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Abstract

Background: Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and
PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins
synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-
malaria drugs.

Methodology/Principal Findings: To define the substrate specificity of recombinant forms of these two malaria
aminopeptidases we used a new library consisting of 61 fluorogenic substrates derived both from natural and unnatural
amino acids. We obtained a detailed substrate fingerprint for recombinant forms of the enzymes revealing that PfM1AAP
exhibits a very broad substrate tolerance, capable of efficiently hydrolyzing neutral and basic amino acids, while PfM17LAP
has narrower substrate specificity and preferentially cleaves bulky, hydrophobic amino acids. The substrate library was also
exploited to profile the activity of the native aminopeptidases in soluble cell lysates of P. falciparum malaria.

Conclusions/Significance: This data showed that PfM1AAP and PfM17LAP are responsible for majority of the
aminopeptidase activity in these extracts. These studies provide specific substrate and mechanistic information important
for understanding the function of these aminopeptidases and could be exploited in the design of new inhibitors to
specifically target these for anti-malaria treatment.
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Introduction

Malaria is one of the deadliest infectious diseases of humans in the

world. It is endemic in tropical and subtropical regions, with about

500 million cases of malaria infections and 1.4–2.6 million deaths

each year [1]. Four Plasmodium species commonly infect humans (P.

vivax, P. malariae, P. falciparum and P. ovale) [2,3]. Among them P.

falciparum is of special interest because it is the most lethal and

responsible for most deaths, particularly in pregnant women and

children under the age of five. Drugs such as chloroquine and

mefloquine have played major roles in the treatment of malaria in

the past. However, the spread of drug resistant parasites has meant

that treatment has become increasingly reliant on artemisinin-based

combination therapies (ACTs) [4,5]. Accordingly, there is a pressing

need to develop new anti-malarial drugs targeting biochemical

pathways critical for parasite survival and/or transmission.

Malarial parasites digest the infected host’s hemoglobin to

obtain free amino acids [6]. These amino acids are used to

maintain osmotic pressure within infected red blood cells, for

protein synthesis during parasite development and reproduction,

and to set-up a concentration gradient by which rare or absent

amino acids are transported into infected red blood cell from host

serum [7,8]. Two metallo-aminopeptidases M1 alanyl aminopep-

tidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP)

expressed by P. falciparum may be responsible for the terminal steps

of hemoglobin digestion [9,10,11]. It is proposed that these

enzymes hydrolyze small peptides generated by the endoproteo-

lytic digestion of hemoglobin within the parasite’s digestive
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vacuole to generate a pool of free amino acids. Prevention of

PfM1AAP and PfM17LAP activity by aminopeptidase-specific

inhibitors, such as bestatin, block development of malaria parasites

in vitro and in vivo, suggesting that these enzymes are attractive

targets for the development of a new class of anti-malaria drugs

[12,13,14]. Recently, Valmourougane et al. [15] used the bestatin

scaffold to develop several derivatives and employed these to

explore the active sites of the two malaria enzymes. Subsequently,

Harbut et al. [16] synthesised additional bestatin-based inhibitors

that exhibited specificity for PfM1AAP and PfM17LAP enzymes

and showed that these can block malaria growth in culture, thus

indicating that both enzymes represent targets for anti-malaria

drug design.

Sequence alignment of malaria PfM1AAP and PfM17LAP

aminopeptidases with mammalian orthologs reveals significant

differences in their overall primary structure and in residues that

influence substrate binding (Figure 1). In particular, these data

suggest that the S1 pockets of the malaria enzymes, which accepts

the N-terminal P1 amino acids of a peptide substrate, has different

topology in these enzyme orthologs, which could influence the

binding and catalytic turnover of different classes of amino acids.

Differences between the N-terminal amino acid preferences of

malaria and mammalian enzymes could be exploited in the design

of inhibitors that could kill malaria parasites without inhibition of

their mammalian homologs.

In the present paper, we have examined and compared the

detailed substrate specificities of functionally-active recombinant

forms of PfM1AAP and PfM17LAP. To obtain substrate

fingerprints for each enzyme we employed our recently developed

substrate library consisting of natural and unnatural amino acids

attached to an ACC fluorophore [17]. The information gained

from this library provided extensive activity profiling of functional

recombinant forms of PfM1AAP and PfM17LAP. We also profiled

the general aminopeptidase activity in soluble cell lysates derived

from the 3D7 clone of P. falciparum malaria. Our data show major

differences in the substrate specificity between the two malaria

enzymes that are related to the structure/shape of their active site.

