. If instead of V

= L-1 we had used energy associated with any other penultimate

diffractor (e.g. V = L-3 as shown in Fig. 4), the above proce-

dure would not have produced an arrival time or moveout of a

real wave, and hence its energy would not have been observed

in the recorded data at those times. Thus that choice of diffrac-

tor for V can be ruled out. Conversely then, the presence of en-

ergy on the recorded seismograms corresponding to source x1 that

matches the traveltime and moveout across receivers x ′ on S ′ pre-

dicted as above, allows the penultimate diffractor V = L-1 to be

identified.

By induction, all diffractors on path α may be identified similarly:

the algorithm is simply iterated to identify the penultimate diffrac-

tor of the newly identified energy associated with the partial path

[x1-to-1-to-2-. . . -(L-1)-to-x ′] in Figs 3(g) and (h) which is physi-

cally observed in the recordings at any x ′ on S ′ and hence also at x2.

Since the diffractors are thus identified in exactly reversed order, the
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Diffractions fingerprinting 1705

Figure 4. If in the second step of the algorithm depicted in Fig. 3(e), a

diffractor V is chosen that is not the penultimate diffractor on path α, the

result of applying the algorithm will be the time of [x1-to-1-to-2-to-. . . -

to-(L-1)-to-L], plus that of [V-to-x ′], minus that of [L-to-V] (traveltimes of

path segments [V-to-x] and [L-to-x2] cancel). The resulting traveltime will

not match that of any recorded energy as the result will not have a physical

traveltime. Key as in Fig. 3.

order that diffractors are encountered by the original energy along

diffraction path α is revealed.

Despite the fact that the method is applied iteratively, note that

in principle no error is accumulated since each iteration is driven

entirely by newly identified, physically observed energy diffracted

from the penultimate diffractor of the previous iteration. The only

error that could be propagated would be a complete misidentification

of the predicted energy of path [x1-to-1-to-2-. . . -(L-1)-to-x ′] in the

observed data at receivers x ′ in Fig. 3(g). In principle, such errors

can be avoided by using suitably dense and extensive source and

receiver arrays on S and S ′, respectively.

In the above we assumed that energy associated with all first and

second-order events could be identified as and when needed. In the

next section, we show how the appropriate events can be identified

in recorded data sets.

5 W O R K E D E X A M P L E :

I D E N T I F I C AT I O N O F F U L L M U LT I P LY

D I F F R A C T E D WAV E PAT H S

We now apply the diffraction path identification method presented

above to 2-D acoustic synthetic data. We show how the method

works as a step-by-step algorithm, and test whether energy is ob-

servable in the recorded data at the sums or differences of trav-

eltimes thus predicted. We compute wavefields with a numerical

implementation of the Foldy method (Foldy 1945; Groeneboom &

Snieder 1995) made available by (Galetti et al. 2013). This method

is particularly useful for our purposes because it does not suffer

from shortcomings usually associated with finite difference mod-

elling tools (i.e. numerical dispersion, spurious reflections from

imperfectly absorbing boundaries contaminating later times, etc.).

It is also consistent with the acoustic optical theorem which de-

termines the correct values of all scattering amplitudes such that

energy is conserved (Groeneboom & Snieder 1995; Snieder et al.

2008). Calculations are performed in the frequency domain, but

for ease of interpretation we present results in the time domain. A

Figure 5. Geometry of the model used in numerical examples. Key as in

Fig. 1. A total of 160 sources and 400 receivers are employed in horizontal

arrays (only every 20th source and fifth receiver are plotted for clarity). The

60th source and the 190th receiver (used in Fig. 7) are highlighted by circles.

Ricker wavelet with central frequency of 30 Hz is used to generate

all wavefields.

