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The temperature dependence and anisotropy of optical spectral weights associated with different multiplet
transitions is determined by the spin and orbital correlations. To provide a systematic basis to exploit this close
relationship between magnetism and optical spectra, we present and analyze the spin-orbital superexchange
models for a series of representative orbital-degenerate transition metal oxides with different multiplet struc-
ture. For each case we derive the magnetic exchange constants, which determine the spin wave dispersions, as
well as the partial optical sum rules. The magnetic and optical properties of early transition metal oxides with
degenerate t2g orbitals �titanates and vanadates with perovskite structure� are shown to depend only on two
parameters, viz. the superexchange energy J and the ratio � of Hund’s exchange to the intraorbital Coulomb
interaction, and on the actual orbital state. In eg systems important corrections follow from charge transfer
excitations, and we show that KCuF3 can be classified as a charge transfer insulator, while LaMnO3 is a Mott
insulator with moderate charge transfer contributions. In some cases orbital fluctuations are quenched and
decoupling of spin and orbital degrees of freedom with static orbital order gives satisfactory results for the
optical weights. On the example of cubic vanadates we describe a case where the full quantum spin-orbital
physics must be considered. Thus information on optical excitations, their energies, temperature dependence,
and anisotropy, combined with the results of magnetic neutron scattering experiments, provides an important
consistency test of the spin-orbital models, and indicates whether orbital and/or spin fluctuations are important
in a given compound.
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I. SUPEREXCHANGE AND OPTICAL EXCITATIONS AT

ORBITAL DEGENERACY

The physical properties of Mott �or charge transfer� insu-
lators are dominated by large on-site Coulomb interactions
�U which suppress charge fluctuations. Quite generally, the
Coulomb interactions lead then to strong electron correla-
tions which frequently involve orbitally degenerate states,
such as 3d �or 4d� states in transition metal compounds, and
are responsible for quite complex behavior with often puz-
zling transport and magnetic properties.1 The theoretical un-
derstanding of this class of compounds, with the colossal
magnetoresistance �CMR� manganites as a prominent
example,2,3 has substantially advanced over the last decade,4

after it became clear that orbital degrees of freedom play a
crucial role in these materials and have to be treated on equal
footing with the electron spins, which has led to a rapidly
developing field, orbital physics.5 Due to the strong onsite
Coulomb repulsion, charge fluctuations in the undoped par-
ent compounds are almost entirely suppressed, and an ad-
equate description of these strongly correlated insulators ap-
pears possible in terms of superexchange.6 At orbital
degeneracy the superexchange interactions have a rather rich

structure, represented by the so-called spin-orbital models,
discovered three decades ago,7,8 and extensively studied in
recent years.9–18

Although this field is already quite mature, and the first
textbooks have already appeared,3,4,19 it has been realized
only recently that the magnetic and the optical properties of
such correlated insulators with partly filled d orbitals are
intimately related to each other, being just different experi-
mental manifestations of the same underlying spin-orbital
physics.20,21 While it is clear that the low-energy effective
superexchange Hamiltonian decides about the magnetic in-
teractions, it is not immediately obvious that the high-energy
optical excitations and their partial sum rules have the same
roots and may be described by the superexchange as well. In
fact, this interrelation between the magnetic and the optical
properties makes it necessary to reanalyze the spin-orbital
superexchange models, and to extract from them important
constraints imposed by the theory on the system parameters.
We will show that also the opposite holds—some general
rules apply for the magnetic interactions in the correlated
insulators with degenerate �or almost degenerate� orbitals,
and therefore the magnetic measurements impose constraints
on any realistic theory. At the same time, we shall argue that
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such experiments provide very useful information concern-
ing the orbital order �OO� and the strength of quantum fluc-
tuations in a given compound, which can next be employed
to interpret other experiments, including the optical spectros-
copy.

The phenomena discussed in the present paper go well
beyond the more familiar situation of a Mott insulator with-
out orbital degeneracy, or when the orbital degeneracy is
lifted by strong Jahn-Teller �JT� distortions as for example in
the high-Tc cuprate superconductors. In a Mott insulator the
optical conductivity is purely incoherent, and the optical re-
sponse is found at energies which exceed the optical gap.
When orbital degrees of freedom are absent, the optical gap
is determined by the intraorbital Coulomb interaction ele-
ment U. Naively, one might expect that the high-energy
charge excitations at energy �U, which contribute to the
optical intensities, are unrelated to the low-energy magnetic
phenomena. However, both energy scales are intimately re-
lated as the superexchange follows from the same charge
excitations which are detected by the optical spectroscopy.
The prominent example of this behavior is the nondegenerate
Hubbard model, where the virtual high-energy excitations
determine the superexchange6 energy J—it decides, together
with spin correlations, about the spectral weight of the upper
Hubbard band at half filling.22,23 When temperature increases
to an energy scale �J, the spin correlations are modified and
the total spectral weight in the optical spectroscopy follows
these changes.24

The superexchange models for transition metal perovs-
kites with partly filled degenerate orbitals have a more com-
plex structure than for nondegenerate orbitals and allow both
for antiferromagnetic �AF� and for ferromagnetic �FM�
superexchange.7,8 These different contributions to the super-
exchange result from the multiplet structure of excited tran-
sition metal ions which depends on the Hund’s exchange JH

and generates a competition between high-spin and low-spin
excitations. The exchange interactions are then intrinsically
frustrated even on a cubic lattice, which enhances quantum
effects both for eg �Refs. 9–11� and for t2g systems.15,16 This
frustration is partly removed in anisotropic AF phases, which
break the cubic symmetry and effectively may lead to dimen-
sionality changes, such as in A-type AF phase realized in
LaMnO3, or in C-type AF phase in LaVO3.

While rather advanced many-body treatment of the quan-
tum physics characteristic for spin-orbital models is required
in general, we want to present here certain simple principles
which help to understand the heart of the problem and give
simple guidelines for interpreting experiments and finding
relevant physical parameters of the spin-orbital models of
undoped cubic insulators. We will argue that such an ap-
proach based upon classical OO is well justified in many
known cases, as quantum phenomena are often quenched by
the Jahn-Teller �JT� coupling between orbitals and the lattice
distortions, which are present below structural phase transi-
tions and induce OO both in spin-disordered and in spin-
ordered phases.25 However, we will also discuss the promi-
nent example of LaVO3, where assuming perfect OO or
attempts to decouple spin and orbital fluctuations,26 fail in a
spectacular way and give no more than a qualitative insight
into certain limiting cases. Significant corrections due to

quantum phenomena that go beyond such simplified ap-
proaches are then necessary for a more quantitative under-
standing.

In the correlated insulators with partly occupied degener-
ate orbitals not only the structure of the superexchange is
complex, but also the optical spectra exhibit strong aniso-
tropy and temperature dependence near the magnetic transi-
tions, as found in LaMnO3,27,28 the cubic vanadates LaVO3
and YVO3,29,30 and in the ruthenates.31 In all these systems
several excitations contribute to the excitation spectra, so one
may ask how the spectral weight redistributes between indi-
vidual subbands originating from these excitations. The spec-
tral weight distribution is in general anisotropic already
when OO sets in and breaks the cubic symmetry, but even
more so when A-type or C-type AF spin order occurs below
the Néel temperature.

The effective spin-orbital models of transition metal ox-
ides with partly filled degenerate orbitals depend in a char-
acteristic way upon those aspects of the electronic structure
which decide whether a given strongly correlated system can
be classified as a Mott insulator or as a charge transfer �CT�
insulator. As suggested in the original classification of
Zaanen, Sawatzky and Allen,32 the energy of the d-p CT
excitation � has to be compared with the Coulomb interac-
tion U. If U��, the first excitation is at a transition metal
ion and the system is a Mott insulator, otherwise it is a CT
insulator. Both are strongly correlated insulators, yet in one
limit the dominant virtual excitations are of d-d type,
whereas in the other limit they are of p-d type. One may
consider this issue more precisely by analyzing the full mul-
tiplet structure, and comparing the lowest excitation energy
�to a high-spin configuration� at a transition metal ion �HS
=U−3JH, with that of the lowest CT excitation �of energy ��
between a transition metal ion and a ligand ion.33 Thus we
argue that one can regard a given perovskite as a charge
transfer insulator if �HS��, and as a Mott-Hubbard insulator
if �HS��. By analyzing these parameters it has been sug-
gested that the late transition metal oxides may be classified
as CT insulators.1 In this case important new contributions to
the superexchange arise,34–36 called below � �charge trans-
fer� terms, as we shall discuss for two eg systems: KCuF3
and LaMnO3.

A central aim of this paper is to provide relatively simple
expressions for the magnetic exchange constants and for the
optical spectral weights that can be used by experimentalists
to analyze and compare their spin wave data with optical
data. While the full spin-orbital models are rather complex,
they are nevertheless controlled by only very few physical
parameters: �i� the superexchange constant J, �ii� the normal-
ized Hund’s exchange �, and �iii� the charge transfer param-
eter R. There are two distinct ways to determine these effec-
tive parameters, either �i� from the original multiband
Hubbard model or �ii� from experimental spin wave and/or
optical data. Here the second approach is of particular inter-
est because the simultaneous analysis of magnetism and op-
tics provides a subtle test of the underlying model.

The paper is organized as follows. In Sec. II we introduce
the generic structure of the low-energy effective Hamiltonian
in a correlated insulator with orbital degeneracy, and discuss
its connection with the optical excitations at high energy.
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This general formulation provides the important subdivision
of a given spin-orbital model which is necessary to obtain
the partial spectral weights for individual multiplet transi-
tions. In the remaining part of the paper we concentrate on
some selected cubic perovskites and demonstrate that this
general formulation allows one to arrive at a consistent in-
terpretation of the magnetic and optical experiments in these
correlated insulators using the superexchange interactions
�Secs. III–VI�, and to deduce the parameters relevant for the
theoretical model from the experimental data, wherever
available. We start in Sec. III with the simplest spin-orbital
model for eg holes in KCuF3, and demonstrate that this sys-
tem is in the CT regime which changes the commonly used
picture of superexchange in this system in a qualitative way.
Next we present and analyze the spin-orbital model with eg

orbital degrees of freedom for the undoped manganite
LaMnO3 in Sec. IV. Here we show that in this case much
smaller contributions arise from the CT processes, and the
system is already in the Mott-Hubbard regime of parameters,
which explains the earlier success of a simplified effective
model based entirely on d-d excitations and sufficient for a
semiquantitative understanding. This justifies our approach
to the early transition metal perovskites with t2g degrees of
freedom, titanates in Sec. V and vanadates in Sec. VI, which
we treat as Mott-Hubbard insulators. For all these systems
we analyze the magnetic exchange interactions and the opti-
cal spectral weights, depending on the nature of the spin
correlations in the ground state. The paper is concluded in
Sec. VII, where we provide a coherent view on the magnetic
and the optical phenomena and summarize the experimental
constraints on the model parameters.

II. GENERAL FORMALISM

We consider here effective models with hopping elements
between transition metal ions

H0 = �
i	


�i	ni	
 + �
ij,	��,


ti	,j�ai	

†

a j�
. �2.1�

Here �i	 are orbital energies, and ti	,j� are effective hopping
elements via ligand orbitals—they depend on the type of
considered orbitals as discussed in Refs. 37 and 38. The en-
ergy scale for the hopping is set by the largest hopping ele-
ment t: the �dd
� element in case of eg systems, and the
�dd�� element when only � bonds are considered in systems
with degenerate and partly filled t2g orbitals. For noninteract-
ing electrons the Hamiltonian H0 would lead to tight-binding
bands, but in a Mott insulator the large Coulomb interaction
U suppresses charge excitations in the regime of U t, and
the hopping elements can only contribute via virtual excita-
tions, leading to the superexchange.