Significant difference was observed between these and the human

aminopeptidase homologs for which we previously determined a

substrate specificity profile [17]. Furthermore, we show that

PfM1AAP and PfM17LAP represent the major aminopeptidase

activity in soluble malaria extracts. This information will be

Figure 1. Multiple sequence alignments of PfM1AAP and PfM17LAP with mammalian orthologs, H: human Homo sapiens, P: pig, Sus
scrofa, R: rat, Rattus norvegicus and X: Plasmodium falciparum. Dashes represent gaps that optimize sequence adjustment. Small or hydrophobic
amino acids are colored in magenta, acidic are red, basic are blue and amino acids with an amine or hydroxyl group are green. Conserved amino acids
are highlighted in gray. Amino acids from active side residues are presented on a black background and those participating in metal binding are
outlined.
doi:10.1371/journal.pone.0031938.g001
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important for the future characterization of the malaria amino-

peptidases and elucidation of their function in malaria, and in the

design of specific inhibitory compounds for anti-malarial treatment.

Methods

Materials
All chemicals and solvents were obtained from commercial

suppliers and used without further purification, unless otherwise

stated. Analytical high performance liquid chromatography

(HPLC) analysis used a Beckman-Coulter System Gold 125

solvent delivery module equipped with a Beckman-Coulter System

Gold 166 Detector system by using a Varian Microsorb-MV C18

(25064.8 mm) column. Preparative HPLC analysis used a Beck-

man-Coulter System Gold 126P solvent delivery module equipped

with a Beckman-Coulter System Gold 168 Detector system with a

Kromasil 100-10 C18 (20 mm ID) column (Richard Scientific).

Solvent composition system A (water/0.1%TFA) and system B

(acetonitrile/water 80%/20% with 0.1% of TFA). LC-MS data

were recorded with the aid of the Burnham Medicinal Chemistry

facility using Shimadzu LCMS-2010EV system. The solid phase

substrate library was synthesized using a semiautomatic FlexChem

Peptide Synthesis System (Model 202). Enzymatic kinetic studies

were performed using Spectra MAX Gemini EM fluorimeter

(Molecular Devices) operating in the kinetic mode in 96-well

plates.

Preparation of malaria cell extracts and recombinant
PfM1AAP and PfM17LAP
The intra-erythrocytic stages of 3D7 P. falciparum parasites were

cultured in RPMI containing 10% human serum [18]. Parasites

were lysed from erythrocytes using 0.03% saponin [19] and

extracted by three rounds of freeze-thaw in phosphate-buffered

saline, pH 7.3, prepared as described previously [20]. The

production of recombinant malaria aminopeptidases PfM1AAP

and PfM17LAP in Escherichia coli and their isolation by Ni-chelate

affinity chromatography has been described elsewhere [21,22].

Substrate library screening
To first compare the substrate specificity of the two malarial

aminopeptidases (PfM1AAP and PfM17LAP) an initial screening

of 19 natural amino acids was performed. PfM17LAP was assayed

in 50 mM Tris-HCl, pH 8.0, and was activated with Co2+ ions at

a final concentration of 1.0 mM. PfM1AAP was assayed in

50 mM Tris-HCl, pH 7.5, without additional metal ions. These

two buffers were made at 25uC and assays were carried out at

37uC. Before adding to the substrate, all enzymes were

preincubated at 37uC for 30 minutes (the enzyme concentration

in these additional screens was between 0.06–0.10 mM). These

screens were carried out using substrate concentrations of 50 mM

and 2.5 mM for PfM1AAP and PfM17LAP, respectively.

A final screening of the 61-membered library of the natural and

unnatural amino acids was then performed: for PfM1AAP screens

the library concentration was 2.5 mM and for PfM17LAP screens

300 nM (total enzyme concentrations in these assays were 0.03–

0.10 mM). The fluorescence signal was monitored continuously

and the wavelength values were following, excitation at 355 nm

and emission at 460 nm. The total time of each assay was between

15–45 minutes. From each single experiment only the linear

portion of progress curve was used to calculate final substrate

specificity represented by RFU/s (production of Relative Fluores-

cence Unit per second) value. Experiments using the entire 61-

membered library were repeated three times and for natural

amino acids sublibrary were repeated twice. The average value

with standard deviations for each substrate were compared with

the best cleaved substrate (100% of specificity) and all data are

presented on plot where x axis represents given fluorogenic

substrate and y axis represents the specificity signified as percent

participation in velocity of the most specific substrate.