We consider a background velocity of 1000 m s−1, a unit density

and three isotropic diffractors, with 160 sources and 400 receivers

located on horizontal portions of boundaries S and S ′, respectively

(Fig. 5). For each source along the boundary, data are recorded at

all of the receivers. The data from surfaces of sources and receivers

are then organized into a data ‘cube’, with each cross-section of

the cube corresponding to a common-source or common-receiver

gather (Fig. 6).

Any multiply diffracted wave may be characterized by its diffrac-

tion path, and the set of all diffraction paths can be classified into

subsets of events that share the same ‘first’ and ‘last’ diffractors.

This can be achieved based on their observed moveouts or finger-

prints as described above. In the following example, we analyse the

diffracted waves in the trace associated with the source–receiver

pair [source x1, receiver 190] (vertical black line in Fig. 7a).

Three different moveouts are identified (in this case by visual

inspection) on each of these gathers (marked A, B and C in Fig. 7a),

and each moveout constitutes the common-source fingerprint of an

individual diffractor. We conclude that three diffractors are present

in the model. As discussed above, the method requires that we iden-

tify all first and second-order diffraction events in common-source

and common-receiver gathers for an arbitrary source–receiver pair

(x ′, x). Therefore, in order to apply the algorithm for this specific

example, a total of three primary and six secondary arrivals must

be identified in the data cube, and some of these waves are depicted

in Figs 7(b) and (c).

To apply the algorithm to analyse the diffraction path α of some

target event (a particular arrival with an observed moveout), we

proceed as follows:

(1) Identify all of the primaries. In general, primaries are simply

the observed arrivals with the shortest traveltime for any particular

common-source gather moveout. Here, we choose to identify the

primary in the common-source gather corresponding to x = source

60 on S (see Fig. 7b), but any other source could be used for x. In
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1706 G. A. Meles and A. Curtis

Figure 6. Schematic representation of a source/receiver gather data ‘cube’

where recorded time-series are organized to be vertical in recording time.

Slice CR corresponds to a fixed receiver and hence is a common-receiver

gather, while slice CS at a specific source is a common-source gather. At the

intersection of these slices, all arriving energy must coincide (stars in the

cartoon) because the recorded trace corresponds to the same source–receiver

pair in both slices. Thanks to this continuity property it is possible to identify

which source and receiver moveouts correspond to the same wave arrivals

(pairs of solid and dashed moveout curves in the picture).

Fig. 7, for example, we focus on a single diffractor (i.e. on a single

moveout), namely A in Fig. 7(a), and its primary is identified by

visual inspection as it exhibits the shortest traveltime corresponding

to that moveout.

(2) Determine the full common-source/common-receiver single-

scattering fingerprint of each scatter by comparing common-source

and common-receiver gathers. Arrivals on common-source and

common-receiver gathers always converge at one point (Fig. 6),

and when involving primaries this allows us to link the common-

source and common-receiver moveouts associated with each indi-

vidual diffractor. All diffractors are then labelled or tagged by their

fingerprints. It is important to note again that we thus do not need to

locate a diffractor; we can nevertheless label each one uniquely. In

the following, we use fingerprint(S, S ′, F) to refer to the fingerprint

of diffractor F defined by moveouts across source surface S and

receiver surface S ′.

(3) Identify all of the secondary diffracted arrivals for an arbi-

trary boundary source–receiver pair (x ′, x). Secondaries are simply

identified by finding shortest traveltime pairs of common-source

and common-receiver moveouts that are not both in the same fin-

gerprint FP(S,S ′,F) of any one diffractor F (see Figs 7b and c, 8b

and c and 9b and c) and that therefore are associated with pairs of

first and last diffractors.

(4) Identify in the data (e.g. in Fig. 7a) the same traveltime dif-

ferences between pairs of moveouts as is observed between the

moveouts of second and first-order diffraction events (depicted at

either end of the braces in Figs 8–10b). For any pairs of events in the

recorded data that are found to have the same moveout difference

as that observed between a secondary and a primary, the last and

penultimate diffractors can be determined to be the same as those

involved in that secondary and primary. For example, the arrows be-

tween Figs 7(e) and (d) show how to identify such pairs of moveouts

of events that must share the same last and penultimate diffractors.