The superexchange in the 3d cubic systems with orbital
degeneracy is described by spin-orbital models, where both
degrees of freedom are coupled and the orbital state �ordered
or fluctuating� determines the spin structure and excitations,
and vice versa. The numerical and analytical structure of
these models represents a fascinating challenge in the theory,
as it is much more complex than that of pure spin models.
The spin-orbital models have been derived before in several

cases, and we refer for these derivations to the original
literature.11,13,15,16 They describe in the low-energy regime
the consequences of virtual charge excitations between two
neighboring transition metal ions, di

md j
m
⇋di

m+1d j
m−1, which

involve an increase of energy due to the Coulomb interac-
tions. Such transitions are mediated by the ligand orbitals
between the two ions and have the same roots as the super-
exchange in a Mott insulator with nondegenerate orbitals6 at
U t—thus the resulting superexchange interactions will be
called U terms. The essential difference which makes it nec-
essary to analyze the excitation energies in each case sepa-
rately is caused by the existence of several different excita-
tions. Their energies have to be determined first by analyzing
the eigenstates of the local Coulomb interactions

Hint = U�
i	

ni	↑ni	↓ + �
i,	��

�U	� −
1

2
J	��ni	ni�

+ �
i,	��

J	��di	↑
†

di	↓
†

di�↓di�↑ + di�↑
†

di�↓
†

di	↓di	↑�

− 2 �
i,	��

J	�Si	 · Si�, �2.2�

with 
̄=−
, which in the general case depend on the three
Racah parameters A, B, and C,39 which may be derived from
somewhat screened atomic values. While the intraorbital
Coulomb element

U = A + 4B + 3C , �2.3�

is identical for all 3d orbitals, the interorbital Coulomb and
exchange elements, U	� and J	�, are anisotropic and depend
on the involved pair of orbitals; the values of J	� are given in
Table I. The Coulomb and exchange elements are related to
the intraorbital element U by a relation which guarantees the
invariance of interactions in the orbital space

U = U	� + 2J	�. �2.4�

In cases where only the orbitals of one type �eg or t2g� are
partly filled, however, such as, e.g., in the titanates, vana-
dates, or copper fluorides, all relevant exchange elements J	�
are the same �see Table I� and one may use a simplified form
of onsite interactions40

TABLE I. On-site interorbital exchange elements J	� for 3d

orbitals as functions of the Racah parameters B and C �for more
details see Ref. 39�.

Orbital xy yz zx x2−y2 3z2−r2

xy 0 3B+C 3B+C C 4B+C

yz 3B+C 0 3B+C 3B+C B+C

zx 3B+C 3B+C 0 3B+C B+C

x2−y2 C 3B+C 3B+C 0 4B+C

3z2−r2 4B+C B+C B+C 4B+C 0
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Hint
�0� = U�

i	

ni	↑ni	↓ + �U −
5

2
JH� �

i,	��

ni	ni�

+ JH �
i,	��

�di	↑
†

di	↓
†

di�↓di�↑ + di�↑
†

di�↓
†

di	↓di	↑�

− 2JH �
i,	��

Si	 · Si� �2.5�

with only two parameters: the Coulomb element U �2.3� and
a Hund’s exchange element JH, being 4B+C for eg and
3B+C for t2g systems, respectively. We emphasize that in the
general case when both types of orbitals are partly filled �as
in the manganites� and both thus participate in charge exci-
tations, the Hamiltonian �2.5� is only approximate, and the
full excitation spectra of the transition metal ions39 which
follow from Eq. �2.2� have to be used instead. A few ex-
amples of spectra for di

md j
m
⇋di

m+1d j
m−1 charge excitations at

transition metal ions are shown in Fig. 1. As a universal
feature, the high-spin excitation is found at energy U−3JH in
all cases, provided that JH is understood as Hund’s exchange
for that partly filled manifold �eg or t2g� of degenerate d

orbitals which participate in charge excitations. The structure
of the excited states depends on the partly occupied orbitals41

and on the actual valence m—the distance between the high-
spin and low-spin excitations increases with the number of
electrons for m�5 �holes for m�5�.

At orbital degeneracy the superexchange which connects
ions at sites i and j along the bond �ij� involves orbital op-
erators which depend on the bond direction. Therefore, we
introduce the index �=a ,b ,c to label the three a priori

equivalent directions in a cubic crystal. In order to analyze
the consequences of each individual charge excitation n that
contributes to the superexchange in a given transition metal
compound with degenerate d orbitals, we shall use below a
general way of writing the effective low-energy Hamiltonian
as a superposition of such individual terms on each bond �ij�,

HU = �
n

�
�ij�	�

Hn
����ij� , �2.6�

with the energy unit 
absorbed in individual H
n

����ij� terms�
given by the superexchange constant

J =
4t2

U
. �2.7�

It follows from d-d charge excitations with an effective hop-
ping element t between transition metal ions, and is the same
as that obtained in a Mott insulator with nondegenerate or-
bitals in the regime of U t.6 While U is the uniquely de-
fined on-site intraorbital Coulomb element �2.3�, increasing
upon going from Ti to Cu along the transition metal
series,42,43 the definition of the hopping t between two near-
est neighbor transition metal ions depends on the system.38 If
degenerate eg orbitals are involved, it is the effective �dd
�
hopping element for a 
-bond which involves p
 orbitals on
the intervening ligand ion �e.g. for the hopping between two
directional 3z2−r2 states along the c axis�, while for the sys-
tems with degenerate t2g orbitals it stands for the effective
�dd�� hopping element due to � bonds which involve p�

orbitals on the ligand ion.
In the superexchange Hamiltonian Eq. �2.6� the contribu-

tions which originate from all possible virtual excitations
di

md j
m
⇋di

m+1d j
m−1 just add up to the total superexchange in-

teraction, in which the individual terms cannot be distin-
guished. Yet each of these excitations involves a different
state in the multiplet structure of at least one of the transition
metal ions, i.e., either in the dm+1 or in the dm−1 configuration
or in both, depending on the actual process and on the value
of m. As pointed out elsewhere,20 the same charge excita-
tions contribute to the optical conductivity, and here they
appear at distinct energies, thus revealing the multiplet struc-
ture of the excited transition metal ions. Moreover, they con-
vey a rich and characteristic temperature dependence to the
optical spectrum, determined by the temperature variation of
the spin-spin and orbital-orbital correlations. We emphasize
that it is therefore important to analyze the various multiplet
excitations separately, as they depend on these correlations in
a different way, and will also contribute to a quite different
temperature dependence, as we show in this paper on several
examples.

As we will see in more detail below, the generic structure
of each such individual contribution is for a bond �ij� given
by

Hn
����ij� = �an + bnS� i · S� j�Qn

������i,�� j�

= anQn
������i,�� j� + bnQn

������i,�� j�S� i · S� j , �2.8�

where the orbital dependence of the superexchange is de-
scribed by means of orbital projection operators Q

n

��� which
are expressed in terms of components of orbital pseudospin
T=1/2 operators at sites i and j. The coefficients an and bn,
which measure the strength of the purely orbital part and of
the spin-and-orbital part of the superexchange, respectively,
follow from second-order perturbation theory involving the
charge excitation n. In the present case of perovskites, where

FIG. 1. Energies of di
md j

m→di
m+1d j

m−1 charge excitations in se-
lected cubic transition metal oxides, as obtained from Eq. �2.5� for
�a� eg excitations of Cu3+�d8� and Mn2+�d5� ions 
in the d5 case the
spectrum41 was obtained from Eq. �2.2�� and �b� t2g excitations of
Ti2+�d2� and V2+�d3� ions. The splittings between different states
are due to Hund’s exchange element JH which refers to a pair of eg

electrons in �a� and to a pair of t2g electrons in �b�, respectively.
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the bond between two transition metal ions through the
ligand ion �F or O� connecting them is close to linear �180°�,
the coefficients an and bn are of similar magnitude �in con-
trast to the situation in layered compounds such as LiNiO2
with 90° bonds where the purely orbital interaction is stron-
ger by an order of magnitude than the spin-and-orbital
interaction44�.

Here we consider systems having cubic symmetry at high
temperature. Yet at low temperature this symmetry is fre-
quently spontaneously broken—usually driven by the joint
effect of �i� the orbital part of the superexchange interaction
and �ii� the JT coupling of the same degenerate �and there-
fore JT active� 3d orbitals to lattice modes. The result is the
simultaneous onset of a macroscopic lattice distortion and of
OO, i.e., a cooperative JT effect. At temperatures well below
the transition temperature Ts of this combined structural and
orbital phase transition, the OO is effectively frozen. The
remaining superexchange interactions between the spins may
then be obtained by replacing the orbital projection operators
in Eq. �2.6� by their expectation values

Qn
������i,�� j� → �Qn

������i,�� j�� = Qn
�������i�,��� j�� . �2.9�

Obviously, this leads to anisotropic magnetic interactions

Hs = J�
n

�
�ij�	�

bn�Qn
����S� i · S� j , �2.10�

which will in general induce a further magnetic phase tran-
sition at lower temperature. It is noteworthy that in this situ-
ation the spin degrees of freedom get decoupled from the
orbital degrees of freedom, although the purely orbital �an�
and spin-and-orbital �bn� superexchange terms are of similar
strength. Responsible for this behavior is the JT contribution
to the structural phase transition, which enhances Ts above
the value it would have if the transition were driven by or-
bital superexchange alone.

Starting from the microscopic spin-orbital superexchange
models, we will analyze the effective spin models which
arise after such a symmetry breaking at low temperature.
Rewritten from Eq. �2.10�, they are of the generic form

Hs = Jc�
�ij�c

S� i · S� j + Jab �
�ij�ab

S� i · S� j , �2.11�

with two different effective magnetic exchange interactions:
Jc along the c axis, and Jab within the ab planes. The latter
Jab interactions could in principle still take two different val-
ues in case of inequivalent lattice distortions �caused, e.g., by
octahedra tilting or pressure effects� making the a and b axes
inequivalent, but we intend to limit the present analysis to
idealized structures with these two axes being equivalent. We
shall show that the spin-spin correlations along the c axis and
within the ab planes

sc = �S� i · S� j�c, sab = �S� i · S� j�ab, �2.12�

next to the orbital correlations, play an important role in the
intensity distribution in optical spectroscopy.

The spectral weight in the optical spectroscopy is deter-
mined by the kinetic energy,45 and reflects the onset of mag-
netic order46,47 and/or orbital order.48 As shown by Ahn and

Millis,47 in the weak coupling regime one can analyze the
total spectral weight in optical absorption using the Hartree-
Fock approximation for the relevant tight-binding Hamil-
tonian. In a correlated insulator the electrons are almost lo-
calized and the only kinetic energy which is left is associated
with the same virtual charge excitations that contribute also
to the superexchange. Therefore, we will discuss here the
individual kinetic energy terms K

n

���, which can be deter-
mined from the superexchange �2.6� using the Hellman-
Feynman theorem22

Kn
��� = − 2J�Hn

����ij�� . �2.13�

For convenience, we define the K
n

��� as positive quantities.
Making use of the generic form of the superexchange con-
tribution H

n

����ij� given by Eq. �2.8�, and assuming as above
that spin and orbital degrees of freedom are decoupled in the
temperature range of interest, we obtain

Kn
��� = − 2J�an + bn�S� i · S� j����Qn

������i,�� j�� . �2.14�

Each term K
n

��� �2.13� originates from a given charge excita-
tion n for a bond �ij� along axis �. These terms are directly
related to the partial optical sum rule for individual Hubbard
bands, which reads20

a0�
2

e2 �
0

�


n
������d� =

�

2
Kn

���, �2.15�

where 

n

������ is the contribution of band n to the optical
conductivity for polarization along the � axis, a0 is the dis-
tance between transition metal ions, and the tight-binding
model with nearest neighbor hopping is implied. Comparison
with Eq. �2.14� shows that the intensity of each band is in-
deed determined by the underlying OO together with the
spin-spin correlation along the direction corresponding to the
polarization.