Determination of kinetic parameters for best cleaved
substrates (Km, kcat, kcat/Km)
The kinetic parameters of the best substrates were determined

using the above assay conditions. However, before adding to the

substrate, all enzymes were preincubated at 37uC for 30 minutes.

The ACC concentration was calculated by total digestion assay for

each enzyme separately. In each measurement 6 independent

substrates with known concentration were chosen and the average

value was calculated. To measure Km value eight different

concentrations of given substrates and constant enzyme concen-

tration were used. Reaction volume was at 100 mL and enzyme

concentrations were 0.0315 mM and 0.380 mM for PfM1AAP and

PfM17LAP, respectively. To measure kcat/Km value six different

concentrations of given substrates and constant enzyme concen-

tration were used. All experimental conditions were as above. The

fluorescence signal was monitored continuously and the wave-

length value was the following, excitation at 355 nm and emission

at 460 nm. The total time of each assay was between 15–

30 minutes. All experiments were repeated at least three times and

the average value with standard deviation was calculated.

Concentration of DMSO in each experiment was less than 2%

(v/v).

Results

Design of the substrate library
To determine substrate specificity of the enzyme-substrate

complex in the S1 pocket of malaria aminopeptidases, we utilized

a substrate-profiling approach in which a fluorogenic substrate

library containing 61 amino acids was synthesized and used to

profile three mammalian orthologs of the M1 aminopeptidase N

[17]. This library was designed to screen substrate preferences for

19 natural amino acids (to avoid oxidation artifacts we omitted

cysteine) and 42 unnatural amino acids representing a broad

spectrum of side chain substitutions (Figure S1). Most of the

compounds in the library contain an unblocked a-amino group to

satisfy the primary specificity of aminopeptidases.

Additionally, we also synthesized several substrates with diverse

functionalities (for example, a secondary amine derivatives, an a-

hydroxy group, or an amine group in other than the a position)

linked to a fluorophore leaving group (in the P19 position) to

determine how this would influence substrate recognition by

malaria aminopeptidases. It was anticipated that this approach

would provide additional information that could be used to

identify good substrates, design of inhibitors, as well as comparison

of different aminopeptidases. In our present investigation of

substrate specificity, we used functionally-active recombinant

forms of the two P. falciparum aminopeptidases - PfM1AAP and

PfM17LAP (Figure 1) [9,12]. As the fluorophore leaving group we

employed 7-amino-4-carbamoylmethylcoumarin (ACC) because

of its convenience in solid phase synthesis [23].

Recombinant enzyme substrate-specificity results
An initial library screen for each malaria aminopeptidase was

performed to establish optimal screening conditions. For each

enzyme, the best cleaved substrates were chosen and their kinetic

parameters (Km, kcat/Km, kcat) measured. After measurement of

Km we performed a second screen in which the concentration of

Fingerprinting the Malaria Aminopeptidases

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e31938



each substrate was maintained well below the lowest Km value.

This procedure ensures that substrate cleavage (measured as a

fluorescence signal) is proportional only to kcat/Km and is not

correlated with individual values of Km or kcat. An equal

concentration of the given substrates in each well was obtained

by placing calculated amounts of substrate in the well and then

mixing with enzyme to a total volume of 100 mL. Final substrate

concentrations for the enzymes were as follows: 10 mM for

PfM1AAP (lowest Km=60.8 mM) and 0.3 mM for PfM17LAP

(lowest Km=0.35 mM). It is important to note that the most

challenging library screening was with the PfM17LAP. To obtain

satisfactory fluorescence signals and avoid depletion of substrate at

high enzyme concentration we performed the screen at 0.3 mM,

only slightly below the Km value of the best-cleaved substrate – Igl.

To gain a better insight into substrate specificity of the enzymes

toward natural amino acids, we performed an additional screen at

higher substrate concentration. This did not affect the observed

data because the Km values recorded for these substrates were also

higher, which guaranteed a proportional correlation between

fluorescence signal and kcat/Km: 50 mM for PfM1AAP (lowest

Km=138.2 mM) and 2.5 mM for PfM17LAP (lowest

Km=3.44 mM).