(5) Label each pair of events identified in step 4 as having the

same last and penultimate diffractors as those of the corresponding

first and second-order diffractions.

(6) For the target event, in step 5 one other moveout will have

been labelled as being from the same path α as the target event

except that it diffracted last at the penultimate diffractor, that is, it

comes from the partial path that omits the final diffractor.

(7) Redefine the target event as the event associated with the

penultimate diffractor, and redefine the target path α as the corre-

sponding partial path.

(8) Repeat the analysis from step 4 to the new target event, until

the new target event is one of the primaries labelled in step 2.

(9) Concatenate the labels of all of the last diffractors (identified

by the common-source gather moveouts) of target events used in

each iteration, and reverse their order. Thus we identify the labels

of all diffractors involved in the full diffraction path of the original

target event.

Fig. 10 shows the seismogram along the bold line in Fig. 7(a)

along with the diffraction paths associated with most of its multiply

diffracted waves as identified by the algorithm. This represents the

final result of applying the method herein. We use C–B–A as notation

to indicate energy that visited diffractors C then B then A before

being recorded. A total of five second-order, five third-order and

one fourth-order diffracted waves were able to be identified in this

example.

To illustrate how the algorithm is applied, we arbitrarily show how

to decompose the target arrival occurring at 4.5 s in Fig. 10 (along

the bold line in Fig. 7a) into a corresponding ordered sequence of

diffractors (the target path) visited by that wave energy. All other

arrivals in Fig. 10 were analysed similarly to identify all diffraction

paths shown on that figure.

First, we identify the last diffractor. This is readily provided by

matching the moveout of the target arrival on the common-receiver

gather in Fig. 7(a) with the fingerprint of one of the diffractors

identified above. In this case, the wave has the same moveout as the

primary corresponding to diffractor C (see Fig. 9b), making that the

last diffractor of the target path.

The penultimate diffractor can then be either diffractor A or B; to

identify which, we proceed as shown in Figs 3 and 4. As indicated in

Fig. 3, the traveltime difference between the diffracted wave corre-

sponding to any diffraction path and the same generic path without

the last diffractor (Fig. 3g), is controlled by the difference between

a primary (involving the penultimate diffractor) and a secondary

wave (involving the penultimate and the last diffractor—Figs 3e
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Diffractions fingerprinting 1707

Figure 7. Temporal waveforms (or traces) for the experimental geometry in Fig. 6. (a) Common-source gather for source x1 of Fig. 5, and (b) similarly for the

60th source. In (a), arrivals A, B and C exhibit three distinct moveouts, thus indicating that there are three distinct diffractors. The vertical black line indicates

the 190th receiver x ′ of Fig. 5. (c) Common-receiver gather for the 190th receiver in Fig. 5. The vertical black line indicates the 60th source x of Fig. 6 for

which (b) shows the common-source gather. The vertical black lines in (b) and (c) indicate the same signal corresponding to source number 60 and receiver

190 where panels (b) and (c) must coincide by reciprocity (Fig. 6), thus identifying common-source and common-receiver primary moveout pairs (fingerprints)

for each of the diffractors. Black braces indicate traveltime and moveout differences between primary and secondary diffraction energy—annotated numbers

indicate the individual diffractors involved. (d)–(f) as for (a)–(c), but showing the occurrence of identical moveout pairs as difference intervals instead of braces

(only two surfaces are shown for readability purposes). A gain has been applied to all waveforms progressively in time to enhance the signal corresponding

to long and multiply diffracted paths. Mutual interference of traces can occur, especially in the latter portions of recorded signals. However, often the visible

presence of only a fraction of a moveout curve is sufficient to discriminate it from others. The direct wave has been removed from all of the gathers to foster

readability. Note that despite the proximity of source x1 and diffractor B (see Fig. 5), direct and diffracted waves are clearly separable.
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1708 G. A. Meles and A. Curtis

Figure 8. As for Figs 7(a)–(c), but for first scatter B in Fig. 5 (identified by a different fingerprint). Braces are red to indicate that a different primary diffracted

wave is being analysed compared to Fig. 7.