One has to distinguish the above partial sum rule �2.15�
from the sum rule for the total spectral weight in the optical
spectroscopy for polarization along a cubic direction �, in-
volving

K��� = − 2J�
n

�Hn
����ij�� , �2.16�

which stands for the total intensity in the optical excitations
�due to d-d excitations�. This quantity is of less interest here
as it has a much weaker temperature dependence and does
not allow for a direct insight into the nature of the electronic
structure. In addition, it might be also more difficult to re-
solve from experiment.

When the low-energy excitations are of CT type, two
holes could also be created within a 2p orbital on a ligand
�oxygen or fluorine� ion in between two transition metal
ions, described by di

mp6d j
m
⇋di

m+1p4d j
m+1 processes—these

CT contributions lead to additional superexchange contribu-
tions, called below � terms. While the latter terms can be
safely neglected in Mott-Hubbard systems, they substantially
modify the superexchange in CT insulators, and may even
represent there the dominating contribution.35,36 Below we
will analyze them in two situations which involve eg degrees
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of freedom, viz. in the cubic copper fluoride KCuF3 �Sec.
III�, and in the cubic manganite LaMnO3 �Sec. IV�, and we
will show that in KCuF3 they represent an essential part of
the superexchange.

III. COPPER FLUORIDE PEROVSKITE: KCuF3

A. Superexchange Hamiltonian

The simplest spin-orbital models are obtained when tran-
sition metal ions are occupied by either one electron
�m=1�, or by nine electrons �m=9�; in these cases the Cou-
lomb interactions �2.5� contribute only in the excited state �in
the d2 or the d8 configuration� after a charge excitation
di

md j
m
⇋di

m+1d j
m−1 between two neighboring ions. Here we

start with the case of a single hole in the d shell, as realized
for the Cu2+ ions in KCuF3 with the d9 configuration
�m=9�. Due to the splitting of the 3d states in the octahedral
field within the CuF6 octahedra, the hole at each magnetic
Cu2+ ion occupies one of the eg orbitals. The superexchange
coupling �2.6� is usually analyzed in terms of eg holes in this
case,7 and this has become a textbook example of spin-
orbital physics by now.4,19

Orbital order occurs in KCuF3 below the structural tran-
sition at Ts�800 K. At T�Ts the structure is tetragonal,
with longer Cu-Cu distances within the ab planes
�dab=8.28 Å� than along the c axis �dc=7.85 Å�,49 which
favors strong AF interactions along the c axis. Below the
magnetic transition at TN38 K, long-range magnetic order
of A type sets in,50,51 and the ordered moment is �0
=0.48�B.52

The superexchange between the Cu2+ ions in KCuF3,

H�d9� = HU�d9� + H��d9� , �3.1�

consists of two terms, the U term HU �2.6�, and the CT term
H�. First we introduce the U term HU�d9� following the
general approach of Sec. II. It originates from three
different excitations, leading to an intermediate d8 configu-
ration at an excited Cu3+ ion. Using the model Hamiltonian
�2.5� to describe the Coulomb interactions between the
eg electrons, one finds an equidistant excitation spectrum
of 3A2 , 1E �1E� and 1E�� and 1A1 states, with energies11,39

U−3JH, U−JH, and U+JH, as shown in Fig. 1�a�. This exci-
tation spectrum is exact, and the element JH for a pair of eg

electrons is given by the Racah parameters B and C �see
Table I�:

JH = 4B + C . �3.2�

This definition of JH will be used for two systems with eg

orbital degrees of freedom: for the copper fluoride KCuF3
�considered here�, and for the manganite LaMnO3 �in Sec.
IV�.

In what follows, we will parametrize the multiplet struc-
ture of the different transition metal ions by the ratio of the
Hund’s element JH and the intraorbital Coulomb element U

� =
JH

U
. �3.3�

Using Eqs. �2.6� and �3.3�, one finds for each bond �ij� along
a � axis ��=a ,b ,c� four contributions11

H1
��� = −

J

2
r1�S� i · S� j +

3

4
��1

4
− �i

���� j
���� , �3.4�

H2
��� =

J

2
r2�S� i · S� j −

1

4
��1

4
− �i

���� j
���� , �3.5�

H3
��� =

J

2
r3�S� i · S� j −

1

4
��1

2
− �i

�����1

2
− � j

���� , �3.6�

H4
��� =

J

2
r4�S� i · S� j −

1

4
��1

2
− �i

�����1

2
− � j

���� , �3.7�

with coupled spin and orbital operators. The coefficients

r1 =
1

1 − 3�
, r2 = r3 =

1

1 − �
, r4 =

1

1 + �
, �3.8�

follow from the above multiplet structure of d8 ions.53

As explained below, it is straightforward to understand the
generic structure of the superexchange term HU, given by

Eqs. �3.4�–�3.7�. Here S� i is a spin S=1/2 operator, and

P1�ij� = S� i · S� j +
3

4
, P0�ij� =

1

4
− S� i · S� j , �3.9�

are the spin projection operators on triplet �S=1� and singlet
�S=0� spin states for a bond �ij�, so one recognizes the high-
spin term �3.4� and three low-spin terms �3.5�–�3.7�, respec-
tively. The spin operators in Eqs. �3.4�–�3.7� are accompa-
nied by orbital pseudospin operators ��

i

���, which select the
type of orbitals occupied by holes at sites i and j, and simul-
taneously dictate the allowed excited states.

The orbital operators �
i

��� depend on the direction of a
considered bond �ij�, and are given by

�i
�ab� = −

1

4
�
i

z � �3
i
x�, �i

�c� =
1

2

i

z, �3.10�

where 
i
z and 
i

x are Pauli matrices acting on the orbital
pseudospins and the signs ± in �

i

�ab� correspond to a and b

axis, respectively. With the help of �
i

��� one defines next the
projection operators in the orbital subspace

Qi�
��� =

1

2
+ �i

���, Qi�
��� =

1

2
− �i

���. �3.11�

For a given cubic axis � they project �at site i� either on the
planar orbital ��� in the plane perpendicular to the � axis, or
on the orthogonal directional orbital ��� along this axis. For
instance, in the case where � is the c axis, they project on the
x2-y2 orbital in the ab plane, and on the directional 3z2-r2

orbital along the c axis.
Using the projection operators �3.11�, the orbital depen-

dence in Eqs. �3.4�–�3.7� becomes transparent. First of all,
� 1

4 −�
i

���
�

j

���� in Eq. �3.4� accompanies the high-spin 3A2 exci-
tation as this state may occur only when a pair of orthogonal
orbitals is occupied at sites i and j, described formally by a
superposition of two possibilities, 1

2 �Qi�Q j�+Qi�Q j��. In
contrast, the operator Qi�Q j� selects two orbitals oriented
along the bond �ij� for the high-energy low-spin 1A1 excita-
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tion, see Eq. �3.7�. Finally, the second H2
��� �3.5� and third

H3
��� �3.6� term correspond to the doubly degenerate low-spin

1E state which consists of two singlet excitations: �i� an in-
terorbital singlet with two different orbitals occupied �1E��
and �ii� a double occupancy within a directional orbital at
either site �1E��—these two excitations have thus quite dif-
ferent orbital dependences, identical with those of the 3A2
and the 1A1 excitation, respectively. The sum over all the
terms H

n

���, with n=1,…, 4, gives the simplest version of the
spin-orbital model for the cubic copper fluoride KCuF3 with
degenerate eg orbitals. Its derivation and more details on the
classical phase diagram can be found in Ref. 11.

By considering further the electronic structure of KCuF3,
one can elucidate the role played by the CT part H� in the
superexchange Hamiltonian �3.1�. By analogy with the CuO2
planes of the high-temperature superconductors, where the
CT processes give the dominating contribution to the AF
superexchange interaction,35,54 one expects that they are also
important for a cubic copper�II� fluoride and modify the su-
perexchange in KCuF3. The CT term

H��d9� = JR �
�ij�	�

�S� i · S� j −
1

4
��1

2
− �i

�����1

2
− � j

���� ,

�3.12�

with the coefficient

R =
2U

2� + Up

�3.13�

resulting from the two-hole charge excitation at a common
neighboring 2p
 orbital of a fluorine ion in between two
copper ions, in the process di

9p�ij�
6 d j

9
⇋di

10p�ij�
4 d j

10. As a double

hole excitation is generated at a single bonding orbital 2p


within each Cu-F-Cu unit, this term is necessarily AF. Two
holes can move to fluorine from two neighboring Cu ions
only if both of them occupy a directional eg orbital ���, ori-
ented along the considered bond �e.g., 3x2−r2 orbitals along
the a axis�, being the simplest CT term discussed recently by
Mostovoy and Khomskii.36 Therefore this process leads to
the same orbital dependence in Eq. �3.12� as the low-spin
1E� and 1A1 excitations which involve double occupancies of
directional ��� orbitals.

B. Spin exchange constants and optical intensities

A characteristic feature of spin-orbital superexchange
models with eg orbital degrees of freedom is the presence of
the purely orbital interactions in Eqs. �3.4�–�3.7� and �3.12�,
which favor particular type of occupied orbitals. LDA+U
calculations55,56 have indicated that such purely electronic
interactions would already drive the instability towards the
C-type OO �C-OO� phase, with alternating orbitals in the ab

planes, and repeated orbitals along the c axis, which induces
FM spin exchange in the ab planes, and strong AF exchange
between the planes. Experimentally, this OO sets in below
the structural transition at Ts�800 K,51 i.e., at much higher
temperature than the characteristic energy scale of the mag-
netic excitations,57 suggesting that the JT effect plays an im-

portant role in this instability. This observation is consistent
with the large difference between Ts and the Néel tempera-
ture TN�38 K,52 the latter being controlled by the magnetic
part of the superexchange, and thus the orbital correlations
decouple from the spin-spin correlations. This motivates one
to analyze the dependence of the magnetic exchange interac-
tions and of the optical spectral weights on the type of OO
stabilized below the structural transition.

Here we are interested in the low temperature range of
T�500 K, so we assume perfect OO given by a classical
ansatz for the ground state

��0� = �
i�A

��A�i�
j�B

��B� j , �3.14�

with the orbital states ��A�i and ��B� j characterized by oppo-
site angles ��A=−�B� and alternating between two sublattices
A and B in the ab planes. The orbital state at site i

��� = cos��
2
��z� + sin��

2
��x� �3.15�

is here parametrized by an angle � which defines the ampli-
tudes of the orbital states

�z� � �3z2 − r2�/�6, �x� � �x2 − y2�/�2, �3.16�

which stand for a local eg orbital basis at each site. This and
other equivalent orbital bases are shown schematically by
pairs of solid and dashed lines �corresponding to pairs of
orbitals ���� , ��+���� in Fig. 2. The OO state specified in Eq.
�3.14� is thus defined by

��A�i = cos��
2
��z�i + sin��

2
��x�i,

��B� j = cos��
2
��z� j − sin��

2
��x� j , �3.17�

with �A=� and �B=−�.

