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Abstract— Fingerprinting is a technique for generating a
representation-independent functional signature for a gene play-

ing agent. Fingerprints can be used to compare agents across

representations in an automatic fashion. The theory of finge
prints is developed for software agents that play the iteratd
prisoner’'s dilemma. Examples of the technique for computig
fingerprints are given. The paper summarizes past results ath
introduces the following new results. Fingerprints of prisoner's
dilemma strategies that are represented as finite state mauates
must be rational functions. An example of a strategy that dos
not have a finite state representation and which does not hava
rational fingerprint function is given: the majority strate gy. It is
shown that the AlID- and AllC-based fingerprints can be derived
from the tit-for-tat fingerprint by a simple substitution. F inger-
prints for four new probe strategies are introduced, generézing
previous work in which tit-for-tat is the sole probe strategy. A
trial comparison is made of evolved prisoner’s dilemma stréegies
across three representations: finite state machines, feedrfvard
neural nets, and lookup tables. Fingerprinting demonstraes that
all three representations sample the strategy space in a rachlly
different manner, even though the neural net’'s and lookup téle’s
parameters are alternate encodings of the same strategy spa
This space of strategies is also a subset of those encoded
the finite state representation. Shortcomings of the fingemnt
technique are outlined, with illustrative examples, and pssible
paths to overcome these shortcomings are given.

|I. INTRODUCTION

Evolutionary game theory can use an evolutionary algorithm
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dilemma and applied to three representations: finite state
machines, lookup tables, and artificial neural nets. Therthe

of fingerprints is developed to the point of supporting a dapi
sampling-based algorithm for approximating fingerpriftsis
permits the rapid identification, sorting, and classifimati

of game playing agents. While this study deals only with
prisoner’s dilemma, the technique extends to any simuttase
two-player game with a finite number of moves. Software for
working with fingerprints is available from the first authar o
request.

The prisoner’s dilemma [14], [13] is a classic model in
game theory. Two agents each decide, without communication
whether to cooperate (C) or defect (D). The agents receive
individual payoffs depending on the actions taken. The ffayo
used in this study are shown in Figure 1. The payoff for
mutual cooperatior” is the cooperationpayoff. The payoff
for mutual defectionD is the defection payoff. The two
asymmetric action payoffsS and 7', are the sucker and
b)t/emptationpayoffs. In order for a two player simultaneous

game to be considered the prisoner’s dilemma, it must be the
case that

S<D<C<T (1)

and

20 > (S+T). )

to generate a vast number of different game playing agents in

a short time. It is typically impractical to figure owthich

The first inequality simply puts the payoffs in their intudi

game playing agents were evolved for a number of reasofsder. The second insists that alternating cooperation and

Many representations for evolvable game playing agers,

edefection in a pair of players (taking turns stabbing onelagro

neural nets or finite state automata, are capable of progucif the back) pay off no better on average than does mutual
thousands of different encodings of the same strategy. gaoperation.
addition, evolved game playing agents are often cryptic and

complex. The effort required for direct analysis of evolved ‘
structures varies from the time-consuming to the imprattic

Itis possible to create one-to-one representations thwtdena

small number of possible strategies, both solving the bl
of understanding the evolved agents and depriving evalutio

of much of its scope to produce interesting strategies.

This study presentdingerprinting a representation-and-
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Fig. 1. (1)The payoff matrix for prisoner's dilemma used hststudy —
scores are earned by strate§ybased on its actions and those of its opponent

encoding independent method of identifying game playing (2) A payoff matrix of the general two player gameCsT, S, and D are
agents. The method is developed for the iterated prisonescsres given for the game as well.



In the iterated prisoner’'s dilemmgIPD) the agents play two versions of feed forward neural nets (one biased at the
many rounds of the prisoner’s dilemma. IPD is widely usedeuron level toward cooperation), Boolean parse trees, [15]
to model emergent cooperative behaviors in populations with and without a one-step time delay operation, a linear
selfishly acting agents and is often used to model systemsgenetic programming representation called an ISAc list [1]
biology [28], sociology [20], psychology [27], and econasi lookup tables, a type of Markov chain [26], and both a direct
[19]. Many different sorts of evolutionary computationtms and cellular [5] representation of finite state machinese Th
have been used to evolve agents to play the iterated prisonehange of representation, with other factors held as near to
dilemma. In [17] particle swarm optimization is used to coeonstant as possible, yielded a change from 0% to 95% in
evolve agents. Threaded finite state machines that perthié probability that final populations were cooperativeings
multiple action threads based on the agent’s internal state fingerprints to examine the sets of strategies that arise gut
used in [4]. A form of Cartesian genetic programming, callefiher point on these distinctions.
function stacks, are used to encode agents in [2]. Pergittin The remainder of the study is structured as follows. In
prisoner’s dilemma agents to evolve within a spatial fraimdw Section Il the theory of fingerprints is summarized and new
[22], [3] has an impact on both the chance that cooperatiogsults are presented with proofs given in an appendix. The
will arise and on which strategies evolve. Other version alesign of experiments performed are given in Section IlI.
the prisoner's dilemma are also studies with evolutionaResults and conclusions are presented in Section V. Ressib
computation. In [16] the authors implement multiple leveltuture directions for both the improvement of fingerprigtin
of cooperation and defection and include noise. techniques and applications are given in Section V.

This study gathers together and extends the underlying
theory of fingerprints for game-playing agents and applies
fingerprints to a study of the types of prisoner's dilemma This section develops the theory of fingerprints. Results
strategies that arise under evolution for different repnes proved elsewhere have their proofs cited, new results have
tations. Finite state machines, feed-forward neural rests, their proofs presented in an appendix. We start with a bisef |
lookup tables are found to sample the space of strategiesofnknown strategies in Table I. All of these strategies, pxce
very different ways. random and majority, can be realized as finite state machines

Fingerprints are developed in detail in a pair of theses,[304n example of a finite state machine of the kind used in this
[23]. A portion of the theory of fingerprints and an initial-ap study, a Mealy machine, is given in Figure 2.
plication to the visualization of evolved agents appear$jn