Figure 9. As for Figs 7(a)–(c), but for first scatter C in Fig. 5 (identified by a different fingerprint). Braces are blue to indicate that a different primary diffracted

wave is being analysed compared to Figs 7 and 8.
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Diffractions fingerprinting 1709

Figure 10. Top plot: the waveform along the vertical bold line in Fig. 7(a), with no gain applied. Middle and lower plots: the sequence of diffractors involved

in each arrival as obtained by the new algorithm is shown by letters A, B and C in the order in which diffractors were encountered (each panel shows a different

portion of the top waveform). Only some very low amplitude, overlapping arrivals (e.g. in the shaded boxes, lower plot) were not able to be analysed due to

difficulties in moveout discrimination. A gain has been applied to the lower plots for better readability: this operation has rescaled each event relatively to the

others.

and f). More precisely, once the difference between the correct sec-

ondary and primary traveltimes is subtracted from the traveltime of

the target arrival, the result should be the traveltime of a new wave

that is also actually observed in the seismogram, for any and all

receivers across the array.

Since a priori the penultimate diffractor is not known, we calcu-

late the above differences for all potential penultimate diffractors.

When the correct one is chosen, the result matches observed energy

across the entire receiver array. On the other hand, for all incorrect

penultimate diffractors this operation will not match observed en-

ergy across the array, provided the array is sufficiently extensive to

discriminate.

We therefore compare the traveltime differences between the sec-

ondaries A–C and B–C, and the primaries corresponding to diffrac-

tors A and B, respectively, from (arbitrary) surface source 60 (shaded

intervals in Figs 11b and d, respectively), and the observed data from

the original source at x1 (Figs 11a and c, respectively). Only when

the correct penultimate diffractor (in this case, diffractor B) is used,

do the relative moveout pair differences match a difference observed

in the original data. This is indicated by solid arrows in Figs 11(a)

and (b). In all the other cases, no energy corresponds to the expected

traveltimes, as indicated by the dashed arrow between Figs 11(c)

and (d): the top arrow between the latter plots points at a location

in Fig. 11(c) at which there is no observed energy. Thus, we reject

C as the penultimate diffractor of the target path.

Once the penultimate diffractor has been determined, the same

procedure is repeated but starting with the newly identified energy,

observed as indicated by the top arrow in Fig. 11(a), at x ′ = x2. Thus,

the penultimate diffractor of the previous iteration becomes the last

diffractor of the current iteration, and therefore different observed

primaries and secondaries are used in the algorithm. The procedure

ends once one of the (previously identified) singly diffracted waves

is reached. This is illustrated in Fig. 12, in which diffractor C is

identified as the penultimate diffractor of the path of the ‘new’

energy identified by the top arrow in Fig. 11(a). The target diffraction

path has thus been identified as A–B–C and is added to Fig. 10 above

the arrival at 4.5 s.

The procedure is repeated, treating each of the other arrivals in

Fig. 10 in turn as target arrivals. Thus, we obtain all diffraction paths

described in that figure.
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1710 G. A. Meles and A. Curtis

Figure 11. Analysis of the diffracted wave arrival at ∼4.5 s along the bold line in (a). An identical moveout pair sequence is shared by the observed data in (a),

and the arrival time difference between primary (B) and secondary (B–C) in (b), as shown by the solid arrows and upper boundary of the black shaded area that

match observed energy in (a). This identifies the last (C) and penultimate (B) diffractors associated with the arrival observed at ∼4.5 s. An identical moveout

pair sequence is not shared by the observed data (c) and the difference between primary (A) and secondaries (A–C) in (d), as shown by the dashed arrow and

upper boundary of the red shaded area that does not match observed energy in (c). This excludes A as the penultimate diffractor for the arrival observed at

∼4.5 s.