FIG. 2. Schematic representation of eg orbitals as obtained for
different angle � in Eq. �3.15�. Pairs of orthogonal orbitals, forming
a basis in the orbital space, differ by angle �=�. Directional eg

orbitals ��� along a and b axes are obtained from the
��3z2−r2� , �x2−y2�� basis �3.16� by the transformation �3.15� with
angle �= ±2� /3. Dashed lines for �= ±� /3 indicate the possible
OO of �y2−z2� / �x2−z2� orbitals occupied by holes in KCuF3,
suggested for T�TN in Ref. 7.
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The magnetic superexchange constants Jab and Jc in the
effective spin model �2.11� are obtained by decoupling spin
and orbital variables and next averaging the orbital operators
in the spin-orbital model �3.1� over the classical state ��0� as
given by Eq. �3.14�. The relevant averages are given in Table
II, and they lead to compact expressions for the superex-
change constants in Eq. �2.11�,

Jc =
1

8
J�− r1sin2� + �r2 + r3��1 + cos ��

+ �r4 + 2R��1 + cos ��2� , �3.18�

Jab =
1

8
J�− r1�3

4
+ sin2�� + �r2 + r3��1 −

1

2
cos ��

+ �r4 + 2R��1

2
− cos ��2� , �3.19�

which depend on three parameters, viz. J �2.7�, � �3.3�, and
R �3.13�, and on the OO �3.17� specified by the orbital angle
�. It is clear that the FM term �r1 competes with all the other
AF low-spin terms. Nevertheless, in the ab planes, where the
occupied eg orbitals alternate, the large FM contribution
�when sin2��1� still makes the magnetic superexchange Jab

weakly FM �Jab�0�, while the stronger AF superexchange
along the c axis �Jc �Jab�� favors quasi-one-dimensional
�1D� spin fluctuations.

By considering the superexchange model, one can derive
as well the pure orbital interactions which stabilize the OO.
The superexchange interactions are anisotropic below the
structural transition at Ts. In contrast, at sufficiently high
temperature T�Ts, when also spin correlations may be ne-
glected, one finds isotropic orbital interactions

Jc
� = Jab

� =
1

8
J�3r1 − r4 − 2R� , �3.20�

which multiply �
i

���
�

j

��� for each bond, contributing to an or-
bital instability towards alternating G-type OO, while actu-
ally C-type OO is observed below Ts. It is thus clear from
experiment that this instability cannot be of purely electronic
origin, and that, similarly to what is the case in LaMnO3,58 it
is supported by the lattice. In fact, although it has been ar-
gued that the OO is caused primarily by the superexchange,55

the electronic interactions �3.20� predict that Ts�0.1J, and
not Ts�J, as observed. Note also that as soon as the AF spin
correlations develop along the c axis, one finds anisotropic

orbital interactions, Jab
� �Jc

�, which amplifies the ongoing
symmetry breaking in the tetragonal phase.

The spectral weights of the optical subbands also follow
from the superexchange processes, and are determined from
the effective Hamiltonian �3.1� by the general relations given
by Eqs. �2.13� and �2.15�. Following the excitation spectrum
of Fig. 1, one finds optical absorption at three different en-
ergies �the degeneracy of the 1E state is not removed�, so we
label the respective kinetic energy contributions K

n

��� by
n=1,2,3. They are determined at low temperature
T�500 K by rigid C-type OO �3.17�, with the classical av-
erages of the orbital operators given in Table II. So one finds
for polarization along the c axis

K1
�c� =

1

4
Jr1�3

4
+ sc�sin2� , �3.21�

K2
�c� =

1

4
J�r2 + r3��1

4
− sc��1 + cos �� , �3.22�

K3
�c� =

1

4
Jr4�1

4
− sc��1 + cos ��2 �3.23�

and for polarization in the ab plane

K1
�ab� =

1

4
Jr1�3

4
+ sab��3

4
+ sin2�� , �3.24�

K2
�ab� =

1

4
J�r2 + r3��1

4
− sab��1 −

1

2
cos �� , �3.25�

K3
�ab� =

1

4
Jr4�1

4
− sab��1

2
− cos ��2

. �3.26�

Similar to the exchange constants Jab and Jc, the kinetic en-
ergies depend on the multiplet structure described by two
parameters, viz. J �2.7�, � �3.3�, and on the OO �3.17� speci-
fied by the angle �. Note that they depend on these param-
eters also indirectly, since the spin-spin correlations are gov-
erned by Jab and Jc as well. We analyze this dependence in
Sec. III D.

C. Magnetic interactions in KCuF3

In order to apply the above classical theory to KCuF3 we
need to determine the microscopic parameters which decide
about the superexchange constants, given by Eqs. �3.18� and
�3.19�. In principle, if the optical data would also be avail-
able, with this experimental input one would be able to fix
the values of the relevant parameters J and �, and the orbital
angle �. Having only magnetic measurements, we give here
an example of another approach which starts from the micro-
scopic parameters for the local Coulomb interaction and
Hund’s element suggested by the electronic structure calcu-
lations performed within the LDA+U method:55,56

U=7.5, JH=0.9 eV—they lead to �=0.12. Note that these
parameters are somewhat smaller than the values U=8.96
and JH=1.19 eV eV deduced for Cu2+ ions in the CuO2
planes of the high-temperature superconductors by Grant and

TABLE II. Averages of the orbital projection operators standing
in the spin-orbital interactions in Eqs. �3.4�–�3.7� for the C-type �or
G-type� OO of occupied eg orbitals which alternate in ab planes, as
given by Eqs. �3.17�. Nonequivalent cubic directions are labeled by
�=ab ,c.

� ab c

�� 1
2 −�

i

����� 1
2 −�

j

����� 1
4

� 1
2 −cos ��2 1

4 �1+cos ��2

� 1
4 −�

i

���
�

j

���� 1
4

� 3
4 +sin2�� 1

4sin2�

�� 1
2 +�

i

����� 1
2 +�

j

����� 1
4

� 1
2 +cos ��2 1

4 �1−cos ��2
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McMahan using the fixed charge method,59 but we believe
that they reflect better the partly screened interactions within
CuF6 units. We are not aware of any estimation of the re-
maining microscopic parameters until now, but taking into
account the expected contraction of the 2p wave functions by
going from O2− to F− ions, we argue that tpd is reduced,
while � and Up could be similar to their respective values for
CuO2 planes.59 Therefore, it is reasonable to adopt: tpd=1.0,
�=4.0, and Up=4.5 eV. Note that although the values of
tpd=1.0, � and Up could not be really estimated, in the
present approach they are not independent parameters; also
only a linear combination of � and Up enters Eq. �3.13�, so a
change in the value of Up could to some extent compensate a
modified value of �. The present parameters lead to
J33.3 meV and R=1.2.

Consider now the OO of the occupied orbitals �by holes�
in KCuF3. Recent resonant x-ray scattering experiments sug-
gest that both sublattices are equivalent, with �A=−�B=� in
Eq. �3.14�,51 but the precise shape of the occupied orbitals in
KCuF3 remains unresolved. There are different views con-
cerning the type of orbitals that participate in the OO state.
On the one hand, it is believed that the orbital angle � should
be close to the angle �JT70° ��0.39��, as given by
cos � 1

3 , which follows from the local lattice distortions.49

On the other hand, the electronic interactions in the symme-
try broken A-AF phase below TN would favor instead alter-
nating �y2−z2� / �x2−z2� orbitals,7 with �SE=60°. In reality,
one expects rather a certain compromise between the elec-
tronic interactions for finite spin correlations and those in-
duced by the lattice. Thus, in the present study of the mag-
netic exchange constants and optical spectral weights we
shall consider a range of possible values of 60° ���90°,
focusing in particular on the above values favored by the
above individual terms in the effective Hamiltonian.

First, we demonstrate that the model Eq. �3.1� is capable
of describing the experimentally observed exchange con-
stants Jc

exp35 meV and Jab
exp−2 meV.57 Remarkably, the

value of �Jab
exp� is smaller by more than one order of magni-

tude than Jc
exp, being some challenge for the theoretical

model. Consider first the values of Jc and Jab for varying
angle � which tunes the OO �Fig. 3�. When only the U part
of the superexchange HU is considered, one finds
Jc�15 meV and Jab�−2 meV. The FM term �r1 gives the
largest contribution for the ab planes, which follows from
the alternation of hole orbitals in the ab planes, being close
to the planar orbitals �x2−z2� / �y2−z2� ��=60° � suggested
early on by Kugel and Khomskii,7 but is partly compensated
by the AF terms. While Jab is only weakly depending on �
near this type of OO, Jc decreases steadily with increasing �
�Fig. 3�, as the overlap between the orbitals occupied by
holes along the c axis decreases when the amplitude of the
�z� states is reduced. One finds that using only the U term in
the superexchange, rather extreme parameters, such as
U�4 eV and JH�0.3 eV �with the present value of t�,
would have to be assumed to reproduce the experimental
values of Jc and Jab.

The CT term �3.12� with R=1.2 enhances the AF interac-
tion Jc by a factor larger than two but hardly changes Jab �see
Fig. 3�. Only then Jc comes close to the experimental value

Jc
exp35 meV.57 As in the U model �at R=0�, the value of Jc

decreases with increasing �, and there is no serious difficulty
to fit the parameters in order to obtain a reasonable agree-
ment with experiment, once the value of the orbital angle �
would be known. As an illustrative example we show the
results obtained with the present parameters in Fig. 3—one
finds Jc32 meV for the OO which agrees with the lattice
distortions ��JT70° �, and Jc40 meV for the Kugel-
Khomskii �x2−z2� / �y2−z2� orbitals ��SE=60° �. These results
demonstrate that the CT superexchange term plays an essen-
tial role in KCuF3 and so this system has to be classified as a
charge transfer insulator.

Remarkably, the value of Jab is almost unaffected by the
CT term �Fig. 3�. This is due to the alternating OO in the ab

planes, which makes the value of the orbital projection
�� 1

2 −�
i

����� 1
2 −�

j

����� in Eq. �3.12� very small indeed in the
physical range of � �compare Table II�. In fact, for the alter-
nating planar �x2−z2� / �y2−z2� orbitals one of the operators
�� 1

2 −�
i

���� , � 1
2 −�

j

����� equals zero, and the CT contribution
vanishes, so one cannot reduce the value of �Jab� by increas-
ing the AF CT term that follows from H�.

The strong anisotropy of the magnetic exchange interac-
tions in KCuF3 is well illustrated in Fig. 4 by the ratio
�Jab� /Jc, being close to 0.07 for either the JT OO ��70° �,
or for the OO suggested by the orbital superexchange at
T�TN��=60° �. Note that for R�1 the ratio �Jab� /Jc does
not depend significantly on � in the interesting range be-
tween �=70° and �=60°.

D. Optical spectral weights for KCuF3

Now we turn to the optical spectral weights �2.13� and
determine the kinetic energies for the corresponding Hub-
bard subbands. As discussed in Sec. II, they originate from
different multiplet excitations, and depend on the OO and on
the spin-spin correlations �2.12�. Here we analyze in detail
the spectral weight distribution for polarization along the c

FIG. 3. �Color online� Exchange interactions �3.18�: Jc �3.18�
and Jab �3.19� for the copper fluoride model as functions of the
orbital angle � which describes the OO 
see Eq. �3.14��. The dashed
lines show the U term alone, while the solid lines include the CT
contributions as well. The OO induced by the JT distortions
��70° � is indicated by dotted line. Parameters: J33.3 meV,
�=0.12, R=1.2.
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axis, where strong exchange interaction Jc controls the spin-
spin correlations sc �2.12� which remain finite in a broad
temperature regime.