Il. THEORETICAL RESULTS

Additional applications as well as a marriage of fingergrint Ripoff

with a new technique calledhulti-clusteringappear in [7]. Initial response:D
Multiclustering, a technique for clustering that avoidsfacts Initial state:1

induced by choice of distance measure, is defined and explore State| If D If C

in [8]. The theory of fingerprinting is both summarized and 1 C=3]C=2

extended in this study. Among the new results presented are a 2 C=3| D=1
substantial extension of the number of known fingerprints, a 3 D=3 C =3
generalization of fingerprints to more probe strategien tita

for-tat, and a proof that the fingerprint of a finite state niaeh Fig. 2. A finite state implementation of the strategjpoft

is always a rational function (previously they were known to
be power series). An algorithm for accurately approxintin  The play of two finite state machines in the presence of
the fingerprints of finite state machines too large for theoise can be represented asMarkov processThis allows
computation of exact fingerprints is also given. the determination of an expected (average) score for any pai
Fingerprinting was used in [12], with a finite state represf strategies by standard techniques in stochastic presess
sentation, to demonstrate that the strategies that arige hg26]. We will use game playing agents with strategies that in
different distributions for different population sizesdain corporate parameterized noise to fingerprint other ag@ihis.
different epochs. The latter result, that strategies rasbeent strategy used to evaluate other agents is callegiblee strat-
at the beginning of evolution become common after thousaretgy. The fingerprints have independent variables that kesttab
of generations of evolution, was surprising. In [9] fingéns the character of the noise and return a dependent variable
were used to demonstrate that the rate of appearancethaft is the expected score of the agent being fingerprinted
several well-known strategies varied between a directefiniagainst the probe strategy. Noise represents probabilitie
state representation for prisoner’s dilemma playing agemt cooperating or defecting in spite of the move the probeegsat
cellular representation for finite state agents, and a n@& tywould normally have made. The fingerprint will thus be a map
of representation called function stacka modified form of from probabilities,(z,y), of “irrational” (non-probe strategy)
Cartesian Genetic Programming [24]. cooperation and defection, respectively, to a valék,the
The study in [9], continued in [5], investigates the effeatxpected score against the noisy agent.
of changing the representation used for a prisoner’s dilamm Definition 1: If A is a strategy for playing the iterated
agent. The representations covered by the two studies prisoner’s dilemma, thew A(A, z,y) (Joss-Ann ofA) is a



TABLE |
EXAMPLES OF PRISONERS DILEMMA STRATEGIES. C

D/D

Always CooperatdAllC) This strategy always play€’.
Always Defec{AlD) This strategy always play®. C/C

Fortress-3Fort3) This strategy is an example of a strategy that usessa-p

word. If the opponent defects twice in a row (the password) evoperates

thereafter, then Fortress-3 will cooperate. Any deviafimm this sequence Tit-for-tat
resets the need to defect twice. A minimal finite state impletation of

Fortress-3 is shown in Figure 3. Fortress-3 was first definefl2] and is

an example of a strategy that only arises after substantidlition has taken D

place.

Majority (Maj) This strategy returns a play equal to the majority of it
opponent’s plays, breaking ties in favor of cooperationjdviey has no finite
state representation. c/D

Pavlo(Pav) The strategy, Pavlov, plays as its initial action and cooperates
thereafter if its action and its opponent’s actions matdaetitime. A minimal D/D
finite state implementation of Pavlov is shown in Figure 3.

Periodic CD(PerCD) This strategy cooperates and defects on alternatean C/D D/D
no matter what its opponent does.

PsychdPsy) The strategy, Psycho, choogesas its initial action and then
plays the opposite of its opponent’s last action. c/C

Random(Rand) The Random strategy simply flips a fair coin to decide h D/C
to play. Random has no finite state representation.
Fortress-3

Ripoff(Rip) This strategy alternates cooperation and defectitii its oppo-
nent defects for the first time. On the round after this dédactit cooperates
and then plays tit-for-tat thereafter.

C

Thumper(Thmpr) This strategy cooperates initially. If its oppohelefects,

then it defects on the next two moves; if its opponent’'s sdcomve after

defection is cooperate, it continues cooperating; otremiti defects twice as
before. A minimal finite state implementation of Thumperli®wn in Figure

3.

Tit-for-tat (TFT) The strategy, tit-for-tat, plays C as its initial astiand then
repeats the other player’s last action.

D/D

Tit-for-two-tats (TF2T) This strategy defects only if its opponent has defect C /D
on the last two moves. Thumper

Tit-for-three-tats (TF3T) This strategy defects only if its opponent has de-
fected on the last three moves.

Two-tits-for-tat (TTFT) This strategy defects on the two moves after its C
opponent defects, otherwise it cooperates.

D/D
strategy which has a probability of choosing the move”, D/C

a probabilityy of choosing the moveé, and otherwise uses
the response appropriate to the strategy Pavlov

If S is the space of Strategies for p|ay|ng the iterated pngl.g 3.. M_inimal finite state implementations of the prisdsedilemma
oner’s dilemma, then the Joss-Anne modification of strfrﬁegis”""teg'es Tit-for-tat, Fortress-3, Thumper, and Paviov.
can be viewed as a functiodA : S x F' — S where
F={(z,y)|z,y € R,0 < z+y < 1} that yields a continuum ) ]
of strategies. The notatiofi4 comes from the initials for Joss INtérnal state. It does this even when an action generated at
and Ann. Joss was a player submitted to Axelrod’s famotf@ndom is used instead of its own action. Nesting the Joss-An
computer tournament for the iterated prisoner’s dilemnpa. onstruction yields no new strategies.
would occasionally defect without provocation in hopes of Lemma 1:The strategy JA(JA(A, z1,y2),22,y2) IS
a slight improvement in score. Ann is the first name of AgquivalenttoJA(A, zo+(1—z2—y2)x1, y2+(1—22—y2)y1)-
Stanley who suggested the addition of random cooperation Proof: [6], Lemma 1 n
[29], [10] instead of random defection. Whent- y = 1, the Definition 2: A fingerprint F4(S,z,y) with 0 < z,y <1,
strategy.A is not used, and the resulting behavior is a random+ y < 1 for strategyS with probe A, is the function that
strategy with play probabilitiese, y). In more general terms, returns the expected score of strateé§yagainstJA(A, x,y)
a JA strategy is an alteration of a strategy, that causes for each possibléx,y). The double fingerprinf'45(S, z,y)
the strategy to be played with random noise inserted into thdéth 0 < z,y < 1 returns the expected score of strategy
responses. When playing, the stratedyalso updates its own against/A(A, z,y) if x +y <1 and JA(B,1 —y,1 — ) if



x +y > 1. In this caseA is the lower probe and B is the With 7 in hand, computing the expected score can be
upper probe. completed by taking a dot product af with the appropriate
While the fingerprint function itself is often possible todin score vecton(S,C, D,T)" which gives corresponding scores
it is the graph or the approximation of the graph that is oftdor ((C1, D1), (C1,C1), (D2, D1),(D2,C1)). This yields the
used in analysis. This is in part because a useful approddmatfingerprint function
of the graph of the function can be computed in cases where
the analysis to find the actual function would be intractable
The concept of the double fingerprint was introduced to ekten ~ Sy(x — 1) + Cx(x — 1) + Dy(z — 1)? + Ty(y — 1)
the fingerprint to the unit square in a natural fashion. A unit 2z —1)+az—1)+yly—1)

square is preferable because it is more easily manipulated b

computer, is more easily viewed by humans, and it uses pagéﬂhg cgsE gfg(iltleratszpﬂs;ners dilemma, we usuatlyesc
more efficiently. =0,0=3,D=lanal =5 so0

