
Fingerprinting: Visualization and Automatic
Analysis of Prisoner’s Dilemma Strategies

Daniel Ashlock
Mathematics and Statistics

University of Guelph,
Guelph, Ontario

Canada N1G 2W1
danwell@iastate.edu

Eun-Youn Kim
National Institute For Mathematical Sciences

385-16, Doryong-dong,
Yuseong-gu, DaeJeon 305-340,

South Korea
eunykim@nims.re.kr

Abstract— Fingerprinting is a technique for generating a
representation-independent functional signature for a game play-
ing agent. Fingerprints can be used to compare agents across
representations in an automatic fashion. The theory of finger-
prints is developed for software agents that play the iterated
prisoner’s dilemma. Examples of the technique for computing
fingerprints are given. The paper summarizes past results and
introduces the following new results. Fingerprints of prisoner’s
dilemma strategies that are represented as finite state machines
must be rational functions. An example of a strategy that does
not have a finite state representation and which does not havea
rational fingerprint function is given: the majority strate gy. It is
shown that the AllD- and AllC-based fingerprints can be derived
from the tit-for-tat fingerprint by a simple substitution. F inger-
prints for four new probe strategies are introduced, generalizing
previous work in which tit-for-tat is the sole probe strategy. A
trial comparison is made of evolved prisoner’s dilemma strategies
across three representations: finite state machines, feed forward
neural nets, and lookup tables. Fingerprinting demonstrates that
all three representations sample the strategy space in a radically
different manner, even though the neural net’s and lookup table’s
parameters are alternate encodings of the same strategy space.
This space of strategies is also a subset of those encoded by
the finite state representation. Shortcomings of the fingerprint
technique are outlined, with illustrative examples, and possible
paths to overcome these shortcomings are given.

I. I NTRODUCTION

Evolutionary game theory can use an evolutionary algorithm
to generate a vast number of different game playing agents in
a short time. It is typically impractical to figure outwhich
game playing agents were evolved for a number of reasons.
Many representations for evolvable game playing agents, e.g.
neural nets or finite state automata, are capable of producing
thousands of different encodings of the same strategy. In
addition, evolved game playing agents are often cryptic and
complex. The effort required for direct analysis of evolved
structures varies from the time-consuming to the impractical.
It is possible to create one-to-one representations that encode a
small number of possible strategies, both solving the problem
of understanding the evolved agents and depriving evolution
of much of its scope to produce interesting strategies.

This study presentsfingerprinting, a representation-and-
encoding independent method of identifying game playing
agents. The method is developed for the iterated prisoner’s

dilemma and applied to three representations: finite state
machines, lookup tables, and artificial neural nets. The theory
of fingerprints is developed to the point of supporting a rapid
sampling-based algorithm for approximating fingerprints.This
permits the rapid identification, sorting, and classification
of game playing agents. While this study deals only with
prisoner’s dilemma, the technique extends to any simultaneous
two-player game with a finite number of moves. Software for
working with fingerprints is available from the first author on
request.

The prisoner’s dilemma [14], [13] is a classic model in
game theory. Two agents each decide, without communication,
whether to cooperate (C) or defect (D). The agents receive
individual payoffs depending on the actions taken. The payoffs
used in this study are shown in Figure 1. The payoff for
mutual cooperationC is the cooperationpayoff. The payoff
for mutual defectionD is the defection payoff. The two
asymmetric action payoffsS and T , are the sucker and
temptationpayoffs. In order for a two player simultaneous
game to be considered the prisoner’s dilemma, it must be the
case that

S < D < C < T (1)

and

2C > (S + T ). (2)

The first inequality simply puts the payoffs in their intuitive
order. The second insists that alternating cooperation and
defection in a pair of players (taking turns stabbing one another
in the back) pay off no better on average than does mutual
cooperation.

S
C D

P C 3 5
D 0 1
(1)

S
C D

P C C T
D S D
(2)

Fig. 1. (1)The payoff matrix for prisoner’s dilemma used in this study –
scores are earned by strategyS based on its actions and those of its opponent
P (2) A payoff matrix of the general two player game –C, T, S, andD are
scores given for the game as well.



In the iterated prisoner’s dilemma(IPD) the agents play
many rounds of the prisoner’s dilemma. IPD is widely used
to model emergent cooperative behaviors in populations of
selfishly acting agents and is often used to model systems in
biology [28], sociology [20], psychology [27], and economics
[19]. Many different sorts of evolutionary computation systems
have been used to evolve agents to play the iterated prisoner’s
dilemma. In [17] particle swarm optimization is used to co-
evolve agents. Threaded finite state machines that permit
multiple action threads based on the agent’s internal stateare
used in [4]. A form of Cartesian genetic programming, called
function stacks, are used to encode agents in [2]. Permitting
prisoner’s dilemma agents to evolve within a spatial framework
[22], [3] has an impact on both the chance that cooperation
will arise and on which strategies evolve. Other version of
the prisoner’s dilemma are also studies with evolutionary
computation. In [16] the authors implement multiple levels
of cooperation and defection and include noise.

This study gathers together and extends the underlying
theory of fingerprints for game-playing agents and applies
fingerprints to a study of the types of prisoner’s dilemma
strategies that arise under evolution for different represen-
tations. Finite state machines, feed-forward neural nets,and
lookup tables are found to sample the space of strategies in
very different ways.

Fingerprints are developed in detail in a pair of theses [30],
[23]. A portion of the theory of fingerprints and an initial ap-
plication to the visualization of evolved agents appears in[6].
Additional applications as well as a marriage of fingerprints
with a new technique calledmulti-clusteringappear in [7].
Multiclustering, a technique for clustering that avoids artifacts
induced by choice of distance measure, is defined and explored
in [8]. The theory of fingerprinting is both summarized and
extended in this study. Among the new results presented are a
substantial extension of the number of known fingerprints, a
generalization of fingerprints to more probe strategies than tit-
for-tat, and a proof that the fingerprint of a finite state machine
is always a rational function (previously they were known to
be power series). An algorithm for accurately approximating
the fingerprints of finite state machines too large for the
computation of exact fingerprints is also given.

Fingerprinting was used in [12], with a finite state repre-
sentation, to demonstrate that the strategies that arise have
different distributions for different population sizes and in
different epochs. The latter result, that strategies rare or absent
at the beginning of evolution become common after thousands
of generations of evolution, was surprising. In [9] fingerprints
were used to demonstrate that the rate of appearance of
several well-known strategies varied between a direct finite
state representation for prisoner’s dilemma playing agents, a
cellular representation for finite state agents, and a new type
of representation called afunction stack, a modified form of
Cartesian Genetic Programming [24].

The study in [9], continued in [5], investigates the effect
of changing the representation used for a prisoner’s dilemma
agent. The representations covered by the two studies are

two versions of feed forward neural nets (one biased at the
neuron level toward cooperation), Boolean parse trees [15],
with and without a one-step time delay operation, a linear
genetic programming representation called an ISAc list [1],
lookup tables, a type of Markov chain [26], and both a direct
and cellular [5] representation of finite state machines. The
change of representation, with other factors held as near to
constant as possible, yielded a change from 0% to 95% in
the probability that final populations were cooperative. Using
fingerprints to examine the sets of strategies that arise puts a
finer point on these distinctions.

The remainder of the study is structured as follows. In
Section II the theory of fingerprints is summarized and new
results are presented with proofs given in an appendix. The
design of experiments performed are given in Section III.
Results and conclusions are presented in Section IV. Possible
future directions for both the improvement of fingerprinting
techniques and applications are given in Section V.