Knowing that the interchain FM exchange coupling Jab is
so weak, we describe the temperature variation of the spin-

spin correlations sc= �S� i ·S� i+1�c employing the Jordan-Wigner
fermion representation60 for a 1D spin chain. One finds for
perfect OO at temperature T�Ts

sc = − ��1 + �� , �3.27�

where

� =
1

N
�

k

�cos k�tanh� �k

2kBT
� , �3.28�

�k = Jc�1 + 2���cos k� . �3.29�

Here �k is the 1D dispersion of pseudofermions. The ex-
change interaction Jc is constant as long as the orbitals re-
main frozen, and sets the energy scale for the temperature
variation of sc. Eqs. �3.28� and �3.29� were solved
self-consistently to obtain sc �3.27� as a function of
temperature. In the limit T→0 one finds �=1/�, and
sc=−�1+�� /�20.42. This value represents an excellent
analytic approximation to the exact result

sc
ex = − �log 2 −

1

4
�  − 0.4431, �3.30�

obtained for the 1D AF Heisenberg chain from the Bethe
ansatz.60

The general theory presented in Sec. II makes a clear
prediction concerning the temperature dependence of the
spectral weights in optical absorption. First of all, a large
anisotropy between the polarization along the AF c axis and
the polarization in the �weakly FM� ab plane is expected
when the AF �FM� spin-spin correlations along the c axis
�within the ab planes� develop. Indeed, using the self-
consistent solution of Eqs. �3.28� and �3.29�, one finds that
the kinetic energy K1

�c� �which determines the spectral weight

of the high-spin excitation at energy U−3JH� is rather low
�Fig. 5�. In contrast, the low-spin excitations K2

�c� and K3
�c�

contribute with large spectral weights in the low temperature
regime, reflecting the AF correlations along the c axis.

When the temperature increases, the spin-spin correla-
tions sc gradually weaken and the kinetic energy
redistributes—both low-spin terms K2

�c� and K3
�c� decrease,

while the high-spin term K1
�c� increases as more high-spin

excitations are then allowed �Fig. 5�. For the considered OO
given by �JT70°, the changes of the contributions at the
two lower energies which correspond to n=1 and n=2 are
particularly large between zero and room temperature �up to
kBT /Jc0.8�, with the increase �decrease� of K1

�c� 
K2
�c�� by

�60 ��33� percent of the reference value at T=0. This leads
to rather similar values of all three contributions at room
temperature. This predicted behavior could be verified by
future experiments.

The temperature variation of the spectral weights for ab

polarization is more difficult to predict as it involves weak
sab spin correlations which develop in the temperature
range T�TN, and grow with increasing order parameter,
sab� ��Sz��2, below TN.61 Assuming the classical value for
sab=0.25 at T→0, one finds that the kinetic energy would
come entirely from the high-spin optical excitations K1

�ab�,
while the low-spin excitations would be fully suppressed
�Table III�. Above TN the spin system is controlled by the
dominating AF exchange constant Jc, and sab0. Even then
the high-spin excitations at low energy dominate and have
large spectral weight as a result of the persisting OO. Some
decrease of K1

�ab� accompanied by the increase of K1
�c� with

increasing temperature makes the anisotropy between K1
�c�

and K1
�ab� considerably less pronounced, but this anisotropy

of the spectra in the low energy range remains still close to
3:1 even at room temperature �Table III�. Note also that the
highest energy excitation for the ab polarization vanishes at
�SE=60°, and gives a negligible contribution for the JT angle
�JT70°, due to the orbital correlations within the ab planes.

Finally, we would like to emphasize again that knowing
only the exchange constants Jab and Jc in KCuF3, one is not
able to determine all the microscopic parameters of the CT
model. We emphasize that a better understanding of the

FIG. 4. Ratio of the exchange interactions �Jab� /Jc in KCuF3,
given by Eqs. �3.18� and �3.19�, for increasing charge transfer pa-
rameter R, obtained for a few values of � and for the OO induced
by the JT effect ��70°, solid lines�. The dashed line shows
�Jab� /Jc obtained for �=0.12 and for alternating �x2−z2� / �y2−z2�
orbitals ��=60° �.

FIG. 5. �Color online� Kinetic energy terms per bond �2.13�, as
obtained for the c axis with the OO �3.14� suggested by the JT
distortions ��70° � in KCuF3 �in units of J�: high-spin K1

�c� �solid
line� and low-spin K2,3

�c� �dashed lines�, for increasing temperature
T /Jc. Parameters as in Fig. 3.
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properties of KCuF3 can be achieved only by combining the
results of magnetic and optical experiments, after the latter
experiments have been performed.

IV. CUBIC MANGANITE: LaMnO3

A. Superexchange model

Although eg and t2g electrons behave quite differently in
LaMnO3 and are frequently treated as two subsystems,2,3 the
neutron experiments62 which measure the spin waves in the
A-AF phase below TN leave no doubt that an adequate de-
scription of the magnetic properties requires a magnetic
Hamiltonian of the form given by Eq. �2.11�, describing su-
perexchange between total S=2 spins of the Mn3+ ions. The
high-spin 5E ground state at each Mn3+ ion is stabilized by
the large Hund’s exchange JH. The situation is here more
complex than either in KCuF3 �Sec. III� or in the t2g systems
discussed in the following sections, however, as the superex-
change terms between Mn3+ ions originate from various
charge excitations di

4d j
4
⇋di

5d j
3, made either by eg or by t2g

electrons, leading to different excited states in the intermedi-
ate d5 configuration on a Mn2+�di

5� ion. Such processes de-
termine the U term HU�d4� defined by Eq. �2.6�, and were
analyzed in detail in Ref. 13, and lead to the structure of
HU�d4� given below. However, the CT processes H��d4�
contribute as well and the complete model for LaMnO3 reads

H�d4� = HU�d4� + H��d4� . �4.1�

The superexchange constant J is here defined again by Eq.
�2.7�, using an average hopping element along an effective

�dd
� bond, t= tpd
2 / �̄, where �̄ is an average CT excitation

energy, introduced below in Eq. �4.19�.
First we analyze the structure of the U term for

LaMnO3 , HU�d4�, due to excitations involving eg electrons.
The energies of the five possible excited states39 �i� the high-
spin 6A1 state �S=5/2� and �ii�–�v� the low-spin �S=3/2�
states 4A1, 4E�4E� , 4E��, and 4A2, will be parametrized again
by the intraorbital Coulomb element U �2.3�, and by Hund’s

exchange JH between a pair of eg electrons, defined in Eq.
�3.2�.63 The energies of the excited states are given in terms
of the Racah parameters in Ref. 39; in order to parametrize
this spectrum by JH we apply an approximate relation
4BC which holds for the spectroscopic values of the
Racah parameters for a Mn2+�d5� ion:54,64 B=0.107 eV and
C=0.477 eV. Here we use these atomic values as an ex-
ample of the theory—using them and Eq. �3.2� one finds
the excitation spectrum: U−3JH, U+3JH /4, U+5JH /4,
U+5JH /4, and U+13JH /4 
Fig. 1�a��. Unlike JH, the value
of U is known with less accuracy—hence we shall use it here
only as a parameter which can be deduced a posteriori from
the superexchange J which is able to explain the experimen-
tal values for the two exchange constants responsible for the
A-AF phase observed in LaMnO3 well below the structural
transition �here again TN�Ts�.

Using the spin algebra �Clebsch-Gordon coefficients�, and
making a rotation of the terms derived for a bond �ij� 	c to
the other two cubic axes a and b, one finds five contributions
to HU�d4� due to different �t2g

3 eg
1�i�t2g

3 eg
1� j⇋ �t2g

3 eg
2�i�t2g

3 � j exci-
tations by eg electrons13

H1
��� = −

J

20
r1�S� i · S� j + 6��1

4
− �i

���� j
���� , �4.2�

H2
��� =

3J

160
r2�S� i · S� j − 4��1

4
− �i

���� j
���� , �4.3�

H3
��� =

J

32
r3�S� i · S� j − 4��1

4
− �i

���� j
���� , �4.4�

H4
��� =

J

32
r4�S� i · S� j − 4��1

2
− �i

�����1

2
− � j

���� , �4.5�

H5
��� =

J

32
r5�S� i · S� j − 4��1

2
− �i

�����1

2
− � j

���� , �4.6�

where the coefficients

r1 =
1

1 − 3�
, r2 =

1

1 + 3�/4
,

r3 = r4 =
1

1 + 5�/4
, r5 =

1

1 + 13�/4
, �4.7�

follow from the above multiplet structure of Mn2+ �d5� ions,
and � �3.3� stands for the Hund’s exchange. The meaning of
the various terms is straightforward: the first term H1

��� de-
scribes the high-spin excitations to the 6A1 state while the
remaining ones, H

n

��� with n=2,…, 5, arise due to the low-
spin excited states 4A1, 4E�,

4E�, and 4A2, respectively. The
orbital dependence is given by the same operators �3.11� as
in Sec. III. Similar to the case of the 1E state for the copper
fluoride 
see Eqs. �3.5� and �3.6��, the doubly degenerate 4E

state contributes here with two terms characterized by a dif-
ferent orbital dependence in Eqs. �4.4� and �4.5�. Note that
this degeneracy would be removed by the cooperative JT
effect, i.e., the structural phase transition �and associated

TABLE III. Kinetic energies of the different Hubbard subbands
�K

n

����, and total kinetic energies �K���� �in meV�, as obtained for
KCuF3 for two representative orbital states �JT70° and �SE=60°.
Parameters: J33.3 meV,�=0.12.

�JT70° �SE=60°

T=0 40 K 300 K T=0 40 K 300 K

K1
�c� 3.8 3.9 6.1 3.2 3.3 5.2

K2
�c� 16.9 16.8 11.9 19.0 18.9 13.4

K3
�c� 8.9 8.8 6.2 11.2 11.1 7.9

K�c� 29.6 29.5 24.2 33.4 33.3 26.5

K1
�ab� 21.3 16.0 16.0 19.5 14.6 14.6

K2
�ab� 0.0 3.9 3.9 0.0 3.6 3.6

K3
�ab� 0.0 0.1 0.1 0.0 0.0 0.0

K�ab� 21.3 20.0 20.0 19.5 18.2 18.2

FINGERPRINTS OF SPIN-ORBITAL PHYSICS IN … PHYSICAL REVIEW B 72, 214431 �2005�

214431-11



OO� driven by the local JT coupling in combination with the
elastic lattice forces. The resulting small level splitting we
neglect here, and so we set r3=r4.

The superexchange mediated by t2g electrons results from
�t2g

3 eg
1�i�t2g

3 eg
1� j⇋ �t2g

4 eg
1�i�t2g

2 eg
1� j excitations which involve 4T1

and 4T2 configurations at both Mn ions: Mn2+ and Mn4+.
They give low S=3/2 spins of Mn2+ ions, and this part
of the superexchange is AF. Using the present units
introduced in Eqs. �2.3� and �3.2�, one finds the excitation
energies �not shown in Fig. 1�: ��4T1 , 4T2�U+5JH /4,
��4T2 , 4T2�U+9JH /4, ��4T1 , 4T1�U+11JH /4, and
��4T2 , 4T1�U+15JH /4, with the first �second� label stand-
ing for the configuration of the Mn2+ �Mn4+� ion, respec-
tively. In the actual derivation each of the excited states, with
one t2g orbital being either doubly occupied or empty, has to
be projected on the respective eigenstates and the spin alge-
bra is next used to construct the interacting total S=2 spin
states. This leads to the final contribution to HU which, in a
good approximation, is orbital independent13

H6
��� =

1

8
J�rt�S� i · S� j − 4� . �4.8�

Here �= �t� / t�2 follows from the difference between the ef-
fective d-d hopping elements along the 
 and � bonds, and
we adopt the Slater-Koster value �=1/9. The coefficient rt

stands for a superposition of the above t2g excitations in-
volved in the t2g superexchange

rt =
1

4�
1

1 +
5

4
�

+
1

1 +
9

4
�

+
1

1 +
11

4
�

+
1

1 +
15

4
�� .