Ftitfforftat(Pavlovv Zz, ?J) =

To compute an_d_ u_nderstand fingerprinmarkov_chains Fiit— for—tat(Pavlov, z,y) =
are required; familiarity at the level given in [26] is asson )
in the remainder of this paper. A focused review of the theory 3r(e — 1) +y(e —1)" +5y(y — 1)
appears in [23]. 2y(z — D +a(@-1)+yly—1)

A shaded plot of this function appears in Figure 5. The stiadin

The f . t th Payl , it f is a tool that permits the rapid identification of the fingénpr
e fingerprint of the ‘strategy Paviov, using ttlor-tag, ,qtqn jn visualizations, as demonstrated in [7]. We note

as a probe, is computed as an example in this sect|0n.m°ét while the fingerprint as defined so far only exists for-non

Example Fingerprint Computation

minimal finite state representation of Pavlov is shown 'Hegativex and y such thatz + y < 1 that the function is

Figure 3. To find a fingerprint, the first step is to constru%ealningful over the entirety of the unit squares z,y < 1.
a Markov chain for the two strategies involved. In the caseryis is Theorem 3 in the following section =Y =

of Fiit— for—tat(Pavlov, z,y), the set of ordered pairs

] _ The lemmas and theorems in this section are quite abstract
forms the (accessible) state space. A letter denotes amacthnq may remind the reader of material from an advanced

The numbers in a pair denote the internal (finite state maghin.a|culus or introductory real analysis class. They areLited
states of strategies Pavlov and tit-for-tat, respectiv@baders o, two reasons. First of all, as we saw in computing thedit-f
should verify for themselves that the given combinations ef; fingerprint of Pavlov, fingerprint computation is lakmrs.
internal states and actions cover all attainable poss#sli |, order to compute the fingerprint of a strategy implemented
Then, constructing the transition matrik,, for the Markov 55 ang-state FSA with a probe implemented as ranstate
chain is just a matter of putting the transition probal@ti Fsa, the inversion of anm x 4nm matrix whose entries are

A. Characterization of Fingerprint Functions

between the states in matrix form. bivariate polynomials is required. The theorems in thigieac
(C1,D1) (C1,C1) (D2,D1) (D2,C1) demonstrate that the fingerprints of strategies implentease
Eg%gi)) 0 1 E g 1 6 Y finite state machines belong to the class of rational funstio
(D27,D1) 13:8 N Y 0 0 without singularities or discontinuities in the interiof the
(D2,C1) 0 0 1— 2 x fingerprint. This means that a sampled approximation to fin-

g_erprints, an algorithm for which is presented in SectieB,ll
IS practical and stable on any set of samples in the intefior o
the fingerprint.

The second reason for presenting these results is the beauty
of the double fingerprint of a strategy and its dual, given
— y(1 — ) in Theorem 3. The noise variablasand y that define the

29(1—2) +x(l —2) +y(1 —y)’ continuum of strategies used to compute a fingerprint arg onl
well-defined in the triangle in which andy are both positive
and sum to at most one. The double fingerprint exploits a

Because this Markov chain consists of one finite comm
nicating class, it has the stationary distributipn(again see
[26]), and it can be found by solving the equatid#®— 1) =
0 and_7(i) = 1. We obtain:

(1 —z) ) fundamental similarity of the fingerprints of a strategy and
2y(1 —2) +2(l —2) +y(1 —y) the transposed fingerprint of its dual to demonstrate that th
fingerprint function exists in the entire squdre< z,y < 1.
y(1—2) Unlike the rest of the fingerprint theory this beautiful riésu

is unique to games with two moves: the natural analog of
the double fingerprint for games with three moves, e.g. rock-
paper-scissors, does not exist.

y(1—vy) ) The setF is the triangle{(z,y) : 0 < z,y and0 < z+y <
2y(1 —z) +x(1 —z) +y(1—y)” 1}. We denote the interior of this triangle %'

2y(1 —z) +2(l —2) +y(1—y)’




Theorem 1:A double fingerprint,F 45(S, z,y), is contin-
uous at a point if and only if the fingerprinfs, (S, z, y) and
Fi(S,z,y) are continuous.

Proof: [6], Theorem 1. ]

Theorem 2:If S and. A are strategies representable by finite
state machines, theR4(S, z,y) is continuous overr’.

Proof: [6], Theorem 2. ]

Corollary 1: If S and A are strategies representable by fi-
nite state machines, thdfy (S, z, y) is infinitely differentiable
over the interior of the unit square.

Proof: [6], Corollary 1. ]

Definition 3: Strategy.4’ is said to be thelual of strategy
A if A andA’ can be written as finite state machines that are
identical except that their responses are reversed.

The strategies tit-for-tat and Psycho are examples of dual
strategies. Tit-for-tat repeats its opponent’s last aldrsycho
plays the opposite of its opponent’s last choice. A stratsgy
be its own dual. For_exa_mple, the _strategy Pavloy is as<—:zif-duF 0. 5. A shaded plot ofFi, (Pavlov,z.y) for prisoner's
strategy, as shown in Figure 4. Given the same input Smngdﬁémrﬁa. Lighter colors represga{ﬁéﬁé?tscores V\;itr{ Zét@cknd white=5.

generates reversed responses if its initial action is s@eer  Shading is modified to show three important parts of the sepee. The
high shaded band represents scores within a narrow rangeeafcore for

Pavlov mutual cooperation. The middle shaded band similarly sspres the score
. obtained by mutual random play. The low shaded band markesatear
Input CcCDCDDDCDCD... the score for mutual defection. The differential shadinghis representation
First action C response CCCDDCDCCDD... provides for rapid visual identification of fingerprints.