II. T HEORETICAL RESULTS

This section develops the theory of fingerprints. Results
proved elsewhere have their proofs cited, new results have
their proofs presented in an appendix. We start with a brief list
of known strategies in Table I. All of these strategies, except
random and majority, can be realized as finite state machines.
An example of a finite state machine of the kind used in this
study, a Mealy machine, is given in Figure 2.

Ripoff
Initial response:D

Initial state:1
State If D If C

1 C → 3 C → 2
2 C → 3 D → 1
3 D → 3 C → 3

Fig. 2. A finite state implementation of the strategyRipoff.

The play of two finite state machines in the presence of
noise can be represented as aMarkov process. This allows
the determination of an expected (average) score for any pair
of strategies by standard techniques in stochastic processes
[26]. We will use game playing agents with strategies that in-
corporate parameterized noise to fingerprint other agents.The
strategy used to evaluate other agents is called theprobestrat-
egy. The fingerprints have independent variables that establish
the character of the noise and return a dependent variable
that is the expected score of the agent being fingerprinted
against the probe strategy. Noise represents probabilities of
cooperating or defecting in spite of the move the probe strategy
would normally have made. The fingerprint will thus be a map
from probabilities,(x, y), of “irrational” (non-probe strategy)
cooperation and defection, respectively, to a value,E, the
expected score against the noisy agent.

Definition 1: If A is a strategy for playing the iterated
prisoner’s dilemma, thenJA(A, x, y) (Joss-Ann ofA) is a



TABLE I

EXAMPLES OF PRISONER’ S DILEMMA STRATEGIES.

Always Cooperate(AllC) This strategy always playsC.

Always Defect(AllD) This strategy always playsD.

Fortress-3(Fort3) This strategy is an example of a strategy that uses a pass-
word. If the opponent defects twice in a row (the password) and cooperates
thereafter, then Fortress-3 will cooperate. Any deviationfrom this sequence
resets the need to defect twice. A minimal finite state implementation of
Fortress-3 is shown in Figure 3. Fortress-3 was first defined in [12] and is
an example of a strategy that only arises after substantial evolution has taken
place.

Majority (Maj) This strategy returns a play equal to the majority of its
opponent’s plays, breaking ties in favor of cooperation. Majority has no finite
state representation.

Pavlov(Pav) The strategy, Pavlov, playsC as its initial action and cooperates
thereafter if its action and its opponent’s actions matchedlast time. A minimal
finite state implementation of Pavlov is shown in Figure 3.

Periodic CD(PerCD) This strategy cooperates and defects on alternate moves
no matter what its opponent does.

Psycho(Psy) The strategy, Psycho, choosesD as its initial action and then
plays the opposite of its opponent’s last action.

Random(Rand) The Random strategy simply flips a fair coin to decide how
to play. Random has no finite state representation.

Ripoff (Rip) This strategy alternates cooperation and defection until its oppo-
nent defects for the first time. On the round after this defection, it cooperates
and then plays tit-for-tat thereafter.

Thumper(Thmpr) This strategy cooperates initially. If its opponent defects,
then it defects on the next two moves; if its opponent’s second move after
defection is cooperate, it continues cooperating; otherwise it defects twice as
before. A minimal finite state implementation of Thumper is shown in Figure
3.

Tit-for-tat (TFT) The strategy, tit-for-tat, plays C as its initial action and then
repeats the other player’s last action.

Tit-for-two-tats (TF2T) This strategy defects only if its opponent has defected
on the last two moves.

Tit-for-three-tats (TF3T) This strategy defects only if its opponent has de-
fected on the last three moves.

Two-tits-for-tat (TTFT) This strategy defects on the two moves after its
opponent defects, otherwise it cooperates.

strategy which has a probabilityx of choosing the moveC,
a probabilityy of choosing the moveD, and otherwise uses
the response appropriate to the strategyA.

If S is the space of strategies for playing the iterated pris-
oner’s dilemma, then the Joss-Anne modification of strategies
can be viewed as a functionJA : S × F 7→ S where
F = {(x, y)|x, y ∈ R, 0 ≤ x+y ≤ 1} that yields a continuum
of strategies. The notationJA comes from the initials for Joss
and Ann. Joss was a player submitted to Axelrod’s famous
computer tournament for the iterated prisoner’s dilemma. It
would occasionally defect without provocation in hopes of
a slight improvement in score. Ann is the first name of A.
Stanley who suggested the addition of random cooperation
[29], [10] instead of random defection. Whenx + y = 1, the
strategyA is not used, and the resulting behavior is a random
strategy with play probabilities(x, y). In more general terms,
a JA strategy is an alteration of a strategy,A, that causes
the strategy to be played with random noise inserted into the
responses. When playing, the strategy,A, also updates its own

1

D/D

C/C

C

Tit-for-tat

1

D

C/D

2 3

D/D

D/DC/D

C/CD/C

Fortress-3

C

1 2

D/D

C/C
D/D

C/D
Thumper

21

C

C/C C/D

D/D

D/C

Pavlov

Fig. 3. Minimal finite state implementations of the prisoner’s dilemma
strategies Tit-for-tat, Fortress-3, Thumper, and Pavlov.

internal state. It does this even when an action generated at
random is used instead of its own action. Nesting the Joss-Ann
construction yields no new strategies.

Lemma 1:The strategy JA(JA(A, x1, y2), x2, y2) is
equivalent toJA(A, x2+(1−x2−y2)x1, y2+(1−x2−y2)y1).

Proof: [6], Lemma 1
Definition 2: A fingerprint FA(S, x, y) with 0 ≤ x, y ≤ 1,

x + y ≤ 1 for strategyS with probeA, is the function that
returns the expected score of strategyS againstJA(A, x, y)
for each possible(x, y). The double fingerprintFAB(S, x, y)
with 0 ≤ x, y ≤ 1 returns the expected score of strategyS
againstJA(A, x, y) if x + y ≤ 1 andJA(B, 1 − y, 1 − x) if



x + y ≥ 1. In this caseA is the lower probe andB is the
upper probe.

While the fingerprint function itself is often possible to find,
it is the graph or the approximation of the graph that is often
used in analysis. This is in part because a useful approximation
of the graph of the function can be computed in cases where
the analysis to find the actual function would be intractable.
The concept of the double fingerprint was introduced to extend
the fingerprint to the unit square in a natural fashion. A unit
square is preferable because it is more easily manipulated by a
computer, is more easily viewed by humans, and it uses paper
more efficiently.

To compute and understand fingerprints,Markov chains
are required; familiarity at the level given in [26] is assumed
in the remainder of this paper. A focused review of the theory
appears in [23].

Example Fingerprint Computation

The fingerprint of the strategy Pavlov, using tit-for-tat
as a probe, is computed as an example in this section. A
minimal finite state representation of Pavlov is shown in
Figure 3. To find a fingerprint, the first step is to construct
a Markov chain for the two strategies involved. In the case
of Ftit−for−tat(Pavlov, x, y), the set of ordered pairs

{(C1, D1),(C1, C1), (D2, D1), (D2, C1)}

forms the (accessible) state space. A letter denotes an action.
The numbers in a pair denote the internal (finite state machine)
states of strategies Pavlov and tit-for-tat, respectively. Readers
should verify for themselves that the given combinations of
internal states and actions cover all attainable possibilities.
Then, constructing the transition matrix,P , for the Markov
chain is just a matter of putting the transition probabilities
between the states in matrix form.

(C1, D1)
(C1, C1)
(D2, D1)
(D2, C1)

(C1, D1) (C1, C1) (D2, D1) (D2, C1)
0 0 y 1 − y
y 1 − y 0 0

1 − x x 0 0
0 0 1 − x x

Because this Markov chain consists of one finite commu-
nicating class, it has the stationary distributionπ (again see
[26]), and it can be found by solving the equations(P ′−I)π =
0 and

∑

π(i) = 1. We obtain:

π = (
y(1 − x)

2y(1 − x) + x(1 − x) + y(1 − y)
,

x(1 − x)

2y(1 − x) + x(1 − x) + y(1 − y)
,

y(1 − x)

2y(1 − x) + x(1 − x) + y(1 − y)
,

y(1 − y)

2y(1 − x) + x(1 − x) + y(1 − y)
).