�4.9�

There is no need to distinguish between the different excita-
tion energies; all of them are significantly higher than the
first low-spin excitation energy for the configuration 4A1,
which occurs after an excitation by an eg electron.

While earlier studies of the superexchange interactions in
manganites were limited to model Hamiltonians containing
only the U term,2,12–14 the importance of the CT processes
was emphasized only recently.65 For our purposes we derived
the CT term H��d4� by considering again excitations
by either 
 or � electrons on the bond �ij�, leading to
two-hole excited states at an intermediate oxygen
di

4�2p�ij��6d j
4
⇋di

5�2p�ij��4d j
5. Unlike in KCuF3 with a unique

CT excitation, however, in the present case a number of dif-
ferent excited states occurs with the excitation energies de-
pending on the electronic configuration of the two interme-
diate Mn2+ ions at sites i and j. One finds that these various
excitations can be parametrized by a single parameter R

given by Eq. �3.13�, and the excited states on two neighbor-
ing transition metal ions contribute, as for the U term, both
FM and AF terms

H��d4� =
1

16
JR �

�ij�	�
�c1�S� i · S� j − 4��1

2
− �i

�����1

2
− � j

����
+

8

5

− c2�S� i · S� j + 6� + c3�S� i · S� j − 4���1

4
− �i

���� j
����

+
8

5

− c4�S� i · S� j + 6� + c5�S� i · S� j − 4���1

2
+ �i

����
��1

2
+ � j

����� +
1

8
JR�ct�

�ij�
�S� i · S� j − 4� , �4.10�

where the coefficients cn, with n=1,…, 5, and ct are all de-
termined by � and R via ��=�R:

c1 =
1

4�
1

1 +
17

4
��

+
2

1 +
21

4
��

+
1

1 +
25

4
��� , �4.11�

c2 =
1

2�
1

1 +
17

8
��

+
1

1 +
25

8
��� , �4.12�

c3 =
1

16�
3

1 + 4��
+

5

1 +
17

4
��

+
3

1 + 5��
+

5

1 +
21

4
��� ,

�4.13�

c4 =
1

5
+

1

10�
3

1 +
15

8
��

+
5

1 +
17

8
��� , �4.14�

c5 =
3

5
+

1

160�
9

1 +
15

4
��

+
30

1 + 4��
+

25

1 +
17

4
��� ,

�4.15�

ct =
1

4�
1

1 +
17

4
��

+
2

1 +
19

4
��

+
1

1 +
21

4
��� . �4.16�

The coefficients cn follow from CT excitations by eg elec-
trons. As in the copper fluoride case �Sec. III�, the lowest
�high-spin� excitation energy will be labeled by �,

��6A1� = � , �4.17�

so the other possible individual �low-spin� excitations at each
transition metal ion have the energies
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��4A1� = � +
15

4
JH,

��4E� = � +
17

4
JH,

��4A2� = � +
25

4
JH. �4.18�

These excitation energies are used here to introduce an aver-

age CT energy �̄,

1

�̄
=

1

26
� 8

��6A1�
+

3

��4A1�
+

10

��4E�
+

5

��4A2�
� ,

�4.19�

which serves to define the effective hopping element

t= tpd
2 / �̄, and the superexchange energy J �2.7� in a micro-

scopic approach. We emphasize, however, that such micro-

scopic parameters as �tpd , �̄ ,U ,JH� will not be needed here,
and only the values of the effective parameters �J ,� ,R� will
decide about the exchange constants and the optical spectral
weights.

Each coefficient cn �4.11�, with n=1,…, 5, stands for an
individual process which contributes with a particular orbital
dependence due to an intermediate state arising in the exci-
tation process, and accompanies either a FM or an AF spin
factor, depending on whether high-spin or low-spin states are
involved. As in the U term �4.2�–�4.8�, a pair of directional
��� orbitals accompanies low-spin excitations, while either
high-spin or low-spin excited states are allowed when two
different orbitals, one directional and one orthogonal to it
�planar orbital�, are occupied at the two Mn3+ sites. In con-
trast to the U term, also configurations with two planar or-
bitals ��� occupied at sites i and j contribute to H��d4� in Eq.
�4.10�. These terms are accompanied by the projection op-
erator �� 1

2 +�
i

����� 1
2 +�

j

����� in Eq. �4.10�. Note that in the case
of the U term such configurations did not contribute as the eg

electrons were then blocked and could not generate any su-
perexchange terms. As the electrons from an oxygen 2p


orbital are excited instead to directional ��� orbitals at two
neighboring Mn3+ ions, again both high-spin �S=5/2� and
low-spin �S=3/2� excitations are here possible, giving a still
richer structure of H��d4�.

The OO in LaMnO3 is robust and sets in below the struc-
tural transition at Ts780 K.66 The orbital interactions
present in the superexchange Hamiltonian �4.1� would in-
duce a G-type OO.67 The observed classical ground state,
which can again be described by Eq. �3.17�, corresponds
instead to C-type OO, as deduced from the lattice distortions.
Note that in contrast to KCuF3, the occupied orbitals refer
now to electrons and thus the values of the expected orbital
angle � are �90° �which corresponds to cos ��0� and so are
distinctly different from the copper fluoride case. The aver-
ages of the orbital operators in the orbital ordered state are
given in Table II, including the terms �� 1

2 +�
i

����� 1
2 +�

j

�����
which contribute now to the CT part of superexchange. The

dependence on the orbital angle � suggests that, similar to
KCuF3, these new terms are more significant along the c axis
for the OO expected in the manganites.

B. Spin exchange constants and optical intensities

For a better understanding of the effective exchange inter-
actions it is convenient to introduce first the t2g superex-
change constant Jt which stands for the interaction induced
by the charge excitations of t2g electrons. When the CT terms
are included, Jt consists of the two contributions given in
Eqs. �4.8� and �4.10�,

Jt = JtU + Jt� =
1

8
J��rt + Rct� . �4.20�

This interaction is frequently called the superexchange be-
tween the core spins. We emphasize that this term is orbital
independent and thus isotropic. The coupling constant Jt has
a similar origin as the eg part of the superexchange J

e

���,
which, however, is orbital dependent and anisotropic. We
emphasize that both Jt and J

e

��� are relatively small fractions
of J.

The eg contributions to the effective exchange constants
�2.11� in LaMnO3 depend on the orbital state characterized
again by Eqs. �3.17� via the averages of the orbital operators,

Je
��� =

1

16
J�−

4

5
�r1 −

3

8
r2 −

5

8
r3�� 1

4
− �i

���� j
����

+
1

2
�r4 + r5���1

2
− �i

�����1

2
− � j

������
+

1

16
JR�c1��1

2
− �i

�����1

2
− � j

�����
+

8

5
�c3 − c2�� 1

4
− �i

���� j
����

+
8

5
�c5 − c4���1

2
+ �i

�����1

2
+ � j

������ . �4.21�

As the structural transition occurs at relatively high tempera-
ture Ts=780 K, at room temperature �and below it� the OO
may be considered to be frozen and specified by an angle �

see Eqs. �3.17��. The orbital fluctuations are then quenched
by the combined effect of the orbital part of the eg superex-
change in Eqs. �4.2�–�4.6� and the orbital interactions in-
duced by the JT effect,13 and the spins effectively decouple
from the orbitals, leading to the effective spin model �2.11�.
The magnetic transition then takes place within this OO
state, and is driven by the magnetic part of the superex-
change interactions, which follow from HU�d4� and H��d4�.
For the C-type OO, as observed in LaMnO3,66 one finds the
effective exchange constants in Eq. �2.11� as a superposition
of Jt and J

e

��� after inserting the averages of the orbital op-
erators �see Table II� in Eq. �4.21�:
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Jab =
1

16
J�−

1

5
�r1 −

3

8
r2��3

4
+ sin2�� +

1

4
r3�1 −

1

2
cos ��

+
1

8
r5�1

2
− cos ��2� +

1

64
JR�c1�1

2
− cos ��2

+
8

5
�c3 − c2��3

4
+ sin2��

+
8

5
�c5 − c4��1

2
+ cos ��2� + Jt, �4.22�

Jc =
1

16
J�−

1

5
�r1 −

3

8
r2�sin2� +

1

4
r3�1 + cos ��

+
1

8
r5�1 + cos ��2� +

1

64
JR�c1�1 + cos ��2

+
8

5
�c3 − c2�sin2� +

8

5
�c5 − c4��1 − cos ��2� + Jt.

�4.23�

Considering �=1/9 to be fixed by the Slater-Koster param-
etrization, a complete set of parameters which determines Jc

and Jab comprises: J �2.7�, � �3.3�, R �3.13�, and the orbital
angle � which defines the phase with OO by Eqs. �3.17�,
referring now to the orbitals occupied by electrons.

Equations �4.22� and �4.23� may be further analyzed in
two ways: either �i� using an effective model which includes
only the U superexchange term due to d-d transitions, as
presented in Ref. 13 and discussed in Appendix A �i.e., tak-
ing R=0 which implies H��d4��0�, or �ii� by considering
the complete H�d4� model as given by Eq. �4.1�, which in-
cludes also the CT contributions to the superexchange �with
R�0�. By a similar analysis in Sec. III we have established
that the CT terms are of essential importance in KCuF3 and
should not be neglected, as otherwise the strong anisotropy
of the exchange constants would remain unexplained. Here
the situation is qualitatively different—as we show in Appen-
dix A, using somewhat modified parameters J and � one
may still reproduce the experimental values of the exchange
constants, deduced from neutron experiments for LaMnO3,62

within the effective model at R=0, and even interpret suc-
cessfully the optical spectra.28

It is important to realize that the high-spin eg electron
excitations play a crucial role in stabilizing the observed
A-AF spin order, as only these processes are able to generate
FM terms in the superexchange. They compete with the re-
maining AF terms, and the A-AF phase is stable only when
Jab�0 and Jc�0. We have verified that the terms which
contribute to Jab and Jc in Eqs. �4.22� and �4.23� are all of the
same order of magnitude as all the coefficients �rn ,rt ,cn ,ct�
are of order 1. Hence, the superexchange energy J �2.7� is
much higher than the actual exchange constants in LaMnO3,
i.e., �Jab��J and Jc�J.

Next we consider the kinetic energies associated with the
various optical excitations which determine the optical spec-
tral weights by Eq. �2.13�. Again, as in the previously con-
sidered case of KCuF3, the high-spin subband at low energy

is unique and is accompanied by low-spin subbands at higher
energies. While the energetic separation between the high-
spin and low-spin parts of the spectrum �4JH is large, one
may expect that the low-spin optical excitations might be
difficult to distinguish experimentally from each other. As we
will see below by analyzing the actual parameters of
LaMnO3, the low-spin excitations overlap with the d-p CT
excitations, and so such a separation is indeed impossible—
thus we analyze here only the global high-energy spectral
weight due to the optical excitations on the transition metal
ions, expressed by the total kinetic energy KLS

��� for all �eg and
t2g� low-spin terms, and compare it with the high-spin one,
given by K1

���. Using the manganite model �4.1� one finds for
polarization in the ab plane

K1
�ab� =

1

40
Jr1�6 + sab��3

4
+ sin2�� , �4.24�

KLS
�ab� =

1

8
J� 3

40
r2�3

4
+ sin2�� +

1

4
r3�1 −

1

2
cos ��

+
1

8
r5�1

2
− cos ��2

+ 2�rt��4 − sab� �4.25�

and for polarization along the c axis

K1
�c� =

1

40
Jr1�6 + sc�sin2� , �4.26�

KLS
�c� =

1

8
J� 3

40
r2sin2� +

1

4
r3�1 + cos ��

+
1

8
r5�1 + cos ��2 + 2�rt��4 − sc� . �4.27�

The optical spectral weights given by Eqs. �4.24�–�4.27� are
determined by J , �, and the orbital angle �. Note that the
leading term in the low-spin part comes from the eg optical
excitations, while the t2g excitations contribute only with a
relatively small weight ��.