First action D response DDDCCDCDDCC...
Fig. 4. An example of a self-dual strategy
state machine has a fingerprint that is a rational function if
Theorem 3:If A and A are dual strategies, thenthe state transition diagram of the finite state machine has o
Fau (S, z,y) is identical to the functiod 4 (S, z, y) extended CCC. The following theorem demonstrates that the fingetprin
over the unit square. function of a strategy realized as a finite state machine is
Proof: [6], Theorem 3. m always a rational function. States, within the data stmectu
Corollary 2: If A and A’ are dual strategies, thenfor a given finite state machine, that are not accessible from
Fau (S, x,y) is infinitely differentiable over the interior of the initial state are not considered to be part of the machine
the unit square. in the subsequent material.
Proof: [6], Corollary 2. ] Theorem 4:Suppose thatS is a strategy for the iterated
The dual fingerprint is the most beautiful result in [30]prisoner’s dilemma that is realized as a finite state machine
The fact that the fingerprints obtained using a strategy tnd M. The Fy;;_ror—ia:(S, 2, y) is a rational function ofc and
opposite as probes generate translated versions of the same
function is startling. That they can be fit together in a sngl Proof: Example 1 can be used as a concrete example that
analytic function covering the unit square is unexpected amay help the reader in following this proof. It immediately
yields an excellent visualization of fingerprints, an extargd  follows this theorem. Select tit-for-tat as the probe siyst
which is shown in Figure 5. Associate the symbols}, Fs, ..., F,, with the CCCs ofM.
Definition 4: A closed communicating clagCCC) in a The theorem is already true for machines with no transient
finite state machine is a set of states such that there is d se$tates, and so assume thidt possesses one or more transient
transitions from each state to each other in the class andstates. Note that in this case the initial state must beigans
transitions leaving the class. Construct a tree, called thie-tree for M whose root node
Definition 5: We call states of a finite state machittan- is the starting state of/. The tree is binary. Nodes in the
sient unless they are members of a closed communicatitrge are either (i) transient states df or (i) symbols F;.
class. The daughters of a nod® are the transient states that are
Since the set of states accessible from a given state inha destination of a transition out df or symbolsF; if a
finite state machine is, by definition, non-empty, it followsransition fromxN is to a state within a CCC. Symbol§ are
that a finite state machine can always be decomposed ifgaves of the tree and so have no daughter nodes — all internal
its transient states and those that are members of some C@@les of the tree are transient states\of A transient state
The set of transient states may be empty in which case thecomes a leaf if another instance of itself appears in aghigh
machine is composed of a single CCC. In [23] it is showlevel of the tree. The edges of the tree are annotated with the
that a prisoner’s dilemma strategy implemented as a finpeobability that the transition associated with that edgk w



occur when playing against Joss-Ann of the probe strategy. l C
For each internal nod& with daughtersvV, and N, write

the equation: G @

N = pNa + Ny €) c/C D/ID

where p is the transition probability fromV to N,, and ¢

is the transition probability fromV to N,. The equations

form a set of ofk equations ink unknowns where: is the

number of internal nodes in the F-tree. Each transient node C/IC D/D

has an equation because all such nodes are accessible from D/D C/D

the initial state. These equations exist in the rationatfiom This machine has two transient states, A and B, and two
field over the rational numbers [21]. The left hand sides ac@mmunicating classed;; that plays tit-for-tat andr, that

the internal nodes of the F-tree, once each, while the righlays always defect. The F-tree (defined in the proof of
hand sides are either symbols connected with communicatifigeorem 4) forM is:

classes or internal nodes of the F-tree multiplied in eitizse
by monomials.

The F-tree can be used to compute the expected score that
M gets against the probe strategy, because it contains all
possible paths through/ together with the probabilities of
following them. The expected score starting at the root node
R of the tree is the same as the expected scoréd/foibut it
is also the sum of the expected value at each of the daughters
of R multiplied by their corresponding transition probabdgi
A similar relationship holds for all internal nodes in thedr
all the way to the leaves. If a leaf is a symhig], then the
expected score at that leaf is the score for the correspgndin
CCC. If a leaf is a transient state, then a recursion arisas th
yields the equations described above.

As a result, the solution foR to the system of equations A=(1-yF +yB 4)
above gives the fingerprint for the strategy encodedbif we and
substitute the fingerprint functions for the strategiesoelec B=aA+(1—2)F ®)
by the CCCs for the symbolE;. It is important to know that z s
the fingerprint of a CCC does not depend on the starting st®86lving these equations fot we obtain
within that class [23].

Since the system of equations is over the rational function
field, its solution, if it exists, is a rational function. Tkenple
form of the equations can be used to deduce that they do hav&ollowing the proof of Theorem 4 we see:
a solution. Since all terms of the right hand side are mutipl

A — (I—y)F1 +y(1 —x)Fp
1—ay ’

(6)

by monomials, it follows that under substitution the degrée Frit—for—tat(M,,y) =

the resulting polynomial coefficient of a given symbol on the

right hand side is higher degree than its coefficient on tfie le (1 = Y) Frit— for—tat(tit — for — tat, z,vy)
hand side. This means that we may eliminate a symbol from 11—y +
the right hand side of the equation if it is the left hand side

of any equation without degeneracy and then solve the system Y(1 — @) Frit— for—tat (AllD, z,y)

by simple elimination of variables. We note that the number 1—zy

of equations and unknowns match, and so the system admit

- . Yheorem 5:For any strategy for the prisoner’s dilemma:
a solution and a unique one.

. . . , (I) FAllC(Aa €T, y) = Ftitfforftat(A; 1 -y, y)a
_We may conclude_ tha_t the fingerprint of a prisonersiiy r,, (A, z,y) = Frit—for—tat(A, 2,1 — ).
dilemma strategy using tit-for-tat as a probe is a rational” pyoof: Notice that the expected score of against
function inz andy. B JA(AIC,z,y) is the same as its score agaitist(tit— for—
Example 1:Assume that the probe strategyis— for—tat tat,1—y,y) because AlIC always cooperates; in other words if
and consider the finite state maching& JA(AIIC, z,y) does not defect because of probabiljtythen



it cooperates no matter what (with probability- ). Similarly ~state machines, using tit-for-tat as the probe, involves th

the expected score ol againstJA(AllD,x,y) is the same inversion of adn x 4n matrix whose entries are monomials

as the expected score agaiosd(tit — for — tat,x,1 — z). y, 1 —x, 1 —y. As the number of states in a strategy grows,

Substitution into the tit-for-tat fingerprints completeetproof. the resulting computations become quite time consuming. It