PfM1AAP aminopeptidase
The natural amino acids preferred by PfM1AAP are leucine

and methionine (Figure 2). Alanine and arginine are also readily

cleaved by this enzyme, but with a slightly lower affinity. Other

amino acids susceptible to hydrolysis by PfM1AAP aminopepti-

dase include Lys, Phe, Tyr, Trp, Gln, Ser and Gly. Negligible

activity was observed for Glu, Asp, Pro, Ile, Thr, Val, His and Asn.

Analysis of the whole library revealed that PfM1AAP exhibits

very broad substrate specificity with this aminopeptidase capable

of cleaving a range of substituents particularly the bulky,

hydrophobic amino acids (Figure 3). The most preferred substrates

were hCha, hPhe and Nle, all of which were cleaved more

efficiently than the best natural amino acid, methionine. A second

series of unnatural amino acids were also hydrolyzed by PfM1AAP

at about 50% of the activity seen for methionine. These were

hArg, Cha, Nva, 4-Cl-Phe, 2-Nal, Igl, hLeu or styryl-Ala.

PfM17LAP aminopeptidase
PfM17LAP exhibited strikingly narrow substrate specificity

toward natural amino acids, particularly in comparison to

PfM1AAP (Figure 2). The most readily accepted substrates are

the hydrophobic amino acids Leu and Trp. Other amino acids

Figure 2. Preferred natural amino acids substrates for recombinant PfM1AAP and PfM17LAP. Initial screening of the 19-membered
natural amino acid library. Enzyme activity was monitored using an fmax multi-well fluorescence plate reader (Molecular Devices) at excitation
wavelength of 355 nm and an emission wavelength of 460 nm. he x-axis represents the abbreviated amino acid names (for full name and structure
see Figure S1). The y-axis represents the average relative activity expressed as a percent of the best amino acid. In the heat map view the most
preferred positions are displayed in bright red, whereas a complete lack of activity is in black, with intermediate values represented by intermediate
shades of red.
doi:10.1371/journal.pone.0031938.g002
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susceptible to hydrolysis, albeit at a very much lower level included

Phe, Met, Thr and Tyr. Cleavage of Ile and His were slightly

above background.

Analysis of the complete substrate library revealed a highly

restricted specificity of PfM17LAP for hydrophobic substrates

(Figure 3). The amino acid derivatives most efficiently cleaved by

PfM17LAP were hPhe and hCha. These two substrates are

cleaved approximately three and five times better than the best-

cleaved natural amino acids Trp and Leu, respectively. Other

amino acid derivatives that are cleaved by PfM17LAP include Igl

and Nle, and less so Nva and hLeu.

To study the distinct substrate differences between PfM1AAP

and PfM17LAP in more detail we determined their kinetic

parameters (Km, kcat, kcat/Km) against a panel of selected natural

and unnatural substrates (Table 1). These studies showed that the

substrates Arg, Ala, HArg, 2-Nal, 3-NO2-Phe and styryl-Ala were

exclusively cleaved by PfM1AAP. By contrast, we did not observe

cleavage of any substrate by PfM17LAP that was not cleaved by

PfM1AAP. For those substrates that both enzymes cleave, the

efficiency or turnover rate (kcat/Km) was always far higher with

PfM1AAP in comparison to PfM17LAP, even for those substrates

most preferred by PfM17LAP (e.g. Leu, hLeu, Phe, hPhe, hCha).

However, the substrate binding affinities, as assessed by Km, for

PfM17LAP were between one or two orders of magnitude lower as

compared to PfM1AAP. These data indicate that the two enzymes

function in milieu of different substrate concentration; PfM1AAP

works more effectively at relatively high substrate concentration

while PfM17LAP functions more efficiently at much lower

substrate concentrations.

Malaria cell lysate substrate specificity results
To understand the nature of the aminopeptidase activity

expressed by malaria parasites we screened our substrate library

with a soluble malaria cell extract derived from the 3D7 clone of P.

falciparum. We employed the substrate library at an arbitrary final

concentration of 5 mM. This concentration was determined in a

preliminary screening test to be sufficient to obtain a good and

linear fluorescence signal (data not shown). No activity was

observed against fluorogenic peptides substrates when lysates of

uninfected erythrocytes were prepared in a similar manner to the

parasite-infected erythrocytes as reported previously [9].