With π in hand, computing the expected score can be
completed by taking a dot product ofπ with the appropriate
score vector(S, C, D, T )′ which gives corresponding scores
for ((C1, D1), (C1, C1), (D2, D1),(D2, C1)). This yields the
fingerprint function

Ftit−for−tat(Pavlov, x, y) =

Sy(x − 1) + Cx(x − 1) + Dy(x − 1)2 + Ty(y − 1)

2y(x − 1) + x(x − 1) + y(y − 1)

In the case of the iterated prisoner’s dilemma, we usually score
S = 0, C = 3, D = 1,andT = 5 so

Ftit−for−tat(Pavlov, x, y) =

3x(x − 1) + y(x − 1)2 + 5y(y − 1)

2y(x − 1) + x(x − 1) + y(y − 1)

A shaded plot of this function appears in Figure 5. The shading
is a tool that permits the rapid identification of the fingerprint
function in visualizations, as demonstrated in [7]. We note
that while the fingerprint as defined so far only exists for non-
negativex and y such thatx + y ≤ 1 that the function is
meaningful over the entirety of the unit square0 ≤ x, y ≤ 1.
This is Theorem 3 in the following section.

A. Characterization of Fingerprint Functions

The lemmas and theorems in this section are quite abstract
and may remind the reader of material from an advanced
calculus or introductory real analysis class. They are included
for two reasons. First of all, as we saw in computing the tit-for-
tat fingerprint of Pavlov, fingerprint computation is laborious.
In order to compute the fingerprint of a strategy implemented
as ann-state FSA with a probe implemented as anm-state
FSA, the inversion of a4nm× 4nm matrix whose entries are
bivariate polynomials is required. The theorems in this section
demonstrate that the fingerprints of strategies implemented as
finite state machines belong to the class of rational functions
without singularities or discontinuities in the interior of the
fingerprint. This means that a sampled approximation to fin-
gerprints, an algorithm for which is presented in Section II-B,
is practical and stable on any set of samples in the interior of
the fingerprint.

The second reason for presenting these results is the beauty
of the double fingerprint of a strategy and its dual, given
in Theorem 3. The noise variablesx and y that define the
continuum of strategies used to compute a fingerprint are only
well-defined in the triangle in whichx andy are both positive
and sum to at most one. The double fingerprint exploits a
fundamental similarity of the fingerprints of a strategy and
the transposed fingerprint of its dual to demonstrate that the
fingerprint function exists in the entire square0 ≤ x, y ≤ 1.
Unlike the rest of the fingerprint theory this beautiful result
is unique to games with two moves: the natural analog of
the double fingerprint for games with three moves, e.g. rock-
paper-scissors, does not exist.

The setF is the triangle{(x, y) : 0 ≤ x, y and0 ≤ x+y ≤
1}. We denote the interior of this triangle byF ′.



Theorem 1:A double fingerprint,FAB(S, x, y), is contin-
uous at a point if and only if the fingerprintsFA(S, x, y) and
FB(S, x, y) are continuous.

Proof: [6], Theorem 1.
Theorem 2:If S andA are strategies representable by finite

state machines, thenFA(S, x, y) is continuous overF ′.
Proof: [6], Theorem 2.

Corollary 1: If S andA are strategies representable by fi-
nite state machines, thenFA(S, x, y) is infinitely differentiable
over the interior of the unit square.

Proof: [6], Corollary 1.
Definition 3: StrategyA′ is said to be thedual of strategy

A if A andA′ can be written as finite state machines that are
identical except that their responses are reversed.

The strategies tit-for-tat and Psycho are examples of dual
strategies. Tit-for-tat repeats its opponent’s last choice. Psycho
plays the opposite of its opponent’s last choice. A strategycan
be its own dual. For example, the strategy Pavlov is a self-dual
strategy, as shown in Figure 4. Given the same input string, it
generates reversed responses if its initial action is reversed.

Pavlov
input CCDCDDDCDCD...

F irst action C response CCCDDCDCCDD...
F irst action D response DDDCCDCDDCC...

Fig. 4. An example of a self-dual strategy

Theorem 3:If A and A′ are dual strategies, then
FAA′ (S, x, y) is identical to the functionFA(S, x, y) extended
over the unit square.

Proof: [6], Theorem 3.
Corollary 2: If A and A′ are dual strategies, then

FAA′ (S, x, y) is infinitely differentiable over the interior of
the unit square.

Proof: [6], Corollary 2.
The dual fingerprint is the most beautiful result in [30].

The fact that the fingerprints obtained using a strategy and its
opposite as probes generate translated versions of the same
function is startling. That they can be fit together in a single
analytic function covering the unit square is unexpected and
yields an excellent visualization of fingerprints, an example of
which is shown in Figure 5.

Definition 4: A closed communicating class(CCC) in a
finite state machine is a set of states such that there is a set of
transitions from each state to each other in the class and no
transitions leaving the class.

Definition 5: We call states of a finite state machinetran-
sient unless they are members of a closed communicating
class.

Since the set of states accessible from a given state in a
finite state machine is, by definition, non-empty, it follows
that a finite state machine can always be decomposed into
its transient states and those that are members of some CCC.
The set of transient states may be empty in which case the
machine is composed of a single CCC. In [23] it is shown
that a prisoner’s dilemma strategy implemented as a finite

Fig. 5. A shaded plot ofFtit−for−tat(Pavlov, x, y) for prisoner’s
dilemma. Lighter colors represent higher scores with black=0 and white=5.
Shading is modified to show three important parts of the scorespace. The
high shaded band represents scores within a narrow range of the score for
mutual cooperation. The middle shaded band similarly represents the score
obtained by mutual random play. The low shaded band marks scores near
the score for mutual defection. The differential shading ofthis representation
provides for rapid visual identification of fingerprints.

state machine has a fingerprint that is a rational function if
the state transition diagram of the finite state machine has one
CCC. The following theorem demonstrates that the fingerprint
function of a strategy realized as a finite state machine is
always a rational function. States, within the data structure
for a given finite state machine, that are not accessible from
the initial state are not considered to be part of the machine
in the subsequent material.

Theorem 4:Suppose thatS is a strategy for the iterated
prisoner’s dilemma that is realized as a finite state machine
M . The Ftit−for−tat(S, x, y) is a rational function ofx and
y.

Proof: Example 1 can be used as a concrete example that
may help the reader in following this proof. It immediately
follows this theorem. Select tit-for-tat as the probe strategy.
Associate the symbolsF1, F2, . . . , Fn with the CCCs ofM .
The theorem is already true for machines with no transient
states, and so assume thatM possesses one or more transient
states. Note that in this case the initial state must be transient.
Construct a tree, called theF-tree for M whose root node
is the starting state ofM . The tree is binary. Nodes in the
tree are either (i) transient states ofM or (ii) symbols Fi.
The daughters of a nodeN are the transient states that are
the destination of a transition out ofN or symbolsFi if a
transition fromN is to a state within a CCC. SymbolsFi are
leaves of the tree and so have no daughter nodes – all internal
nodes of the tree are transient states ofM . A transient state
becomes a leaf if another instance of itself appears in a higher
level of the tree. The edges of the tree are annotated with the
probability that the transition associated with that edge will



occur when playing against Joss-Ann of the probe strategy.