B possible to rapidly compute accurate values of the fingetpri

Theorem 5 shows that the AIIC and AIlID fingerprintfunction for specific values of andy using the algorithm

contain a subset of the information contained in the tit-fodescribed below.

tat fingerprint. If S is the set of states in a finite state maching,

An Example of a Discontinuous Fingerprint tht_en the set o_f states of the Markov chain usec_j in finger-

print computation (the Markov state space fbf) is S x

{CC,CD,DC, DD}, representing the actions ofA(tit —

for —tat,z,y) and M at each state of/. Depending on the

details of M, not all of these states may be used (only half

the states were used in the example computation of Pavlov’s

fingerprint). For each state there are two transitions oather

states with probabilites and1 — « or y and1 — y. There

are two states in the Markov state spd¢e/C') and (i, ID)

that have non-zero probability on the first movés the initial

state of M, and [ is the initial action of M. For a given set

of noise parameter&e, y), the probability of(i, IC) is 1 —y

while the probability of(i, ID) is y — this follows from the

fact that the probe strategy, tit-for-tat, cooperatesatyt This

assignment of positive probabilities to these two statesel

is the initial distribution of probabilities for the fingerprint

Markov chain. Note that each state has a score associated wit

it for M depending on its second coordinate’, CD, DC

or DD. The initial distribution places a probability of 1 on

the Markov statgs, CC') wheres is the starting state of the

Fig. 6. The fingerprintFy;;_ fo, —tat(Majority, z,y), obtained by sam- finite state machine.

pling. The shading scheme is the same as that used in Figure 5. Algorithm 1: The Sand Pile Algorithm

pput: A FSM M with n states and appropriate real valueg.

An example of a strategy that cannot be implemented Wi{
a finite state machine and which does not have a ratioratPut:~ Fit—for—tar (M, 2, y).
function fingerprint is the Majority strategy. Since it musPeta'IS:
keep track of the actual number of cooperations and defm.’;tiocOnStrUCt the I.\/!arkov. state space ff.
made by an opponent, it requires an unbounded numberq{]eate pr?“??b"'t}’ V"_"”a,b'es for each state.
states. The fingerprinfi;;— ror—tat(Majority, z,y) has a Load the |n|'F|aI distribution
discontinuity at the point (0.5,0.5). A sampled represgora Repeat 5@ times . .
of this fingerprint is given in Figure 6. The formula for this Update the probab|_I|Fy var|able§ for each ;té‘te
fingerprint and a proof that it is discontinuous are given The new probablllty_ of a varlablc_e assoc_|ated with
in [23], Section 2.1.4. The fingerprint is piecewise ratipna is the sum over variables associated W'_th states
splitting the unit square into three regions, with continwt that transiltlon toS of the current PYObab'“ty O_f,
the boundariegxceptat the point(0.5,0.5). This example those variables times the probability of transitionSo

is included to demonstrate that the fingerprints of finiteteﬁtaEnd Repeat

strategies are a proper subset of the set of fingerprintifumst Sum over the state space((Probability of state)*(scorestate))
This has a consequence for use of the algorithm presentetﬁﬁtum(sum)

Section II-B: if a representation encodes strategies thamnaot
p d >\/\/hat the sandpile algorithm does is to treat probability

be encoded as finite state machines, then the algorithm mif( d It ol he initial bability distributi
be unstable. The grainy character of the center of the pﬂ'ctd e sand. It places the Initial probability distributiors &vo

in Figure 6 results from the central discontinuity. Compiue piles of sand on the two states that initially have positive

quality of the images in Figures 6 and 5. Figure 5 showsaeasure. It then moves the sand (probability) among thesstat

strategy that can be implemented with a finite state machiigcording to their transition probablhtles. The anjounsghd. .
and. as a result. is far smoother. at each state converges rapidly to the asymptotic proliabili

for the chain, if they exist. Once these asymptotic prolitésl
B. An Algorithm for Approximating Fingerprints have been computed, the expected score is obtained by adding
The Markov chain calculations for computing the explicitip the contribution from each state: its probability timbe t
rational form of the fingerprint function for an-state finite appropriate score. The numb&6én as the iteration bound



was chosen experimentally as yielding eight decimal plac&his example motivated the inclusion of fingerprints that us
of accuracy on a set of known machines with up to five statée-2T and TF3T as probes. The two strategies Random and
It is important to note that the asymptotic probabilitie®erCDDC have the same fingerprints when tit-for-tat ordit-f
need not exist. If the Markov chain eriodid26] then the two-tats are used as probes, and they have distinct fingéspri
algorithm can return absurd values. The strategy PerioBic @vhen TF3T is used as a probe. While the AIIC and AlID
is one that gives rise to a periodic Markov chain. It is pdssibfingerprints do not change, when the probe changes from tit-
to patch the sandpile algorithm to give the correct result &r-tat to TF2T, the fingerprints of tit-for-tat and Paviow d
follows. At the point at which the algorithm normally sum&th change becoming far more complicated.
contribution of each state, instead run the algorithm fargd In the remainder of this section the fingerprints of an indinit
number of additional updatings of the probability variablefamily of periodic strategies are derived.
(1000 in this study) computing the average of the summedDefinition 6: A periodic strategyis one that makes a re-
contributions over these 1000 steps. peating sequence of moves taken from the{&&D}.
Strategies with periodic Markov chains are very rare (com- The simplest such strategies are AllD and AlIC. A periodic
putations not shown), but do arise. For this reason, the vastrategy is denoted aBerzox;...x;_; Wherez; € {C,D}.
ation of the sandpile algorithm that can deal with periodialD is thus PerD while AlIC is PerC. The period of a
strategies was used for all approximations in this stude TRtrategyPerzox;...x;_1 is k. A periodic strategy iseduced
correctness of the variation of the algorithm was tested @&t a if it is not equivalent to any periodic strategy with a shorte
of strategies, derived from the periodic strategies deedrin period. Per DD, for example is not reduced whilBerC'C D
Section 1I-C, for which exact fingerprints were computed arjd.
compared with the algorithmically approximated fingerfin  Theorem 6:The tit-for-tat fingerprint of a periodic strategy
When comparing evolved strategies using fingerprints, a $8t;, ...z, is
of 25 values sampled at points, y):

i Ftit—for—tat(xay) =
== :1<4,5<5;,
{(6 6> J } Ncc(3(17y))+NCD(5(1*y)+y)

an equally spaced grid in the interior of the fingerprint,sed. k
These sampled fingerprints are treated as points in Eudlidea N N )
25-space. The standard distance B# induces a distance pc3z + Npp(5z + (1 — ))
measure on prisoner’s dilemma strategies via these sampled k
fingerprints. _ (3 — 3y)Nee + (5 — 4y)Nep .
C. Exact Fingerprints k