6 D I S C U S S I O N

In principle, diffracted waves can be used profitably in geophysics

as they provide information about spatially abrupt boundaries like

faults, voids rough topography or subsurface layers, etc. In addition,

discrimination, identification, analysis, and in some cases removal

of singly- or multiply diffracted waves can help to enhance desired

signals or to suppress unwanted ‘noise’ in recorded data. Similar

benefits exist in the other fields of application identified in the

introduction.

The proposed algorithm to identify full diffraction paths is based

on diffractor fingerprints, so-called by analogy with the virtually

unique identifiers of humans. Here, the identifiers are moveouts

of primary (singly scattered) arrivals across arrays of sources or

receivers. In the example presented above, the algorithm was im-

plemented manually, that is, the different moveouts were identified

and matched to other moveouts by visual inspection. In the ideal

condition of noise-free data considered here, this allowed up to

fourth-order diffracted waves to be identified fairly easily.

The robustness of the method was not evaluated in terms of,

for example, its sensitivity to temporal and spatial resolution of

the recorded data, which may affect the identification of different

moveouts (Meles & Curtis 2013b). It is presumed that the efficacy

of the overall procedure will be affected by these and other aspects

(e.g. different signal-to-noise ratios, the number and distribution

of the diffractors, heterogeneities in the interdiffractor background

velocities, etc.). More specifically, all these factors may affect the

ability to extract first and second-order diffracted events, and there-

fore impede full application of the algorithm: it is clear from the

gathers shown in Figs 7–9 that it would be trivial to add sufficient

synthetic noise such that the human eye could not identify, for exam-

ple, moveouts of later arriving energy. Nevertheless, it is also clear

that for low noise, and strongly diffracted energy, the algorithm

would be expected to identify some multiply diffracted energy in

such data.

One of the strengths of the algorithm is that it is based purely on

the kinematics of recorded energy; that is, it only involves subtrac-

tion and summation of ‘traveltimes’ of multiply diffracted waves.

For this reason, the method could also be applied to dissipative

background media and diffractors, as it does not rely on amplitude

information at all. However, it may also be possible to generalize

the method to include dynamic wavefield information (e.g. ampli-

tudes). This might be achieved by employing cross-correlation and

convolution of the various recorded diffracted wave arrivals in place

of subtraction and summation of their traveltimes within the algo-

rithm. In so doing, we actually apply the trilinear source–receiver

interferometry (SRI) operator of Curtis & Halliday (2010), Meles

& Curtis (2013a,b) and Löer et al. (2013) to the data. Such op-

erators are generally used for wavefield synthesis (as in Curtis &

Halliday 2010) rather than analysis (as above), and for the specific

geometry considered here with S and S ′ only spanning one side

of the medium, we would construct only an approximation to the

true multiply diffracted energy between x1 and x2 (Meles & Curtis

2013a,b). The method herein thus shows how the same SRI trilinear

operators can be used for wavefield analysis rather than synthesis,

and also sheds light on the internal workings of such operators, and

how they combine information contained in (multiply) diffracted

energy [see also King & Curtis (2012) and Löer et al. (2013)].
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Diffractions fingerprinting 1711

Figure 12. (a)–(b) As for Figs 11(a) and (b), but for the wave arrival at ∼2.25 s along the bold line in (a) identified in Fig. 11 as corresponding to the penultimate

diffractor. An identical moveout pair sequence is shared by the observed data (a), and the arrival time difference between primary (A) and secondary (A–B) in

(b), as shown by the solid arrows and upper boundary of the white shaded area that match observed energy in (a). This identifies the last (B) and penultimate (A)

diffractors associated with the arrival observed at ∼2.25 s. Since the algorithm now involves a primary as the wave associated with the penultimate diffractor

(see (a)), the complete diffraction path has been identified. (c)–(d) As for Figs 11(c) and (d): a moveout pair sequence that is not shared by the observed data and

the difference between primary (C) and secondary (C–B), as shown by the dashed arrow and upper boundary of the red shaded area, does not match observed

energy in (c). This excludes C as the penultimate diffractor for the arrival observed at ∼2.25 s.