For each internal nodeN with daughtersNa andNb write
the equation:

N = pNa + qNb (3)

where p is the transition probability fromN to Na, and q
is the transition probability fromN to Nb. The equations
form a set of ofk equations ink unknowns wherek is the
number of internal nodes in the F-tree. Each transient node
has an equation because all such nodes are accessible from
the initial state. These equations exist in the rational function
field over the rational numbers [21]. The left hand sides are
the internal nodes of the F-tree, once each, while the right
hand sides are either symbols connected with communicating
classes or internal nodes of the F-tree multiplied in eithercase
by monomials.

The F-tree can be used to compute the expected score that
M gets against the probe strategy, because it contains all
possible paths throughM together with the probabilities of
following them. The expected score starting at the root node
R of the tree is the same as the expected score forM , but it
is also the sum of the expected value at each of the daughters
of R multiplied by their corresponding transition probabilities.
A similar relationship holds for all internal nodes in the tree,
all the way to the leaves. If a leaf is a symbolFi, then the
expected score at that leaf is the score for the corresponding
CCC. If a leaf is a transient state, then a recursion arises that
yields the equations described above.

As a result, the solution forR to the system of equations
above gives the fingerprint for the strategy encoded byM if we
substitute the fingerprint functions for the strategies encoded
by the CCCs for the symbolsFi. It is important to know that
the fingerprint of a CCC does not depend on the starting state
within that class [23].

Since the system of equations is over the rational function
field, its solution, if it exists, is a rational function. Thesimple
form of the equations can be used to deduce that they do have
a solution. Since all terms of the right hand side are multiplied
by monomials, it follows that under substitution the degreeof
the resulting polynomial coefficient of a given symbol on the
right hand side is higher degree than its coefficient on the left
hand side. This means that we may eliminate a symbol from
the right hand side of the equation if it is the left hand side
of any equation without degeneracy and then solve the system
by simple elimination of variables. We note that the number
of equations and unknowns match, and so the system admits
a solution and a unique one.

We may conclude that the fingerprint of a prisoner’s
dilemma strategy using tit-for-tat as a probe is a rational
function in x andy.

Example 1:Assume that the probe strategy istit−for−tat
and consider the finite state machineM :

A B

F F1 2

C

C/C

D/D
D/DC/C

D/DC/C
D/D C/D

This machine has two transient states, A and B, and two
communicating classes,F1 that plays tit-for-tat andF2 that
plays always defect. The F-tree (defined in the proof of
Theorem 4) forM is:

A

1 BF

A F2

1−y

1−xx

y

The corresponding equations are:

A = (1 − y)F1 + yB (4)

and
B = xA + (1 − x)F2. (5)

Solving these equations forA we obtain

A =
(1 − y)F1 + y(1 − x)F2

1 − xy
. (6)

Following the proof of Theorem 4 we see:

Ftit−for−tat(M, x, y) =

(1 − y)Ftit−for−tat(tit − for − tat, x, y)

1 − xy
+

y(1 − x)Ftit−for−tat(AllD, x, y)

1 − xy

Theorem 5:For any strategyA for the prisoner’s dilemma:

(i) FAllC(A, x, y) = Ftit−for−tat(A, 1 − y, y),
(ii) FAllD(A, x, y) = Ftit−for−tat(A, x, 1 − x).

Proof: Notice that the expected score ofA against
JA(AllC, x, y) is the same as its score againstJA(tit−for−
tat, 1−y, y) because AllC always cooperates; in other words if
JA(AllC, x, y) does not defect because of probabilityy, then



it cooperates no matter what (with probability1−y). Similarly
the expected score ofA againstJA(AllD, x, y) is the same
as the expected score againstJA(tit − for − tat, x, 1 − x).
Substitution into the tit-for-tat fingerprints complete the proof.

Theorem 5 shows that the AllC and AllD fingerprints
contain a subset of the information contained in the tit-for-
tat fingerprint.

An Example of a Discontinuous Fingerprint

Fig. 6. The fingerprintFtit−for−tat(Majority, x, y), obtained by sam-
pling. The shading scheme is the same as that used in Figure 5.

An example of a strategy that cannot be implemented with
a finite state machine and which does not have a rational
function fingerprint is the Majority strategy. Since it must
keep track of the actual number of cooperations and defections
made by an opponent, it requires an unbounded number of
states. The fingerprintFtit−for−tat(Majority, x, y) has a
discontinuity at the point (0.5,0.5). A sampled representation
of this fingerprint is given in Figure 6. The formula for this
fingerprint and a proof that it is discontinuous are given
in [23], Section 2.1.4. The fingerprint is piecewise rational,
splitting the unit square into three regions, with continuity at
the boundariesexceptat the point(0.5, 0.5). This example
is included to demonstrate that the fingerprints of finite state
strategies are a proper subset of the set of fingerprint functions.
This has a consequence for use of the algorithm presented in
Section II-B: if a representation encodes strategies that cannot
be encoded as finite state machines, then the algorithm may
be unstable. The grainy character of the center of the picture
in Figure 6 results from the central discontinuity. Comparethe
quality of the images in Figures 6 and 5. Figure 5 shows a
strategy that can be implemented with a finite state machine
and, as a result, is far smoother.

B. An Algorithm for Approximating Fingerprints

The Markov chain calculations for computing the explicit
rational form of the fingerprint function for ann-state finite

state machines, using tit-for-tat as the probe, involves the
inversion of a4n×4n matrix whose entries are monomialsx,
y, 1 − x, 1 − y. As the number of states in a strategy grows,
the resulting computations become quite time consuming. Itis
possible to rapidly compute accurate values of the fingerprint
function for specific values ofx and y using the algorithm
described below.

If S is the set of states in a finite state machineM ,
then the set of states of the Markov chain used in finger-
print computation (the Markov state space forM ) is S ×
{CC, CD, DC, DD}, representing the actions ofJA(tit −
for− tat, x, y) andM at each state ofM . Depending on the
details ofM , not all of these states may be used (only half
the states were used in the example computation of Pavlov’s
fingerprint). For each state there are two transitions out toother
states with probabilitiesx and 1 − x or y and 1 − y. There
are two states in the Markov state space(i, IC) and (i, ID)
that have non-zero probability on the first move:i is the initial
state ofM , andI is the initial action ofM . For a given set
of noise parameters(x, y), the probability of(i, IC) is 1 − y
while the probability of(i, ID) is y – this follows from the
fact that the probe strategy, tit-for-tat, cooperates initially. This
assignment of positive probabilities to these two states alone
is the initial distribution of probabilities for the fingerprint
Markov chain. Note that each state has a score associated with
it for M depending on its second coordinateCC, CD, DC
or DD. The initial distribution places a probability of 1 on
the Markov state(s, CC) wheres is the starting state of the
finite state machine.

Algorithm 1: The Sand Pile Algorithm
Input: A FSM M with n states and appropriate real valuesx, y.
Output:∼ Ftit−for−tat(M, x, y).
Details:
Construct the Markov state space forM .
Create probability variables for each state.
Load the initial distribution
Repeat 50n times

Update the probability variables for each stateS
The new probability of a variable associated withS
is the sum over variables associated with states
that transition toS of the current probability of
those variables times the probability of transition toS

End Repeat
Sum over the state space((Probability of state)*(score forstate))
Return(Sum)

What the sandpile algorithm does is to treat probability
like sand. It places the initial probability distribution as two
piles of sand on the two states that initially have positive
measure. It then moves the sand (probability) among the states
according to their transition probabilities. The amount ofsand
at each state converges rapidly to the asymptotic probabilities
for the chain, if they exist. Once these asymptotic probabilities
have been computed, the expected score is obtained by adding
up the contribution from each state: its probability times the
appropriate score. The number50n as the iteration bound



was chosen experimentally as yielding eight decimal places
of accuracy on a set of known machines with up to five states.