A catalog of known fingerprints l_Jsing tit-for-tat as the 3¢Npc + (42 + 1)Npp
probe, as well as some examples using TF2T or TF3T as the L

probe, appears in Table Il. Recall that Theorem 5 permits us , ) .
to extract those fingerprints that use AlID and AlIC as probd¢here Nec is the number of adjacent cooperates in the
by simple substitution. A number of interesting things cafircularized periodic string of plays amdcp, Npc andNpp
be learned from the table. First of all, notice that tit-fat- 2'€ the similar number of adjacent CD, DC, and DD's in the
and ripoff have the same fingerprint. This highlights thet fagircularized periodic string of plays respectively. _
that the fingerprint detects only asymptotic behavior. Agai Proof: The only states in the Markov chain underlying
any opponent that ever defects against it, ripoff playsotit- the fingerprint of the periodic strategy are of the fofi;
tat. Against AlIC or TF2T, however, it manages an unar@Nd Dz;. Perform index arithmetidinod k). The Markov
swered defection every other move. Ripoff was discoverd@nsitions out ofCz; and Du; each go to both ofz;4,
in an experiment in which a population of evolving finite?nd Dzi+1. There are two possibilities. If; is C, then the
state machines was spiked with immortal TF2T; it optimalliprobability of transition from either of’z; and D; 10 C;41
exploits them. Because any defection against ripoff yi¢ids IS 1—y, and the probability of transition from either 6%z; and
for-tat play, the noise iNJA(A,z,y) causes its play to be Dxi 10 Dxit1 is y. Likewise, if z; is D, then the probability
asymptotically identical to that of tit-for-tat. The stegfes can ©Of transition from either ofz; and D,; to C'z;+ is @, and
be distinguished by using sampled fingerprints with a fini{@€ Probability of transition from either of'z; and D,; to
number of plays (the authors thank Wendy Ashlock for th&%i+1 IS 1—x. From this we deduce that: if; is C, then the
suggestion) but this is a topic for the future. Markov equations associated with stat€s;;, and Dz,
Another unexpected identity is the equal fingerprints &€
PerCDDC (A strategy that plays CDDC CDDC CDDC ...) and
Random when tit-for-tat or TF2T are used as probes. Unlike Cripr = (1-y)(Cri+ Dx;)
ripoff and tit-for-tat, these strategies are not even ofgshme Dziy1 = y(Cxi+ D),
type. PerCDDC is a finite state strategy while random is not.



Tit-for-tat fingerprints

F(tit — for — tat,z,y) = % F(AlD,z,y) =4z +1

_ 3x+Ty—6x2—3xy—5y>+ 223 +a?y+5xy> _
F(Fort3,z,y) = PR By e Ty F(AIC, z,y) = 3 — 3y

F(Punl, z,y) = 25 F(TF2T,x,y) = Satefutint
F(Pav,z,y) = G F(Ttit — for — tat, v, y) = 2ty
F(Rand, z,y) = 5" F(Psy,z,y) = gDty 1)
F(PerCDDC) = #53-1 F(PerC'D) = 2=y

F(Rip, x,y) = S5 F(Thmpr,a,y) = Butde v tn ey

Tit-for-two-tat fingerprints

F(tit — for — tat,x,y) = (3(1_”9)(xtzjzﬁ;;j;;jgﬂgxﬁf(xﬂ/)) F(AlD,z,y) =4z +1

F(Pav, z,y) = SOy -netn Sviu)Cyo) (o) F(AIC, z,y) = 3 — 3y

F(Rand,z,y) = == F(PerCDDC) = 8+2=5

Tit-for-three-tat fingerprints

F(Rand,z,y) = 35  F(PerCDDC) = 7=

TABLE Il
A TABLE OF KNOWN, EXACT FINGERPRINTS THE FINGERPRINTS ARE GROUPED BY THE PROBE STRATEGIES USEPERMITTING THE OMISSION OF THE
PROBE STRATEGIES AS SUBSCRIPTS

while if z¢ = D, then while if z; is D, then
X
Cripn = x2(Cxi + Dxy) Crip1 = ED%‘H-
Dziyy = (1—x)(Cri + Da;). In the former case we obtain
1—
C$i+1 = Ty
No matter what the value of;, adding either of the pairs and
of equations above yields Y
Dxitq = P

Ci+ Dri = Cigy + Dria while in the latter case we obtain

from which we may deduce that, for all Cz; + Dxz; = 1. Cyir = z
If z; is C, then ¢ k
and
-y 1—a
Cl’i_,_l = TD,TH_l, D.I}H_l = % .



Consider the circularized string of periodic plays. Theabo I1l. EXPERIMENTAL DESIGN

probabilities permit us to compute the payoff at each stateTpree representations, finite state machines, lookupsable
of the Markov chain. For each CC in the string we obtain 8nq feed forward neural nets, are compared using finger-
score ofC with probability 7# and S with probability #. For - printing. For each representation 400 evolutionary rures ar
each CD we obtain a score 8fwith probability 7 and D performed. The resulting strategies are then compared; usin
with probability ;. For each DC we obtain a score 6fwith  fingerprints to see if the representations sample the grate
probability  and S with probability +7:2. Each DD yields a space in a different manner. Two of the representationkpipo
score of 7" with probability £ and D with probability 17%.  tahles and feed forward neural nets, have their parameters
Adding these up we obtain (number of inputs) chosen so as to encode identical spaces
of strategies. The number of states used in the finite state
machines is set to the minimal value that causes the set of
strategies encoded by the finite state machines to incluate th
encoded by the other two representations. The lookup tables
+ are indexed by the opponent’s last three actions, the neural

Fiit— for—tat (fC, y) =

Noc(C(1 —y) + Sy)

k nets receive these as inputs, while the finite state machines
receive the opponent’s last action as an input. Since fitate s
Nep(T(1 —y) + Dy) + machines are state conditioned, they can “remember” pusvio
k actions.