Our data demonstrate that several substrates are efficiently

cleaved by aminopeptidases in the cell lysate (Figure 4). Interest-

ingly, the substrate profile closely represents a combination of

activity of both PfM1AAP and PfM17LAP aminopeptidases. The

most readily cleaved substrates (e.g. Arg, Ala, Leu, Met, hCha)

show a close overlap with those cleaved by either recombinant

enzymes. To validate this observation we performed a library

screen in which the soluble cell lysate was preincubated for

30 minutes with 50 mM hPhe-PO3H2, which we have previously

shown is a potent inhibitor of both PfM1AAP and PfM17LAP

[14,24]. No activity was observed toward any substrate in the

Figure 3. Individual preferences in S1 pocket of PfM1AAP and PfM17LAP enzymes toward natural and unnatural amino acid
substrates. Screening of the 61-membered natural and unnatural amino acid library. Enzyme activity was monitored using an fmax multi-well
fluorescence plate reader (Molecular Devices) at excitation wavelength of 355 nm and an emission wavelength of 460 nm. The x-axis represents the
abbreviated amino acid names (for full name and structure see Figure S1). The y-axis represents the average relative activity expressed as a percent of
the best amino acid. In the heat map view the most preferred positions are displayed in bright red, whereas a complete lack of activity is in black,
with intermediate values represented by intermediate shades of red.
doi:10.1371/journal.pone.0031938.g003
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complete library (data not shown). Thus we propose that the

observed hydrolysis of the substrates by malaria soluble cell lysates

results solely from the two aminopeptidases.

Discussion

Malaria is currently considered one of the most deadly

infectious global diseases of humans, killing approximately 1

million people in sub-Saharan Africa alone each year. New

approaches to overcome the spread of malaria parasites that have

become resistant to currently available drugs are necessary,

particularly the identification of novel drugs targeting metabolic

pathways. The aminopeptidases PfM1AAP and PfM17LAP are

critical to the growth and development of malaria parasites within

the erythrocyte as knockout of either aminopeptidase gene is lethal

to the parasite [11,12], and therefore they are both currently

considered as promising targets for medicinal intervention [12].

The two enzymes are suggested to participate in the final step of

hemoglobin digestion, the main source of nutrient for the parasite,

resulting in the production of single amino acids, which are

Table 1. Kinetic parameters for selected substrates.

Pf M1AAP Pf M17LAP

Km, mM kcat, s
21 kcat/Km, M

21 s21 Km, mM kcat*10
3, s21 kcat/Km, M

21 s21

Ala 240.6610.9 1.05460.154 43796444 not cleaved

Arg 214.3618.5 0.87660.105 40866187 not cleaved

hArg 124.3615.6 1.14460.100 92066507 not cleaved

Leu 140.9612.1 0.86860.111 61596301 30.3261.48 2.62260.077 82.565.2

hLeu 210.8626.6 1.85960.030 881961481 4.05960.017 0.71760.121 176.6615.5

Phe 218.066.2 0.42260.028 19376159 9.26760.356 1.66860.109 180.067.2

hPhe 60.863.1 0.97860.003 1609761754 0.59560.004 0.27760.029 466.3651.3

Met 138.267.9 0.88760.077 64206200 3.44060.297 0.11760.007 34.161.8

Trp 144.4618.7 0.44460.052 30716107 22.9960.686 3.19460.227 139.065.9

Cha 269.8630.8 1.35860.140 50346692 7.77760.520 0.83960.125 107.9613.3

hCha 96.3616.2 1.59260.230 165326431 0.43760.016 0.21160.005 483.2618.3

2-NaI 316.6624.9 0.88460.018 27926248 not cleaved

3-NO2-Phe 131.7619.9 0.14160.026 10726221 not cleaved

Nva 267.167.7 2.78660.228 1042961158 8.48760.310 0.92360.141 108.8613

allyl-Gly 266.7625.2 1.52060.301 57006720 11.3561.89 0.47960.106 42.364.3

IgI 84.766.1 0.49260.032 58116302 0.34260.022 0.15360.006 448.9629

styryl-Ala 192.7610.5 0.93760.154 48646556 not cleaved

Nle 110.1613.6 1.39960.119 1270861180 3.29360.076 0.61860.090 187.8611.8

Comparison of the kinetic parameters (Km, kcat, kcat/Km) of the selected substrates for PfM1AAP and PfM17LAP. The results are presented as mean values with standard
deviation.
doi:10.1371/journal.pone.0031938.t001