It is important to note that the asymptotic probabilities
need not exist. If the Markov chain isperiodic[26] then the
algorithm can return absurd values. The strategy Periodic CD
is one that gives rise to a periodic Markov chain. It is possible
to patch the sandpile algorithm to give the correct result as
follows. At the point at which the algorithm normally sums the
contribution of each state, instead run the algorithm for a large
number of additional updatings of the probability variables
(1000 in this study) computing the average of the summed
contributions over these 1000 steps.

Strategies with periodic Markov chains are very rare (com-
putations not shown), but do arise. For this reason, the vari-
ation of the sandpile algorithm that can deal with periodic
strategies was used for all approximations in this study. The
correctness of the variation of the algorithm was tested on aset
of strategies, derived from the periodic strategies described in
Section II-C, for which exact fingerprints were computed and
compared with the algorithmically approximated fingerprints.

When comparing evolved strategies using fingerprints, a set
of 25 values sampled at points(x, y):

{(

i

6
,
j

6

)

: 1 ≤ i, j ≤ 5

}

,

an equally spaced grid in the interior of the fingerprint, is used.
These sampled fingerprints are treated as points in Euclidean
25-space. The standard distance onR

25 induces a distance
measure on prisoner’s dilemma strategies via these sampled
fingerprints.

C. Exact Fingerprints

A catalog of known fingerprints using tit-for-tat as the
probe, as well as some examples using TF2T or TF3T as the
probe, appears in Table II. Recall that Theorem 5 permits us
to extract those fingerprints that use AllD and AllC as probes
by simple substitution. A number of interesting things can
be learned from the table. First of all, notice that tit-for-tat
and ripoff have the same fingerprint. This highlights the fact
that the fingerprint detects only asymptotic behavior. Against
any opponent that ever defects against it, ripoff plays tit-for-
tat. Against AllC or TF2T, however, it manages an unan-
swered defection every other move. Ripoff was discovered
in an experiment in which a population of evolving finite
state machines was spiked with immortal TF2T; it optimally
exploits them. Because any defection against ripoff yieldstit-
for-tat play, the noise inJA(A, x, y) causes its play to be
asymptotically identical to that of tit-for-tat. The strategies can
be distinguished by using sampled fingerprints with a finite
number of plays (the authors thank Wendy Ashlock for the
suggestion) but this is a topic for the future.

Another unexpected identity is the equal fingerprints of
PerCDDC (A strategy that plays CDDC CDDC CDDC ...) and
Random when tit-for-tat or TF2T are used as probes. Unlike
ripoff and tit-for-tat, these strategies are not even of thesame
type. PerCDDC is a finite state strategy while random is not.

This example motivated the inclusion of fingerprints that use
TF2T and TF3T as probes. The two strategies Random and
PerCDDC have the same fingerprints when tit-for-tat or tit-for-
two-tats are used as probes, and they have distinct fingerprints
when TF3T is used as a probe. While the AllC and AllD
fingerprints do not change, when the probe changes from tit-
for-tat to TF2T, the fingerprints of tit-for-tat and Pavlov do
change becoming far more complicated.

In the remainder of this section the fingerprints of an infinite
family of periodic strategies are derived.

Definition 6: A periodic strategyis one that makes a re-
peating sequence of moves taken from the set{C,D}.

The simplest such strategies are AllD and AllC. A periodic
strategy is denoted asPerx0x1...xk−1 wherexi ∈ {C, D}.
AllD is thus PerD while AllC is PerC. The period of a
strategyPerx01x1...xk−1 is k. A periodic strategy isreduced
if it is not equivalent to any periodic strategy with a shorter
period.PerDD, for example is not reduced whilePerCCD
is.

Theorem 6:The tit-for-tat fingerprint of a periodic strategy
Perx1x1...xk is

Ftit−for−tat(x, y) =

NCC(3(1 − y)) + NCD(5(1 − y) + y)

k
+

NDC3x + NDD(5x + (1 − x))

k

=
(3 − 3y)NCC + (5 − 4y)NCD

k
+

3xNDC + (4x + 1)NDD

k

where NCC is the number of adjacent cooperates in the
circularized periodic string of plays andNCD, NDC andNDD

are the similar number of adjacent CD, DC, and DD’s in the
circularized periodic string of plays respectively.

Proof: The only states in the Markov chain underlying
the fingerprint of the periodic strategy are of the formCxi

and Dxi. Perform index arithmetic(mod k). The Markov
transitions out ofCxi and Dxi each go to both ofCxi+1

and Dxi+1. There are two possibilities. Ifxi is C, then the
probability of transition from either ofCxi andDxi to Cxi+1

is 1−y, and the probability of transition from either ofCxi and
Dxi to Dxi+1 is y. Likewise, if xi is D, then the probability
of transition from either ofCxi andDxi to Cxi+1 is x, and
the probability of transition from either ofCxi and Dxi to
Dxi+1 is 1−x. From this we deduce that: ifxi is C, then the
Markov equations associated with statesCxi+1 and Dxi+1

are:

Cxi+1 = (1 − y)(Cxi + Dxi)

Dxi+1 = y(Cxi + Dxi),



Tit-for-tat fingerprints

F (tit − for − tat, x, y) = y2+5xy+3x2

(x+y)2
F (AllD, x, y) = 4x + 1

F (Fort3, x, y) = 3x+7y−6x2−3xy−5y2+2x3+x2y+5xy2

x+4y−2x2−5xy−y2+x3+2x2y+xy2 F (AllC, x, y) = 3 − 3y

F (Pun1, x, y) = 3x+5y−4y2

x+2y
F (TF2T, x, y) = 3x2y+5xy−3xy+3x+y2

x2y+2xy2+x+y3

F (Pav, x, y) = (3x+y)(x−1)+5y(y−1)
(x+2y)(x−1)+y(y−1)

F (Ttit − for − tat, x, y) = 3x2+5x2y+4xy+xy2+y

x3+2x2y+xy2+y

F (Rand, x, y) = 9+7x−7y

2
F (Psy, x, y) = 4(y−1)(x−1)+5(y−1)2

2(x−1)(y−1)+(x−1)2+(y−1)2

F (PerCDDC) = 9+7x−7y

2
F (PerCD) = 5+3x−4y

2

F (Rip, x, y) = y2+5xy+3x2

(x+y)2
F (Thmpr, x, y) = 12xy+3x2+2y−4xy2−4x2y

x2+xy+2y

Tit-for-two-tat fingerprints

F (tit − for − tat, x, y) = (3(1−x+y)(x+x2y+xy2−2xy)+5xy+y2(x+y))
(y3+2xy2+x2y+x)

F (AllD, x, y) = 4x + 1

F (Pav, x, y) = (3(1−y)(1−x)(x+y)+5y(1−y)(2−y−x)+y(1−x))
y3+2xy2+−4y2+x2y−5xy+5y−x2+x

F (AllC, x, y) = 3 − 3y

F (Rand, x, y) = 6+2x−5y

2
F (PerCDDC) = 6+2x−5y

2

Tit-for-three-tat fingerprints

F (Rand, x, y) = 8−7y

2
F (PerCDDC) = 7+4x−6y

8

TABLE II

A TABLE OF KNOWN, EXACT FINGERPRINTS. THE FINGERPRINTS ARE GROUPED BY THE PROBE STRATEGIES USED, PERMITTING THE OMISSION OF THE

PROBE STRATEGIES AS SUBSCRIPTS.

while if xi = D, then

Cxi+1 = x(Cxi + Dxi)

Dxi+1 = (1 − x)(Cxi + Dxi).