In practical applications, the method may itself provide valu-

able information about interdiffractor medium properties, which

could be analysed by comparing amplitudes or phase variations

between differently singly and multiply diffracted waves. This is

illustrated for example in Fig. 13, which shows how the trav-

eltime ‘between two diffractors’ can be evaluated by subtract-

ing half the traveltimes of zero offset (x1–A–x1 and x2–B–x2)

first-order diffracted energy from the traveltime of second-order

diffracted event (x1–A–B–x2). Since all of these events are iden-

tified by their diffractors in the algorithm above, observing the

traveltime of interdiffractor path [A–B] is trivial for all pair of

diffractors.

In a physical experiment, Fink et al. (2003) proved that the energy

from singly and multiply diffracted waves recorded across a trans-

ducer array could be refocused on their last diffractors through exact

time-reversal mirroring (by simultaneously emitting the recorded

energy, time-reversed, by the same transducers that recorded the

energy). In imaging by migration, the same process is simulated

on a computer. However, for imaging to work, the corresponding

simulated source wavefields also need to arrive at each scatterer at

the same time as the refocused time-reversed energy. The source

wavefield then clearly needs to account for the multiply diffracted

paths that occurs before energy arrives at the last diffractor (Fleury

& Vasconcelos 2012; Ravasi & Curtis 2013). Since we can now

identify both singly and multiply scattered energy, and the scat-

terers visited by each arrival, analysis and comparison of different

focusing images associated with such waves should provide valuable

information on velocity errors in the corresponding interscattering

Figure 13. Comparison of zero offset primary (dashed arrows) and sec-

ondary (solid line) ray paths sharing identical sections of paths ([x1-to-A] and

[C-to-x2]) can provide valuable kinematic and dynamic information about

interdiffractor paths. The diffraction path identification algorithm proposed

here identifies the primary and secondary diffracted energy sharing identical

sections of path, thus also identifying the effects of the interdiffractor section

of the path A-to-C.

background model, and more generally about its missing diffractors

(Sava et al. 2005; Coimbra et al. 2013).

Diffractors are generally characterized by a variety of prop-

erties, for example, spatial position and scattering amplitudes
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1712 G. A. Meles and A. Curtis

or cross-sections (Groeneboom & Snieder 1995; Wapenaar et al.

2010). Multiply diffracted waves are affected by these properties

in both phase and amplitude. If we know which diffractors were

encountered by each wave, then one may be able to constrain or in-

vestigate such properties. For example, in the case that illumination

is only provided by limited arrays of sources and receivers, scatter-

ing anisotropy could be studied by considering multiply diffracted

waves, which may illuminate diffractors from otherwise inaccessi-

ble directions.

To our knowledge, this is the first published method to decom-

pose multiply diffracted paths into their individual, ordered, single-

scattering components without using an explicit model of the in-

terior of the medium. In this paper, we present a method based

on wavefield analysis: that is, we begin with any arrival observed

in a waveform and show how it can be analysed to determine the

scattering interactions that lead to that observed arrival. Note that

Fig. 4 can also be used in reverse, to ‘synthesize’ multiply diffracted

wave traveltimes. That is, the traveltime of the multiply diffracted

arrival ending at L-1 in Fig. 3(g) can be added to the traveltime of

the dashed secondary diffraction path in Fig. 4(e), then the travel-

time of the primary in Fig. 3(e) can be subtracted from the result.