Figure 4. Total aminopeptidase activity explored in the 3D7 clone of P. falciparum in the absence (A). Aminopeptidase activity in soluble
malaria parasite extracts was monitored using an fmax multi-well fluorescence plate reader (Molecular Devices) at excitation wavelength of 355 nm
and an emission wavelength of 460 nm. The x-axis represents the abbreviated amino acid names (for full name and structure see Figure S1). The y-
axis represents the average relative activity expressed as a percent of the best amino acid. Note, the addition of the aminopeptidease-specific
inhibitor hPhe-PO3H2 (50 mM) to any of the above experiments completely abrogated cleavage of every substrate, thus confirming that the observed
signal originates only from these enzymes.
doi:10.1371/journal.pone.0031938.g004
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subsequently used for production of parasite proteins as they grow

and develop with the host erythrocyte. As much as 70% of the

erythrocyte hemoglobin is degraded suggesting that an efficient

catabolic process is required [6]. However, the aminopeptidases

may also function in the regular catabolic turnover of malaria

proteins or biogenesis of intracellular organelles as the parasite

undergoes recognized stage-specific developments [9,10,24].

Previous studies in the search for phosphonate or phosphinate

compounds that inhibit both PfM1AAP and PfM17LAP resulted

in the selection of several compounds that significantly reduced

development of malaria parasites both in erythrocyte cell culture

and in the murine P. c. chabaudi model of malaria [14,25].

However, since these compounds block the activity of both

enzymes it remains to be determined whether killing is due to

inhibition of one or both enzymes. Harbut et al. [16] recently used

a bestatin scaffold to develop inhibitors that showed a 12–15 fold

specificity for either PfM1AAP or PfM17LAP and demonstrated

that these killed malaria parasites in vitro. The PfM1AAP-specific

inhibitors caused swelling of the malaria digestive vacuole and

disrupted proteolysis of haemoglobin-derived peptides while the

PfM17LAP-specific inhibitors killed malaria parasite prior to the

onset of haemoglobin digestion. These support the idea that

the two enzymes play distinct roles in malaria parasites and that

both can be targeted for anti-malaria drug development [12].

Recently, the high-resolution X-ray crystal structures of both

PfM1AAP and PfM17LAP were determined and revealed large

differences within the S1 pockets of their active sites [19,20]. Both

molecules revealed extensively buried active sites centered around

the essential active site cation(s). However the nature and size of

the S1 pocket varied dramatically. The PfM1AAP S1 pocket is

long and contains acidic residues deep in the pocket, thus forming

an excellent platform for docking amino acids of basic character.

Notably, a polar glutamic acid (Glu572) residue is located at the

base of the pocket where it would be available to form an ionic

interaction with the side chains of long and basic side chains.

Comparison of bestatin-bound and unbound PfM1AAP structures

also revealed flexibility of polar residues deep within the S1 pocket,

thus possibly providing further adaptability to the shape of the S1

pocket. Valmourougane et al. [15] showed using bestatin-based

inhibitors that the S1 pocket, residues 570–575, is flexible and can

move to accommodate large side chains. Our library-screening

results confirm that PfM1AAP aminopeptidase can cleave a large

variety of amino acids with small or bulky amino acids side chains.

One of the best cleaved are compounds with Arg and hArg, thus

confirming at a mechanistic level the crystal structure data analysis

and predictions. In contrast, the PfM17LAP S1 pocket that

interacts with the substrate P1 residue is a small, narrow and

substantially hydrophobic. Structural analysis suggested that only

hydrophobic amino acids could be tolerated in this binding pocket.

In the bestatin-bound structure, the P1 Phe-like moiety was tightly

packed into the S1 pocket, forming stacking interactions with the

hydrophobic pocket. Analysis of substrate library data for

PfM17LAP confirms predictions from its crystal structure by

showing that this enzyme efficiently cleaves amino acids with bulky

and hydrophobic side chains, while the presence of any

hydrophilic group leads to reduced binding. The size and

hydrophobic nature of this narrow pocket explains the inability

of this enzyme to cleave peptides/proteins after polar residues.

Analysis of the PfM17LAP structure reveals no suitable polar

hydrogen bonding partners at the base of the S1 pocket that could

interact with a charged P1 side chain.

Substrates capable of differentiating between the two malaria

aminopeptidases are Ala, Arg and hArg, a property that can be

applied in the future for the specific monitoring activity of

PfM1AAP in cell lysates as well as for design of specific inhibitors

for this enzyme. On the other hand, both PfM1AAP and

PfM17LAP preferentially recognize and cleave two unnatural

amino acids – hPhe and hCha. Phosphonate derivatives of these

substrates were reported previously as very good inhibitors of

recombinant PfM17LAP and in malaria cell culture experiments,

thus confirming that substrate specificity data can yield useful

information for design of aminopeptidases inhibitors [14,25].