No matter what the value ofxi, adding either of the pairs
of equations above yields

Cxi + Dxi = Cxi+1 + Dxi+1

from which we may deduce that, for alli, Cxi + Dxi = 1

k
.

If xi is C, then

Cxi+1 =
1 − y

y
Dxi+1,

while if xi is D, then

Cxi+1 =
x

1 − x
Dxi+1.

In the former case we obtain

Cxi+1 =
1 − y

k
and

Dxi+1 =
y

k
,

while in the latter case we obtain

Cxi+1 =
x

k
and

Dxi+1 =
1 − x

k
.



Consider the circularized string of periodic plays. The above
probabilities permit us to compute the payoff at each state
of the Markov chain. For each CC in the string we obtain a
score ofC with probability 1−y

k
andS with probability y

k
. For

each CD we obtain a score ofT with probability 1−y
k

andD
with probability y

k
. For each DC we obtain a score ofC with

probability x
k

andS with probability 1−x
k

. Each DD yields a
score ofT with probability x

k
and D with probability 1−x

k
.

Adding these up we obtain

Ftit−for−tat(x, y) =

NCC(C(1 − y) + Sy)

k
+

NCD(T (1 − y) + Dy)

k
+

NDC(Cx + S(1 − x))

k
+

NDD(Tx + D(1 − x))

k
.

Putting in the usual numerical values we obtain:

Ftit−for−tat(x, y) =

NCC(3(1 − y)) + NCD(5(1 − y) + y)

k
+

NDC3x + NDD(5x + (1 − x))

k

=
(3 − 3y)NCC + (5 − 4y)NCD

k
+

3xNDC + (4x + 1)NDD

k
.

In fingerprinting the periodic strategies we obtain an infinite
number of fingerprints. It is interesting to note that they are
all linear functions and in fact are linear combinations of three
linear functions:3−3y, 4x+1, and5+3x−4y. The first two
of these are associates with the CC and DD’s in the periodic
strategy and are, respectively, the tit-for-tat fingerprints of
always cooperate and always defect. The third is the sum
of the functions associated with CD and DC. A moment’s
thought will convince the reader that these always occur in
the same numbers – any C before a D is at the beginning of a
run of D’s that must end in a C and vice versa. The periodic
strategies thus have the simplest possible fingerprints. Itis also
interesting to note that many different periodic strategies have
the same fingerprint when tit-for-tat is used as the probe. More
complex probe strategies are required to distinguish periodic
strategies.

III. E XPERIMENTAL DESIGN

Three representations, finite state machines, lookup tables,
and feed forward neural nets, are compared using finger-
printing. For each representation 400 evolutionary runs are
performed. The resulting strategies are then compared using
fingerprints to see if the representations sample the strategy
space in a different manner. Two of the representations, lookup
tables and feed forward neural nets, have their parameters
(number of inputs) chosen so as to encode identical spaces
of strategies. The number of states used in the finite state
machines is set to the minimal value that causes the set of
strategies encoded by the finite state machines to include that
encoded by the other two representations. The lookup tables
are indexed by the opponent’s last three actions, the neural
nets receive these as inputs, while the finite state machines
receive the opponent’s last action as an input. Since finite state
machines are state conditioned, they can “remember” previous
actions.

The evolutionary algorithms used in this study operate on a
population of 36 agents. Agent quality is assessed by a round-
robin tournament in which each pair of players engage in
150 rounds of the iterated prisoner’s dilemma. Reproduction is
elitist with an elite of the 24 highest scoring strategies. When
constructing the elite, ties are broken uniformly at random.
Twelve pairs of parents are picked by fitness-proportional
selection with replacement on the elite. Parents are copied,
and the copies are subjected to variation of the sort defined
subsequently for the representation in question. Variation
consists of the representation-specific crossover and thenthe
representation-specific point mutation operator, appliedonce.
All the representations permit access to information about
three past actions of the opponent. Actions before the start
of play are assumed to have been cooperation.

In each simulation, the evolutionary algorithm was run for
250 generations. The elite portion of the final generation
was saved for fingerprint analysis. This yields 400 sets of
24 machines or a total of 9600 evolved prisoner’s dilemma
agents per representation. Many of the parameters used in this
study are either selected in imitation of previous studies or
are essentially arbitrarily. A careful parameter-variation study
would require millions of collections of evolutionary runs
because of combinatorial explosion of the parameter space.
The current study represents a small slice of this diverse space
of possible experiments. We now carefully describe the three
representations used together with their variation operators.

Finite State Machines

The finite state machines used in this study are 8-state Mealy
machines. State transitions are driven by the opponent’s last
action. Access to state information permits the machine to
condition its play on several of its opponent’s previous moves.
The machines are stored as linear chromosomes; the first state
in the chromosome is the initial state. The binary variation
operator used is two-point crossover. Crossover preserves
whole states. The point mutation operator changes a single
state transition 40% of the time, the initial state 5% of the time,



the initial action 5% of the time, or an action associated with
a transition 50% of the time. A mutation replaces the current
value with a valid value for the state transition or action is
selected selected uniformly at random.

Lookup Tables

The lookup tables used in this study have a chromosome
consisting of a table of eight actions indexed by the eight
possible ways the opponent’s last three moves could have
been made. These are calleddepth-3 lookup tables. The
representation is a string of eight bits, diagrammed in Figure
7.

Opponent’s
Previous Moves Response

CCC C
CCD D
CDC D
CDD C
DCC D
DCD C
DDC C
DDD D

Fig. 7. A lookup table of the sort used in this study. The opponent’s last three
actions serve as an index. The representation for lookup tables is the string
whose characters are the column of responses, in this case CDDCDCCD.

The evolutionary algorithm uses two-point crossover on the
string of eight responses and a mutation operator that picks
one action in a random position and changes it.

Artificial Neural Nets

t3

t2

t1

Fig. 8. A feed forward neural net with four 0-1 threshold neurons. The
opponent’s last three actions are used as inputs. A hidden layer with three
neurons is used to drive a single output neuron.

The type of artificial neural nets (ANNs) used in this study
are described in [18]. They have a hidden layer of 3 neurons
and a single output neuron. All neurons are 0-1 threshold
neurons. The topology of the nets is shown in Figure 8.
The chromosome for this representation consists of the 12
connection weights: nine for the connections of the three input
neurons to the hidden layer and three for the connections of the
hidden layer to the output neuron. Neural connection weights
were initialized in the range−1 ≤ c ≤ 1.

To create a chromosome, the weights are placed into a
linear array. The first nine entries are the input-to-hidden
layer connections in groups of three associated with a given
hidden neuron. The three remaining values are at the end of

the chromosome and represent the connection of the hidden
layer to the output neuron. The binary variation operator for
this representation is two-point crossover. The point mutation
operator adds a number selected uniformly at random in the
range−0.1 ≤ x ≤ 0.1 to a connection weight also selected
uniformly at random.

IV. RESULTS AND CONCLUSIONS

The comparison of the evolved neural nets, lookup tables,
and finite state machines are facilitated by the following
theorem. This theorem is proved constructively in [23].

Theorem 7:Lookup tables and feed-forward neural nets
that depend on the same numbern of moves by the opponent
encode the same strategy space which is itself a subset of the
strategy space of finite state machines with2n states.

A corollary of this theorem is that the strategies realized by
depth-3 lookup tables and the feed forward neural nets in this
study are all finite state machines with a single communicating
class and no transient states. This has a nice implication:
fingerprint identification of these strategies, unlike somefinite
state strategies such as ripoff and tit-for-tat, is clean without
obfuscation by transient states.