C. Magnetic interactions in LaMnO3

It is a challenge for the present theoretical model to de-
scribe both the magnetic exchange constants62 and the aniso-
tropic optical spectral weights28 using only a few effective
parameters �J ,� ,R� and the orbital angle �. We shall proceed
now somewhat differently than in Sec. III, and analyze the
experimental data using primarily these effective parameters,
while we will discuss afterwards how they relate to the ex-
pectations based on the values of the microscopic parameters
found in the literature.

The experimental values of the exchange constants,62

Jab=−1.66 meV and Jc=1.16 meV, impose rather severe
constraints on the microscopic parameters and on the pos-
sible OO in LaMnO3. The AF interaction Jc is quite sensitive
to the type of occupied orbitals �3.17�, and increases with
increasing amplitude of �z� orbitals in the ground state, i.e.,
with decreasing orbital angle �. Simultaneously, the FM in-
teraction −Jab is enhanced. Already with the effective model
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�at R=0� it is not straightforward to determine the parameters
J and �, as we discuss in Appendix A. This model is in fact
quite successful, and a reasonable agreement with experi-
ment could be obtained both for the magnetic exchange con-
stants and for the optical spectral weights, taking the experi-
mental excitation spectrum.28 Here we will investigate to
what extent this effective model gives robust results and
whether the CT processes could play an important role in
LaMnO3.

By analyzing the CT terms in the superexchange 
com-
pare Eqs. �4.22� and �4.23�� one concludes that these contri-
butions are predominantly AF. Therefore, it might be ex-
pected that a higher value of � than 0.16 used in Appendix A
would rather be consistent with the magnetic experiments.
Increasing � gives an increased coefficient r1, so not only the
FM term in J� is then enhanced, but also the optical spectral
weight K1

ab which corresponds to the high-spin transition.
Simultaneously, the angle � is somewhat increased, but the
dependence of the spectral weight K1

ab on the angle � is so
weak that the higher value of � dominates and a somewhat
lower value of J than 170 meV used in Appendix A has to be
chosen. Altogether, these considerations led us to selecting
J=150 meV and �=0.181 as representative parameters for
which we show below that a consistent explanation of both
magnetic and optical data is possible.

After these two parameter values have been fixed, it is of
interest to investigate the dependence of the effective ex-

change interactions on the CT parameter R and on the orbital
angle �. As in the KCuF3 case, one finds a stronger increase
of Jc with increasing R, while these terms are weaker and
lead to nonmonotonic changes for Jab �Fig. 6�. First of all,
with the present value of �=0.181, at R=0 the AF interac-
tion Jc is close to zero for angles ��100°, while the FM
interaction Jab�−2 meV is somewhat too strong. With in-
creasing R one finds that Jc increases, while the FM interac-
tion Jab initially becomes weaker when R increases up to
R=0.3 and the term �c1 dominates the CT contribution to
Jab 
see Eq. �4.22��. At higher values of R, however, the FM
contributions due to c3−c2�0 and c5−c4�0 start to domi-
nate, and Jab decreases with increasing R, particularly for
small values of ��90°. One finds that the experimental val-
ues of both exchange constants are well reproduced for
R=0.6 and at the orbital angle �=102°.

Although this fit is not unique, one has to realize that the
experimental constraints imposed on the parameters are in-
deed rather severe—as we show below the present param-
eters give a very reasonable and consistent interpretation of
the experimental results for LaMnO3. For the above param-
eters the FM and AF terms to Jc almost compensate each
other in the U term, and a considerable AF interaction along
the c axis arises mainly due to the CT contributions �Fig. 7�.
This qualitatively agrees with the situation found in KCuF3,
where the CT term was of crucial importance and helped to
explain the observed large anisotropy between the values of
exchange constants. Also the CT term which contributes to
Jab is AF and increases with increasing angle �, while the U

term is FM but weakens at the same time. This results in a
quite fast dependence of the FM interaction Jab on � �Fig. 7�.

One thus recognizes a similar dependence of the exchange
constants −Jab and Jc on the orbital angle � �Fig. 7� as that

FIG. 6. �Color online� Superexchange constants for LaMnO3:
�a� Jc along the c axis and �b� Jab in the ab plane, as functions of
orbital angle � which defines the C-type OO, see Eqs. �3.17�.
Dashed lines for increasing R=0, 0.15 and 0.30 from bottom to top;
solid lines for R=0.6. Note that the dependence of Jab on R is
nonmonotonic. Horizontal dotted lines indicate the experimental
values of Ref. 62 for LaMnO3; diamond and circle show the
experimental values of Jc and Jab for �=102°. Parameters:
J=150 meV, �=0.181.

FIG. 7. �Color online� Superexchange interactions −Jab �4.22�
and Jc �4.23� as functions of the orbital angle �, obtained within the
superexchange model �4.1� for LaMnO3 �solid lines�. Contributions
due to the U term and due to the CT term to both exchange con-
stants �−Jab and Jc� are shown by dashed and dashed-dotted lines,
respectively. Isotropic and orbital independent t2g terms superex-
change terms JtU and Jt� �4.20� are 1.45 and 0.83 meV. Experimen-
tal values �Ref. 62� of −Jab and Jc �indicated by diamond and circle�
are well reproduced at angle �=102°. Parameters J=150 meV,
�=0.181, R=0.6.
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found before with the U term alone �see Fig. 15 in Appendix
A�. The CT terms have mainly two consequences: �i� a large
AF contribution to the interaction along the c axis Jc and �ii�
an increase of the orbital angle well above �=90°. These
trends are robust in the realistic parameter range. Therefore,
one expects that the occupied eg orbitals approach the fre-
quently assumed alternating directional orbitals in the ab

planes �3x2−r2� / �3y2−r2� with �=120°, but cannot quite
reach them. Indeed, we have verified that orbitals with
��120° are excluded by the present calculations, as then the
FM interaction within the ab planes changes sign and be-
comes weakly AF. Thus, the mechanism for the observed
A-AF phase is lost, and one has to conclude that angles
���JT are excluded.

Indeed, we have found that the orbital angle �102° re-
produces well the experimental data for both exchange con-
stants �Fig. 7�, and is thus somewhat smaller than the angle
�JT=108° deduced from the lattice distortions in
LaMnO3.68,69 This can be seen as a compromise between the
orbital interactions involving the lattice and the purely elec-
tronic superexchange orbital interactions, so it is reasonable
to expect that ���JT.

Finally, we emphasize that the eg electron excitations,
contributing both to the U and to the CT processes in the
superexchange, are FM for all cubic directions,70 and only
due to a substantial t2g term which follows from low-spin
�AF� excitations, Jt=2.28 meV, the exchange interaction
along the c axis changes its sign and becomes AF. Alto-
gether, the present analysis shows that the t2g superexchange
plays a decisive role in stabilizing the observed A-AF spin
order—without it already the undoped LaMnO3 would be a
ferromagnet. This peculiar situation follows from the large
splitting between the high-spin and low-spin excitations
�3 eV in LaMnO3, which is larger than in any other transi-
tion metal compound considered in this paper, due to the fact
that the d shell is half filled in the Mn2+ excited states.18 This
leads to relatively large FM contributions, even when the
orbitals are not so close to the ideal alternation of directional
and planar states �as found along the c axis�, which would
maximize the averages of the orbital operators � 1

4 −�
i

���
�

j

����
that control the weight of the high-spin terms, see Table II.
This result is remarkable but again qualitatively the same as
found in the effective model of Appendix A. However, quan-
titatively the t2g term is here somewhat stronger, as Jt is now
increased by �35% over its value Jt=1.7 meV deduced from
the effective d-d model with U terms only. As a common
feature one finds that Jt�2 meV, so we emphasize that the
superexchange promoted by t2g electrons is quite weak and is
characterized by a small value of Jt�4�10−3t �or �0.01t

for the superexchange between S=3/2 core spins2,71� which
provides an important constraint for the realistic models of
manganites.

D. Optical spectral weights in LaMnO3

Consider now the temperature dependence of the optical
spectral weights �2.15�. As the orbital dynamics is quenched
up to room temperature T�300 K, it suffices to consider the
temperature dependence of the intersite spin-spin correla-

tions �2.12�. We derived these by employing the so-called
Oguchi method72 �see Appendix B�, which is expected to
give rather realistic values of spin correlations functions for
the large spins S=2 in LaMnO3 in the entire temperature
range. Thereby we solved exactly the spin-spin correlations
�sab ,sc� on a single bond �ij� coupled to neighboring spins by
mean-field �MF� terms, proportional to the order parameter
�Sz�. A realistic estimate of the magnetic transition can be
obtained by reducing the MF result obtained for S=2 spins
by an empirical factor �0.71.73 Using the exchange interac-
tions obtained with the present parameters, one finds
TN143 K which reasonably agrees with the experimental
value of TN

exp=136 K.62 The calculations of spin-spin corre-
lations are straightforward, and we summarize them in Ap-
pendix B. Both correlation functions sab and sc change fast
close to TN, reflecting the temperature dependence of the
Brillouin function which determines �Sz�, and remain finite at
TTN.

The large splitting between the high-spin and low-spin
excitations makes it possible to separate the high-spin exci-
tations from the remaining ones in the optical spectra, and to
observe the temperature dependence of its intensity for both
polarizations. As in the effective model,28,74 the present
theory predicts that the low-energy optical intensity exhibits
a rather strong anisotropy between the ab and c directions. It
is particularly pronounced and close to 10:1 at low tempera-
tures when the spin correlations �sab� and sc are maximal
�Fig. 8�. Unfortunately, this anisotropy at T→0 is only
weakly dependent on the orbital angle �, so it cannot help to
establish the type of OO realized in the ground state of
LaMnO3, and its possible changes with increasing tempera-
ture. In fact, when the parameters are fixed and only the
orbital angle � is changed, a different value of the Néel tem-
perature follows from the modified exchange constants, be-
ing the main reason behind the somewhat different tempera-
ture dependence of the ratio K1

�ab� /K1
�c� �Fig. 8�.

One finds a very satisfactory agreement between the
present theory and the experimental results of Ref. 28, as
shown in Fig. 9. We emphasize, however, that the tempera-

FIG. 8. �Color online� Anisotropy of the low-energy spectral
weights in LaMnO3, given by the ratio K1

�ab� /K1
�c�, for increasing

temperature T, as obtained for �=102° �solid line�, �=108° �dashed
line�, �=98° �dashed-dotted line�. The arrows indicate the Néel
temperature TN derived from the exchange constants in each case
�see text�. Parameters: J=150 meV, �=0.181.
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ture variation of the optical spectral weights could also be
reproduced within the effective model at R=0,28,74 showing
that the CT terms lead only to minor quantitative modifica-
tions. Note also that at this stage no fit is made, i.e., the
kinetic energies �2.13� which stand for the optical sum rule
are calculated using the same parameters as found above to
reproduce the exchange constants in Fig. 7. Therefore, such a
good agreement with experiment demonstrates that indeed
the superexchange interactions describe the spectral intensi-
ties in the optical transitions. We note, however, that the
anisotropy in the range of T�TN is somewhat larger in ex-
periment which might be due to either some inaccuracy of
the Oguchi method or due to the experimental resolution.