Our previous studies using a restricted number of natural amino

acid derivatives of fluorogenic substrates indicated that the two

aminopeptidases exhibit distinct but overlapping substrate speci-

ficities [9,19]. The availability of our library of 61 individual

fluorogenic substrates in the form of natural and unnatural amino

acids allowed us to perform comparative screens with the

aminopeptidases, PfM1AAP and PfM17LAP. This has given us a

more detailed understanding of the biochemistry of each

PfM1AAP and PfM17LAP, which could enable the future design

of specific substrates and inhibitors of each enzyme. The enzyme

kinetic parameters presented in Table 1 show that the broad-

acting PfM1AAP cleaves all substrates that are also cleaved by the

more restrictive PfM17LAP. Moreover, PfM1AAP cleaves these

substrates with a far greater efficiency, with kcat/Km values in the

region of 40–100 fold higher. Additionally, the Km values obtained

for PfM17LAP are between one or two orders of magnitude lower

than those of PfM1AAP. This further supports the suggestion that

both enzymes may not function together in the same catabolic

pathway and/or in the same cellular compartment. It is most

probable that PfM1AAP functions in a cellular environment where

its substrates are in high concentration. Immunolocation studies

[11,21,26,27] suggest that this could possibly be within or adjacent

to the parasites digestive vacuole where the initial endo- and exo-

proteolytic cleavages of host hemoglobin would generate high

concentrations of peptide substrates. In contrast, PfM17LAP,

which was localized to the cytoplasm of the malaria cell [9,12,21],

could function where it substrates, peptides derived from

hemoglobin or other proteins, are in lower concentration. Because

of its strict specificity for leucine, we have previously suggested that

a prime function of PfM17LAP could be in generating high

intracellular concentrations of leucine that can be exchanged via

specific channels for extracellular isoleucine [28], an essential

amino acid not found in human hemoglobin [9,12].

One of the objectives of this study was to characterize the

aminopeptidase activity of aminopeptidases in malaria extracts

and compare this to the recombinant PfM1AAP and PfM17LAP.

Our data clearly show that PfM1AAP and PfM17LAP are

primarily responsible for the aminopeptidase activity in the soluble

lysates of the 3D7 clone of P. falciparum. There are four types of

methionine aminopeptidases (MetAP) expressed in malaria cells

[29] and we expected that this activity would be particularly

enhanced in the substrate profile of soluble cell lysates compared

to the recombinant PfM1AAP and PfM17LAP. Interestingly, this

was not the case and it is most probable that MetAP activities are

presence at a low level in the soluble lysates, although other

possibilities include that these enzymes are membrane bound. Our

data strongly suggests that both PfM1AAP and PfM17LAP are the

predominant exo-aminopeptidases in the soluble lysates of the

malaria parasites.

In conclusion, we have used a new library of fluorogenic

substrates designed from natural and unnatural amino acids to

define the distinct substrate specificity and kinetic parameters of

two malaria aminopeptidases PfM1AAP and PfM17LAP, potential

targets for new anti-malarials. Aminopeptidase fingerprint of

PfM1AAP overlaps very well with previously published data for

three mammalian (human, rat and pig) orthologs of this enzyme
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suggesting that no dramatic evolutionary changes occurred to this

enzyme in term of substrate recognition preferences. This suggests

that designing inhibitors that block the activity of the malaria

enzyme without inhibiting the host enzyme will present a major

challenge. However, our results show individual features of each

malaria aminopeptidase in term of binding substrates in S1 pocket

and suggest that compounds that inhibit each enzyme specifically

or together could be synthesized for combination therapies. This

suggestion is supported by the recent results of Valmourougane

et al. [15] and Harbut et al. [16] who designed PfM1AAP- and

PfM17LAP-specific inhibitors using the basic bestatin scaffold,

although these did not show enhanced killing of parasite over

bestatin itself. We have also shown that our library could be

employed for activity profiling of cell extracts from different strains

of malaria. Finally, our analysis can form the basis for future

selection of specific substrates for this group of proteases as well as

for the design of inhibitors, which could further help to answer

questions about their relative importance in malaria development.
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