In order to compare the evolved populations, the 256 pos-
sible depth-3 lookup tables were enumerated. These represent
the entire search space for the lookup tables and the neural
nets. These lookup tables and all the evolved agents that
were not finite state machines were converted into 8-state
finite state machines using the construction given in [23].
The 25-point fingerprint, using tit-for-tat as the probe, was
computed for each of these machines using the sandpile
algorithm. Evolved strategies were classified according tothe
match between their fingerprint and the depth-3 lookup table
fingerprints. For lookup tables and neural nets there was
always an exact match. Finite state machines that did not
have one of the 256 fingerprints associated with a depth-
3 lookup table were classified according to which depth-3
lookup table fingerprint was closest to them using Euclidean
distance. Table III summarizes these, showing those lookup
tables which appeared at least 50 times for at least one of the
representations.

If we call the strategies in Table III thecommonstrategies
for this experiment, then all common strategies for neural nets
were able to answer cooperation with defection at some point.
All common strategies coded as lookup tables never answered
cooperation with defection – their defection is always in
response to the opponent’s defection. This type of strategyis
called anicestrategy[13]. This is not to say the nice/non-nice
division between lookup tables and neural nets is absolute,
but only strategies that were not common in any of the three
representations crossed this divide. This result places a much
sharper point on the result found in [9] which found that
lookup tables were more cooperative than artificial neural nets.
The reason for this remains obscure. On a high level the
reason must be rooted in the differences between the detailsof
the two representations because they encode identical strategy
spaces. Work in progress suggests that the key fact is that the



Index LKT ANN FSM Name
0 0 21 78 AllC
13 508 0 8
15 1702 0 3284 tit-for-tat
25 61 0 35
27 55 0 1
28 117 0 3
43 329 4 2
47 470 0 13
59 101 0 0
61 279 0 0
69 128 0 10
73 63 0 0
77 1834 0 0
89 140 0 0
92 84 0 0
93 1623 0 1
107 424 0 0
117 96 0 1
121 183 0 0
123 538 0 3
128 0 1071 0
136 0 887 0
151 0 215 0
159 0 162 0
185 0 351 0
200 0 369 0
232 0 555 0
247 0 3486 0
249 0 253 0
255 0 2069 441 AllD

Remaining FSM: 5575

TABLE III

A TABULATION , RELATIVE TO THE STRATEGY SPACE OF DEPTH-3 LOOKUP

TABLES, OF THE STRATEGIES THAT WERE COMMON FOR AT LEAST ONE OF

THE REPRESENTATIONS. ONLY STRATEGIES WITH AT LEAST 50

REPRESENTATIVES FOR ONE OF THE REPRESENTATIONS APPEAR IN THE

TABLE . INDEX NUMBERS ARE ARBITRARY, SAVE THAT THOSE BELOW128

DO NOT DEFECT ON THE ROUND AFTER THE OPPONENT COOPERATES AND

THOSE WITH INDEX AT LEAST 128CAN DO THIS.

probability of generating a tit-for-tat player randomly ismuch
higher for lookup tables than neural nets, at least as they are
represented here. A tit-for-tat player responds only to thelast
action of its opponent and it is much easier, in the current
encoding, for lookup tables to ignore all but the last action
than for neural nets to do so. Noticing this division into nice
and non-nice strategies was a side effect of fingerprinting the
strategies, though if it were the only goal it could have been
done in a simpler manner.

Recall that the construction of finite state machines from
lookup tables given in [23] yields the following fact: strategies
coded as lookup tables consist, when transformed into finite
state machines, of a single communicating class with no
transient states. As noted before, this means that fingerprint
identification of lookup table encoded strategies is unambigu-
ous, but this fact has evolutionary implications as well. In
[29], [10] it was found that finite state machines use transient
states as a means of identifying “kin”; a type of tag or marker.
The majority,5575/9600 = 58.3% of the evolved finite state

machines were not strategies that could be coded as depth-3
lookup tables. An informal survey found that many of these
used transient states. This ability to identify kin with transient
states makes evolutionary options available in the finite state
encoding that are not there for lookup tables and the neural
nets used in this study.

The simple strategies AllC, AllD, and tit-for-tat were all
common for some representation. Tit-for-tat was the most
common strategy among the evolved finite state machines and
second most common among the evolved lookup tables and
was absent in the evolved neural nets. The strategy AllD, on
the other hand, was well-represented among the evolved finite
state strategies and neural nets but was absent in the evolved
lookup tables.

Periodic strategies, other than AllC and AllD, were rare in
the evolved finite state populations. This is probably because it
is easy for an opponent to learn when a periodic strategy will
defect or cooperate and exploit it optimally. The lookup table
and neural net strategies cannot implement periodic strategies
other than AllC and AllD. This argument would seem to
indicate that AllC should not be common for any of the
representations since it is the most exploitable and most easily
learned strategy. Its appearance can be explained by noticing
that it is a single mutation away from tit-for-tat in the finite
state representation and can coexist indefinitely with tit-for-
tat. The lookup table encoding for tit-for-tat isCDCDCDCD,
four mutations from AllC, providing additional evidence that
the presence of AllC in the other two representations is leakage
from tit-for-tat. There are no AllC players in the lookup table
populations because it is both exploitableand mutationally
distant from common strategies.

For furthur analysis of the fingerprints of these evolved
strategies, see [11].

V. FUTURE DIRECTIONS

Two pairs of strategies that were substantially different but
had identical fingerprints were located: tit-for-tat and ripoff;
random and PerCDDC. This suggests that a higher resolution
form of fingerprint is required. Three strategies for creating
improved fingerprints have been worked out. The first is to
extend the fingerprint with information of the same type but
based on a finite number of plays rather than on asymptotic
behavior (finite time horizon fingerprinting). The second isto
include the score of the strategy being fingerprinted against
a small list of simple strategies (augmented fingerprints).The
third is to use asymptotic fingerprints for more than one probe
strategy (multi-probe fingerprints).

All of these approaches have strengths and weaknesses.
Finite time horizon fingerprints require that a number of
sampling steps be chosen – and the “good” number of
samples depends on the complexity of the strategies being
fingerprinted. It is also slow. The augmented fingerprint is fast,
cheap, and distinguishes tit-for-tat and ripoff but still suffers
from an inability to distinguish some strategies. Any indi-
vidual case of confused strategies can be resolved by adding
another strategy to the augmenting scores, but this degrades



the automaticity of the process. Multiple probe strategiesare
computationally costly but, thus far, appear to resolve identity
confusion in a more satisfactory manner than the other two
approaches. Recall that TF3T, as a probe, separates random
and PerCDDC. This example implies two conjectures. The
first, that some probe separates random from any finite state
strategy, is obvious. The second conjecture does not have an
immediate proof: any pair of strategies with a finite state
implementation have a probe that separates them unless they
have identical sets of communicating classes.

When prisoner’s dilemma is used to model real-world
situations the introduction of noise into the fitness function
is a common feature. The strategy ripoff gains its advantage
by living in a noise-free world; in the presence of noise it
is unlikely to arise. This, in turn, suggests that when noiseis
introduced to any representation, the set of strategies that arise
have a different distribution. Pavlov, for example, is an error
correcting strategy[1] that deals well with noise but whichis
also exploitable in a noise-free environment. Fingerprinting
is an excellent tool for such an assessment. In the past,
simpler metrics such as the number of states used in a finite
state representation or level of cooperation have been used
[25] to document the impact of noise on the evolution of
prisoner’s dilemma strategies. Fingerprinting provides far more
information about which strategies arise with and without
noise. The presence of noise in the fitness function during
evolution would also make the fingerprint a much cleaner tool
for categorizing strategies. With noise present, strategies are
more likely to reach their asymptotic behaviors during fitness
evaluation, increasing the match between fingerprint and actual
agent character.