The evolutionary algorithms used in this study operate on a

Npe(Cr + 51 —)) ,
k

NDD(T.T + D(l — x))
2 .

population of 36 agents. Agent quality is assessed by a round
robin tournament in which each pair of players engage in
150 rounds of the iterated prisoner’s dilemma. Reprodadtio
elitist with an elite of the 24 highest scoring strategiehe
constructing the elite, ties are broken uniformly at random

Twelve pairs of parents are picked by fithess-proportional
selection with replacement on the elite. Parents are copied
Frit— for—tat(z,y) = and the copies are subjected to variation of the sort defined
subsequently for the representation in question. Vanatio
Nce(3(1 —y)) + Nop(5(1 —y) +y) consists of the representation-specific crossover and ttieen
k + representation-specific point mutation operator, appliede.
- All the representations permit access to information about
Npc3xz + Npp(bz + (1 — z)) three past actions of the opponent. Actions before the start
k of play are assumed to have been cooperation.
In each simulation, the evolutionary algorithm was run for
_ (3 —3y)Nec + (5_4?/)NCD+ 250 generations. The elite portion of the final generation
k was saved for fingerprint analysis. This yields 400 sets of
3xNpe + (42 + 1)Npp 24 machines or a totql of 9600 evolved prisoner’s dilgmma
A . agents per r_epresentatlon. _Ma_m)_/ of_ the paramt_aters uset_!;ln th
study are either selected in imitation of previous studies o
B are essentially arbitrarily. A careful parameter-vadatstudy
In fingerprinting the periodic strategies we obtain an inéini would require millions of collections of evolutionary runs
number of fingerprints. It is interesting to note that theg alhecause of combinatorial explosion of the parameter space.
all linear functions and in fact are linear combinations of éhrerhe current study represents a small slice of this diveraeesp
linear functions3 —3y, 4z 41, and5 + 3z —4y. The first two  of possible experiments. We now carefully describe theethre

of these are associates with the CC and DD's in the periogigyresentations used together with their variation opesat
strategy and are, respectively, the tit-for-tat fingersriof

always cooperate and always defect. The third is the sufite State Machines

of the functions associated with CD and DC. A moment’s The finite state machines used in this study are 8-state Mealy
thought will convince the reader that these always occur inachines. State transitions are driven by the opponerstts la
the same numbers — any C before a D is at the beginning ofction. Access to state information permits the machine to
run of D’s that must end in a C and vice versa. The periodaondition its play on several of its opponent’s previous gV
strategies thus have the simplest possible fingerprinitsalso The machines are stored as linear chromosomes; the first stat
interesting to note that many different periodic stratediave in the chromosome is the initial state. The binary variation
the same fingerprint when tit-for-tat is used as the probeeMaoperator used is two-point crossover. Crossover preserves
complex probe strategies are required to distinguish gdi&rio whole states. The point mutation operator changes a single
strategies. state transition 40% of the time, the initial state 5% of fheet

Putting in the usual numerical values we obtain:




the initial action 5% of the time, or an action associatechwithe chromosome and represent the connection of the hidden
a transition 50% of the time. A mutation replaces the currelayer to the output neuron. The binary variation operator fo
value with a valid value for the state transition or action ithis representation is two-point crossover. The point morta
selected selected uniformly at random. operator adds a number selected uniformly at random in the
range—0.1 < z < 0.1 to a connection weight also selected

uniformly at random.
The lookup tables used in this study have a chromosome

consisting of a table of eight actions indexed by the eight IV. RESULTS AND CONCLUSIONS

possible ways the opponent’s last three moves could haverhe comparison of the evolved neural nets, lookup tables,
been made. These are calletpth-3 lookup tables. The and finite state machines are facilitated by the following
representation is a string of eight bits, diagrammed in Figutheorem. This theorem is proved constructively in [23].

7. Theorem 7:Lookup tables and feed-forward neural nets
that depend on the same numheof moves by the opponent

Lookup Tables

Opponent’s S

Previous Moves| Response encode the same gtrgtegy space Whlch is itself a subset of the
CCC C strategy space of finite state machines v@thstates.
CCD D A corollary of this theorem is that the strategies realizgd b
CDC D depth-3 lookup tables and the feed forward neural nets s thi
CDD C study are all finite state machines with a single commumigati
DCC D class and no transient states. This has a nice implication:
DCD C . o e . . S
DDC c fingerprint identification of these strategies, unlike sdinite
DDD D state strategies such as ripoff and tit-for-tat, is cleathovit

obfuscation by transient states.
Fig. 7. A lookup table of the sort used in this study. The ommiis last three In order to compare the evolved populations, the 256 pos-
actions serve as an index. The representation for lookupstab the string  gjp|e depth-3 Iookup tables were enumerated. These repirese
whose characters are the column of responses, in this caBCDDCD. .

the entire search space for the lookup tables and the neural

h ut lorith _ hnets. These lookup tables and all the evolved agents that
The evolutionary algorithm uses two-point crossover on the. .o ot finite state machines were converted into 8-state

string O_f eight responses anq a mutation operator that Pigfiite state machines using the construction given in [23].
one action in a random position and changes it. The 25-point fingerprint, using tit-for-tat as the probe,swa

Artificial Neural Nets computed for each of these machines using the sandpile
algorithm. Evolved strategies were classified accordinth¢o
10 match between their fingerprint and the depth-3 lookup table

fingerprints. For lookup tables and neural nets there was
always an exact match. Finite state machines that did not
t20 have one of the 256 fingerprints associated with a depth-
e 3 lookup table were classified according to which depth-3
lookup table fingerprint was closest to them using Euclidean
distance. Table Il summarizes these, showing those lookup
I tables which appeared at least 50 times for at least one of the
, _ representations.
Fig. 8. ’A feed forward_neural net with fc_)ur 0-1 thrgshold . The If we call the strategies in Table Il theommonstrategies
opponent’s last three actions are used as inputs. A hidder laith three
neurons is used to drive a single output neuron. for this experiment, then all common strategies for neuesd n
were able to answer cooperation with defection at some point
The type of artificial neural nets (ANNs) used in this studyll common strategies coded as lookup tables never answered
are described in [18]. They have a hidden layer of 3 neuroosoperation with defection — their defection is always in
and a single output neuron. All neurons are 0-1 threshaldsponse to the opponent’s defection. This type of straiegy
neurons. The topology of the nets is shown in Figure 8alled anice strategy[13]. This is not to say the nice/non-nice
The chromosome for this representation consists of the d®ision between lookup tables and neural nets is absolute,
connection weights: nine for the connections of the thrpatn but only strategies that were not common in any of the three
neurons to the hidden layer and three for the connectiorteof tepresentations crossed this divide. This result placesighm
hidden layer to the output neuron. Neural connection wsigtgharper point on the result found in [9] which found that
were initialized in the range-1 < ¢ < 1. lookup tables were more cooperative than artificial neuetd.n
To create a chromosome, the weights are placed intoThe reason for this remains obscure. On a high level the
linear array. The first nine entries are the input-to-hiddeeason must be rooted in the differences between the defails
layer connections in groups of three associated with a givere two representations because they encode identictdgira
hidden neuron. The three remaining values are at the endspfices. Work in progress suggests that the key fact is that th