This provides the traveltime of a true multiply diffracted wave that

should be observed at x2, and which diffracted last at L as shown in

Fig. 3(g). Thus we identify a recorded arrival which has experienced

an order of scattering that is one higher than that injected into such

an algorithm. In either case, diffraction path identification has been

shown to be possible using relatively straightforward deterministic

algorithms, and without requiring a model of the medium.
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A P P E N D I X : M o v e o u t i n v a r i a n c e o f

d i f f r a c t e d w av e s

The scattered field due to an arbitrary slowness perturbation dis-

tribution δs(x) is described by the non-linear Lippman–Schwinger

equation (Stolt & Benson 1986), which in the time domain reads:

GS(xr, xs, t) =

∫
V

2G0(xr, x, t) ∗ G̈(x, xs, t)s(x)δs(x)dV , (A1)

where ∗ indicates convolution, G̈ is the second derivative in time of

the Green’s function G and s(x) is the slowness.

When the perturbation is due to a set P of point diffractors, the

above integral formula reduces to a sum:

GS(xr, xs, t) =
∑

d∈P
2G0(xr, xd, t) ∗ G̈(xd, xs, t)s(xd)δs(xd).

(A2)

Here, G(xd, xs, t) accounts for all of the multiple-diffracted waves

that occur between the source at xs and the scatterer at xd, while

G0(xr, xd, t) describes the waveform connecting the diffractor xd

to the receiver xr directly, with no scattering. In this formula, xd is

then a ‘last’ diffractor. Note that no assumptions are made about

the model associated with G0(xr, xd, t), which may be arbitrarily in-

homogeneous. The scattered field associated with a specific, single

last diffractor D is therefore:

GS
D(xr, xs, t) ∝ G0(xr, xD, t) ∗ G̈(xD, xs, t)s(xD)δs(xD). (A3)

The above formula is not suitable for an immediate definition of

moveout, as it incorporates more than one arrival (as indicated by red

arrows in Fig. A1, which shows waves scattered last at an identical

diffractor). Moveout is associated with a single wave front arrival,

and therefore requires first the selection of a particular arrival within

a gather, and picking of the corresponding arrival time.

When diffracted arrivals are clearly separable (e.g. when the back-

ground model is homogenous and only a finite number of scatterers

is present), we can order them and define the Nth diffracted waves

Figure A1. First and higher order waves diffracted last at an identical

diffractor exhibit identical moveout in common-source gathers (as indicated

by red arrows in A1).

associated with a specific last diffractor as follows:

GS
D,N (xr, xS, t) ∝ G0(xr, xD, t) ∗ N G̈(xD, xS, t)S(xD)δS(xD),

(A4)

where N G̈ stands for the Nth arrival in the waveform G̈.

We further simplify the problem by introducing a different purely

‘spatial’ function for any arrival—the traveltime of the analysed

scattered wave:

T [GS
D,N (xr, xs)] ∝ T [G0(xr, xD)] + TN . (A5)

Here, T [GS
D,N (xr, xs)], T [G0(xr, xD)] and TN indicate the travel-

time of GS
D,N (xr, xs), G0(xr, xD, t) and N G̈(xD, xS, t), respectively.

Whereas waveforms are convolved in (A4), traveltimes are summed

in (A5). Because TN is not a function of xr, we conclude that the

derivative with respect to the receiver position of the waveform, that

is, the moveout, only depends on T [G0(xr, xD)]:

∂xr T [GS
D,N (xr, xs, t)] ∝ ∂xr T [G0(xr, xD)]. (A6)

This shows that moving the source xs can only affect the constant

component of the diffracted arrival times observed at an array of

receivers (i.e. TN) but not their variation or moveout across the

receiver array. A similar argument for first diffractors and source

arrays can easily be derived by invoking source–receiver reciprocity

and following a similar procedure.
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