An obvious application of fingerprints is to test more repre-
sentations. This paper is intended primarily to introduce and
discuss the fingerprinting tool (fingerprinting code, for finite
state machines, is available from the first author on request).
The three representations chosen in this study are intendedfor
demonstration; the full set of representations in [9], [5] are a
natural target. Fingerprinting the two representations that are
not subsets of the finite state strategy space (ISAc lists [1]and
Markov chains) will require a good deal of additional code.

Another application is to use fingerprinting to document the
impact of changes in the details of the evolutionary algorithm
within a single representation. The model of evolution, popu-
lation size, variation operators and other algorithm details are
potential targets. There are a large number of different ways
to evolve game playing agents – fingerprinting can be used to
explore their impact and classify these evolutionary algorithms
into families that produce similar sets of agents.

While the theory of fingerprinting was developed in the
context of prisoner’s dilemma, the authors are already applying
it to the graduate school game[1] and rock-paper-scissors.
Preliminary analysis demonstrates that evolved populations
of agents for the graduate school game, which reverses the
inequality 2C ≥ S + T , are more diverse than prisoner’s
dilemma populations. On reflection this is not surprising;
many prisoner’s dilemma populations are dominated by a

single strategy while the graduate school game must have two
strategies to obtain the maximum score. Since reproductionis
occurring with full mixing, it follows that the two types must
interbreed and still produce two types. A diversity of more
than two types is one of the outcomes observed. In a sense, the
graduate school game’s second inequalityencouragesunstable
genetics.

Fingerprinting generalizes immediately to anyk-move si-
multaneous two-player game. The preliminary results from the
graduate school game above suggest that an interesting project,
made possible by fingerprinting, is to classify games by their
impact on evolutionary dynamics.

VI. A CKNOWLEDGMENTS

The first author thanks David Fogel for many helpful con-
versations on the iterated prisoner’s dilemma and would also
like to thank the University of Guelph and the National Science
and Engineering Research Council of Canada for supporting
this work. The second author thanks the National Institute For
Mathematical Sciences for its support of this research.

REFERENCES

[1] D. Ashlock. Evolutionary Computation for Opimization and Modeling.
Springer, New York, 2006.

[2] D. Ashlock. Training function stacks to play iterated prisoner’s dilemma.
In Proceedings of the 2006 IEEE Symposium on Computational Intelli-
gence in Games, pages 111–118, 2006.

[3] D. Ashlock. Cooperation in prisoner’s dilemma on graphs. In Pro-
ceedings of the 2005 IEEE Symposium on Computational Intelligence
in Games, pages 48–55, 2007.

[4] D. Ashlock, W. Ashlock, and G. Umphry. An exploration of differential
utility in iterated prisoner’s dilemma. InProceedings of the 2005
IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, pages 271–278, 2006.

[5] D. Ashlock and E. Y. Kim. The impact of cellular representation on
finite state agents for prisoner’s dilemma. InProceedings of the 2005
Genetic and Evolutionary Computation Conference, pages 59–66, New
York, 2005. ACM Press.

[6] D. Ashlock, E. Y. Kim, and W. K. vonRoeschlaub. Fingerprints:
Enabling visualization and automatic analysis of strategies for two
player games. InProceedings of the 2004 Congress on Evolutionary
Computation, volume 1, pages 381–387, Piscataway NJ, 2004. IEEE
Press.

[7] D. Ashlock and E.Y. Kim. Techniques for analysis of evolved prisoner’s
dilemma strategies with fingerprints. InProceedings of the 2005
Congress on Evolutionary Computation, volume 3, pages 2613–2620,
Piscataway, NJ, 2005. IEEE Press.

[8] D. Ashlock, E.Y. Kim, and L. Guo. Multi-clustering: avoiding the natural
shape of underlying metrics. In C. H. Dagli et al., editor,Smart Engi-
neering System Design: Neural Networks, Evolutionary Programming,
and Artificial Life, volume 15, pages 453–461. ASME Press, 2005.

[9] D. Ashlock, E.Y. Kim, and N. Leahy. Understanding representational
sensitivity in the iterated prisoner’s dilemma with fingerprints. IEEE
Transactions on Systems, Man, and Cybernetics–Part C: Applications
and Reviews, 36(4):464–475, 2006.

[10] D. Ashlock, M. D. Smucker, E. A. Stanley, and L. Tesfatsion. Prefer-
ential partner selection in an evolutionary study of prisoner’s dilemma.
Biosystems, 37:99–125, 1996.

[11] W. Ashlock. Why some representations are more cooperative than others
for prisoner’s dilemma. In2007 IEEE Symposium on the Foundations
of Computational Intelligence, pages 314–321, Piscataway, NJ, 2007.
IEEE Press.

[12] W. Ashlock and D. Ashlock. Changes in prisoner’s dilemma strategies
over evolutionary time with different population sizes. InProceedings
of the 2006 Congress On Evolutionary Computation, pages 1001–1008,
Piscataway, NJ, 2006. IEEE press.



[13] R. Axelrod. The Evolution of Cooperation. Basic Books, New York,
1984.

[14] R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science,
211:1390–1396, 1981.

[15] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone.Genetic
Programming : An Introduction. Morgan Kaufmann, San Francisco,
1998.

[16] S. Y. Chong and X. Yao. Behavioral diversity, choices and noise in
the iterated prisoner’s dilemma.IEEE Transaction on Evolutionary
Computation, 9:540–551, 2005.

[17] N. Franken and A. P. Engelbrecht. Particle swarm optimization ap-
proaches to coevolve strategies for the iterated prisoner’s dilemma.IEEE
Transaction on Evolutionary Computation, 9:562–579, 2005.

[18] S. Haykin. Neural Nets, a Comprehensive Foundation. Macmillan
College Publishing, New York, 1994.

[19] M. Hemesath. Cooperate or defect? Russian and Americanstudents in a
prisoner’s dilemma.Comparative Economics Studies, 176:83–93, 1994.

[20] J. M. Houston, J. Kinnie, B. Lupo, C. Terry, and S. S. Ho. Com-
petitiveness and conflict behavior in simulation of a socialdilemma.
Psychological Reports, 86:1219–1225, 2000.

[21] T. W. Hungerford.Albegra. Springer-Verlag, New York, 1974.
[22] H. Ishibuchi and N. Namikawa. Evolution of iterated prisoner’s dilemma

game strategies in structured demes under random pairing ingame
playing. IEEE Transaction on Evolutionary Computation, 9:540–551,
2005.

[23] E. Y. Kim. Analysis of Game Playing Agents with Fingerprints. PhD
thesis, Iowa State University, 2005.

[24] J. F. Miller and S. L. Smith. Redundancy and computational efficiency
in cartesian genetic programming.IEEE Transaction on Evolutionary
Computation, 10(2):167–174, 2006.

[25] J. H. Miller. The coevolution of automata in the repeated prisoner’s
dilemma. Journal of Economic Behavior and Organization, 29(1):87–
112, January 1996.

[26] S. I. Resnick.Adventures in Stochastic Processes. Birkhauser, Boston,
1992.

[27] D. Roy. Learning and the theory of games.Journal of Theoretical
Biology, 204:409–414, 2000.

[28] K. Sigmund and M. A. Nowak. Evolutionary game theory.Current
Biology, 9(14):R503–505, 1999.

[29] E. A. Stanley, D. Ashlock, and L. Tesfatsion. Iterated prisoner’s dilemma
with choice and refusal. In Christopher Langton, editor,Artificial Life III ,
volume 17 ofSanta Fe Institute Studies in the Sciences of Complexity,
pages 131–176, Reading, 1994. Addison-Wesley.

[30] W. K. vonRoeschlaub. Automated analysis of evolved strategies in
iterated prisoner’s dilemma. Master’s thesis, Iowa State University, 1994.