t3



Ingex L'ST Al F788M |\5rge machines were not strategies that could be coded as depth-3
13 508 0 8 lookup tables. An informal survey found that many of these
15 [ 1702 | 0O | 3284 tit-for-tat used transient states. This ability to identify kin withriséent
g? gé 8 315 states makes evolutionary options available in the finigest
58 T 117 | 0 3 encoding that are not there for lookup tables and the neural
43 | 329 4 2 nets used in this study.
4r | 470 0 13 The simple strategies AIIC, AlID, and tit-for-tat were all
g? ;% 8 8 common for some representation. Tit-for-tat was the most
) 18 0 10 common strategy among the evolved finite state machines and
73 63 0 0 second most common among the evolved lookup tables and
77 | 1834] O 0 was absent in the evolved neural nets. The strategy AlD, on
89 | 140 0 0 -
CH) 8a 5 5 the other hand, was well-represented among the evolved finit
93 | 1623 | O 1 state strategies and neural nets but was absent in the dvolve
107 | 424 0 0 lookup tables.

EZ 19863 8 (1) Periodic strategies, other than AlIC and AlID, were rare in
153 | 538 0 3 the evolved finite state populations. This is probably beeau
128 0 [1071] © is easy for an opponent to learn when a periodic strategy will
16 | 0 | 887 | 0 defect or cooperate and exploit it optimally. The lookupléab
igé 8 iég 8 and neural net strategies cannot implement periodic gieste
185 0 351 0 other than AIIC and AIID. This argument would seem to
200 0 369 0 indicate that AIIC should not be common for any of the
323 8 55;6 8 representations since it is the most exploitable and masiyea
519 0 553 T 0 learned strategy. Its appearance can be explained by mptici
255 0 | 2069 | 441 AlD that it is a single mutation away from tit-for-tat in the fmit

Remaining FSM:| 5575 state representation and can coexist indefinitely wittiotit-
TABLE I tat. The lookup table encoding for tit-for-tat GDCDCDCD,

four mutations from AlIC, providing additional evidenceath
the presence of AlIC in the other two representations isdgak
from tit-for-tat. There are no AIIC players in the lookup k&b
populations because it is both exploitalZad mutationally
distant from common strategies.

For furthur analysis of the fingerprints of these evolved
strategies, see [11].

A TABULATION, RELATIVE TO THE STRATEGY SPACE OF DEPTH3 LOOKUP
TABLES, OF THE STRATEGIES THAT WERE COMMON FOR AT LEAST ONE OF
THE REPRESENTATIONSONLY STRATEGIES WITH AT LEAST50
REPRESENTATIVES FOR ONE OF THE REPRESENTATIONS APPEAR INEH
TABLE. INDEX NUMBERS ARE ARBITRARY, SAVE THAT THOSE BELOW128
DO NOT DEFECT ON THE ROUND AFTER THE OPPONENT COOPERATES AND
THOSE WITH INDEX AT LEAST128CAN DO THIS.

V. FUTURE DIRECTIONS

Two pairs of strategies that were substantially differeutt b

had identical fingerprints were located: tit-for-tat angdoff;
probability of generating a tit-for-tat player randomlymsich  random and PerCDDC. This suggests that a higher resolution
higher for lookup tables than neural nets, at least as they @rm of fingerprint is required. Three strategies for cregti
represented here. A tit-for-tat player responds only toldise jmproved fingerprints have been worked out. The first is to
action of its opponent and it is much easier, in the curregitend the fingerprint with information of the same type but
encoding, for lookup tables to ignore all but the last actiofased on a finite number of plays rather than on asymptotic
than for neural nets to do so. NOtiCing this division intomicbeha\/ior (f|n|te time horizon fingerprinting)_ The secondads
and non-nice strategies was a side effect of fingerprintieg tinclude the score of the strategy being fingerprinted agains
strategies, though if it were the only goal it could have begsmall list of simple strategies (augmented fingerprinftap
done in a simpler manner. third is to use asymptotic fingerprints for more than one prob

Recall that the construction of finite state machines frostrategy (multi-probe fingerprints).

lookup tables given in [23] yields the following fact: segtes All of these approaches have strengths and weaknesses.
coded as lookup tables consist, when transformed into finf@ite time horizon fingerprints require that a number of
state machines, of a single communicating class with sampling steps be chosen — and the “good” number of
transient states. As noted before, this means that fingerpgamples depends on the complexity of the strategies being
identification of lookup table encoded strategies is ungunbi fingerprinted. It is also slow. The augmented fingerprinast f
ous, but this fact has evolutionary implications as well. Ioheap, and distinguishes tit-for-tat and ripoff but stilffers
[29], [10] it was found that finite state machines use tramsiefrom an inability to distinguish some strategies. Any indi-
states as a means of identifying “kin”; a type of tag or markeridual case of confused strategies can be resolved by adding
The majority,5575/9600 = 58.3% of the evolved finite state another strategy to the augmenting scores, but this degrade



the automaticity of the process. Multiple probe strategies single strategy while the graduate school game must have two
computationally costly but, thus far, appear to resolvaiitg  strategies to obtain the maximum score. Since reproduigion
confusion in a more satisfactory manner than the other twecurring with full mixing, it follows that the two types mus
approaches. Recall that TF3T, as a probe, separates randaerbreed and still produce two types. A diversity of more
and PerCDDC. This example implies two conjectures. Thkan two types is one of the outcomes observed. In a sense, the
first, that some probe separates random from any finite stgt@duate school game’s second inequalitgouragesinstable
strategy, is obvious. The second conjecture does not havegametics.
immediate proof: any pair of strategies with a finite state Fingerprinting generalizes immediately to ahymove si-
implementation have a probe that separates them unless thejtaneous two-player game. The preliminary results froen t
have identical sets of communicating classes. graduate school game above suggest that an interestirgcproj
When prisoner’s dilemma is used to model real-worlthade possible by fingerprinting, is to classify games byrthei
situations the introduction of noise into the fitness fumeti impact on evolutionary dynamics.
is a common feature. The strategy ripoff gains its advantage
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