The distribution of the optical intensities K
n

��� and their
changes between the low �T0� and the high temperature
�T=300 K� regime are summarized in Table IV. At tempera-
ture T=0 one finds that for the ab polarization the entire
spectral intensity originates from high-spin excitations. This
result follows from the classical value of the spin-spin cor-
relation function sab=−1 predicted by the Oguchi method. As
quantum fluctuations in the A-AF phase are small,75 the
present result is nearly accurate. When the temperature in-
creases, one finds considerable transfer of optical spectral

weights between low and high energies, discussed also in
Ref. 28, with almost constant total intensities K��� for both
�=ab and c �see also Fig. 9�. The optical weights obtained
for the JT angle �JT=108° are similar to those for �=102°,
showing again that the optical spectroscopy is almost insen-
sitive to small changes of the orbital angle. In contrast, for
�JT the exchange constants �and hence also the estimated
value of TN� are too low.

While the effective parameters �J ,� ,R� used in this sec-
tion give a very satisfactory description of both magnetic and
optical properties of LaMnO3, the values of the microscopic
parameters, such as the Coulomb interaction on the Mn ions
U, and on the oxygen ions Up, the Hund’s exchange JH, the
charge transfer parameter �, and the d-p hopping element
tpd, are not uniquely determined. One could attempt to fix
these parameters using the atomic value of Hund’s exchange
JH=0.9 eV. With �=0.181 it leads to U5.0 eV, quite close
to other estimates,43 while the value of R=0.6 suggests then
that, taking the commonly accepted43,64 value of the CT en-
ergy �=5.0 eV, the oxygen Coulomb element is large,
Up7 eV. This value of Up is larger than usually obtained
Up�4 eV for oxygen ions, such as, for instance, by analyz-
ing the parameters of the three-band model for CuO2
planes.59 We note, however, that the optical data28 suggest a
somewhat reduced value of Hund’s exchange JH�0.7 eV
�using the present units�, so it could be that the local ex-
change interactions are somewhat screened in reality.

Fortunately, when the optical data are available, also the
position of the low-energy excitation is known, and this may
serve as an additional experimental constraint for the
parameters.20 This excitation is found at about 2.0 eV,28 in-
dicating that U−3JH2.0 eV. With this constraint one finds,
using again �=0.181, that U3.7 eV and JH0.67 eV.
These parameters give the low-spin 4A1 and 4E excitations
close to 4.5 eV, in agreement with experiment.28 So the
above values of the microscopic parameters �U ,JH� appear to

TABLE IV. Exchange constants J� 
see Eqs. �4.22� and �4.23��,
kinetic energies for high-spin �K1

���� and for low-spin �KLS
���� excita-

tions 
see Eqs. �4.24�–�4.27��, and total kinetic energies Ktot
��� �all in

meV�, for a bond within an ab plane ��=ab� and along a c axis
��=c�, as obtained for the OO given by the orbital angle �102°
which reproduces the experimental exchange constants �Ref. 62�,
and for the angle suggested by the lattice distortions �JT. Param-
eters: J=150 meV, �0.181, R=0.6.

�102° �JT=108°

T�K� 0 300 0 300

Jab −1.66 −1.06

Jc 1.16 0.95

K1
�ab� 140.1 94.2 135.8 88.1

KLS
�ab� 0.0 38.1 0.0 42.1

Ktot
�ab� 140.1 132.3 135.8 130.2

K1
�c� 13.7 42.9 12.6 41.2

KLS
�c� 80.0 44.0 74.9 40.1

Ktot
�c� 93.7 86.9 87.5 81.3

FIG. 9. �Color online� Kinetic energies per bond �in meV� as
functions of temperature T, obtained for LaMnO3 for the high-spin
�solid lines, n=1� and for the low-spin �dashed lines, n�1� excita-
tions at the Mn ions for polarization: �a� in the ab planes K

n

�ab� and
�b� along the c axis K

n

�c�. The total kinetic energies K��� are given by
the long dashed-dotted lines, while the vertical dotted lines indicate
the value of TN derived within the present model �see text�. Filled
circles show the experimental intensities �Ref. 28� at low energy
�n=1�. Parameters: J=150 meV, �0.181, R=0.6, and �102°.
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be consistent both with the present value of � and with the
spectra. Furthermore, for these empirical parameters one
finds R=0.6 either with �=5.0 and Up2.3 eV, or with
�=4.2 and Up4.0 eV. These values, particularly the sec-
ond set, are perfectly acceptable and in the usually consid-
ered range.54,64 Taking the above value of U3.7 and
J=150 meV, one finds t=0.37 eV, a somewhat lower value
than that which follows from the effective model of Appen-
dix A. Altogether, these results indicate, contrary to what is
frequently assumed,42,54 that the local exchange interactions
are somewhat screened in reality by covalency effects, and
that at the same time the screening of the intraorbital
Coulomb interaction U is stronger than estimated before.43,64

V. CUBIC TITANITES

A. Spin-orbital superexchange model

Perovskite titanates, LaTiO3 and YTiO3, are intriguing
examples of Mott insulators with orbital degrees of freedom
due to t2g electrons: in the ground state the Ti3+ ions are in
the t2g

1 configuration. In an ideal perovskite structure the t2g

orbitals are degenerate, but lattice distortions may contribute
to the magnetic ground state76–79 and to the Mott
transition80—here we do not intend to discuss this controver-
sial issue.

In an ideal cubic system each t2g orbital is perpendicular
to a single cubic axis, for instance the �xy� orbital lies in the
ab plane and is perpendicular to the c axis. It is therefore
convenient to introduce the following short hand notation for
the orbital degree of freedom:15

�a� � �yz�, �b� � �zx�, �c� � �xy� . �5.1�

The labels �=a ,b ,c thus refer to the cubic axes perpendicu-
lar to the planes of the respective orbitals.

The superexchange spin-orbital model �2.8� in cubic titan-
ates couples S=1/2 spins and the orbital t2g degrees of free-
dom at nearest neighbor Ti3+ ions. Due to large U the elec-
tron densities satisfy thereby the local constraint at each site
i,

nia + nib + nic = 1. �5.2�

In titanates there is no need to consider CT processes, as
these systems are Mott-Hubbard insulators1 and no qualita-
tively new effects apart from some negligible renormaliza-
tion of the effective parameters �J ,�� could arise from CT
excitations. This simplifies our considerations, so we analyze
the superexchange in the leading order of perturbation
theory, given by the contributions which result from
virtual excitations between the neighboring Ti3+ ions
�t2g

1 �i�t2g
1 � j⇋ �t2g

2 �i�t2g
0 � j. These charge excitations involve the

Coulomb interactions in the d2 configuration of a Ti2+ ion,
parametrized as before by the intraorbital Coulomb element
U, and by Hund’s exchange element JH for a pair of t2g

electrons, defined as follows �see Table I�:39

JH = 3B + C . �5.3�

The charge excitations lead to one of four different excited
states39 shown in Fig. 1�b�: the high-spin 3T1 state at energy

U−3JH and three low-spin states, degenerate 1T2 and 1E

states at energy U−JH and an 1A1 state at energy U+2JH. As
before, the excitation energies are parameterized by �, de-
fined as in Eq. �3.3�, and we introduce the coefficients

r1 =
1

1 − 3�
, r2 =

1

1 − �
, r3 =

1

1 + 2�
. �5.4�

One finds the following compact expressions for the super-
exchange HU�d1� as given by Eq. �2.6�:15,81

H1
��� =

1

2
Jr1�S� i · S� j +

3

4
��Aij

��� −
1

2
nij

���� , �5.5�

H2
��� =

1

2
Jr2�S� i · S� j −

1

4
��Aij

��� −
2

3
Bij

��� +
1

2
nij

���� , �5.6�

H3
��� =

1

3
Jr3�S� i · S� j −

1

4
�Bij

���, �5.7�

where

Aij
��� = 2���i · �� j +

1

4
nin j����

, �5.8�

Bij
��� = 2���i � �� j +

1

4
nin j����

, �5.9�

nij
��� = ni

��� + n j
���. �5.10�

As in Secs. III and IV the orbital �pseudospin� operators
�A

ij

��� ,B
ij

��� ,n
ij

���� depend on the direction of the �ij� bond.
Their form follows from the simple observation15,82 that only
two t2g orbitals �flavors� are active along each cubic axis,
e.g., if �=c, the active orbitals are a and b 
see Eq. �5.1��,
and they give two components of the pseudospin T=1/2
operator ��i. Here the operators �A

ij

��� ,B
ij

���� describe the inter-
actions between the active orbitals along the particular bond,
which include the quantum effects due to their fluctuations,
and take either the form of a scalar product ��i ·�� j, or lead to a
similar expression

��i � �� j = �i
x� j

x − �i
y� j

y + �i
z�i

z, �5.11�

which involves double excitations due to �i
+� j

+ and �i
−� j

− terms
�as in the U�0 Hubbard model�. The interactions along axis
� are tuned by the number of electrons occupying active
orbitals, n

i

���=1−ni�, which is fixed by the number of elec-
trons in the inactive orbital ni�, because of the constraint
�5.2�.

B. Spin exchange constants and optical intensities

The exchange constant for a bond �ij� along axis � is
obtained from Eqs. �5.5�–�5.7� by averaging over the orbital
states at both sites i and j,
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J� =
1

2
J�r1 + r2��Aij

���� −
1

3
J�r2 − r3��Bij

����

−
1

4
J�r1 − r2��ni

��� + n j
���� . �5.12�

The cubic titanates are known to have particularly pro-
nounced quantum spin-orbital fluctuations, and their proper
treatment requires a rather sophisticated approach.15,81 Here
we shall ignore this complex quantum problem, and shall
illustrate the general theory by extracting the magnetic ex-
change constants from Eq. �5.12�, and the optical spectral
weights �2.15�, using an ansatz for the OO in the ground
state, in analogy to the approach employed in Secs. III and
IV for the more classical eg systems.

In general a classical orbital state in the titanates with
GdFeO3-type lattice structure can be parametrized as fol-
lows:

��1� = 	�a� + ��b� + ��c� ,

��2� = ��a� + 	�b� + ��c� ,

��3� = 	�a� + ��b� − ��c� ,

��4� = ��a� + 	�b� − ��c� , �5.13�

with real coefficients and normalized �	2+�2+�2=1� wave
functions at each site. The occupied orbitals ��i� refer to four
sublattices �i=1,…, 4�, with Ti1�000�, Ti2�100�, Ti3�001�,
Ti4�101� positions.43,83 The minus signs in ��3� and ��4� re-
flect a mirror symmetry present in the GdFeO3 structure.
Note that this state resembles G-type OO, and is thus differ-
ent from the C-type OO encountered for eg orbitals 
due to
the change of sign for the �c� orbitals in Eqs. �5.13� along the
c axis�.

Using the ansatz �5.13� one finds after a straightforward
calculation the exchange constants

Jc =
1

2
J
�r1 + r2r3��1 − �2�2 − �r1 − r2��1 − �2�� ,

�5.14�

Jab =
1

4
J
2�r1 + r2r3���2 + 	��2 − �r1 − r2��1 + �2�� .

�5.15�

They are determined once again by �i� the superexchange
parameter J given by Eq. �2.7�, with t standing now for the
effective �dd�� hopping element, �ii� Hund’s exchange ele-
ment � �3.3�,84 and �iii� the orbital state �5.13�, specified in
the present case by the coefficients �	 ,� ,��.

Following the general theory of Sec. II, the optical exci-
tations corresponding to the high-spin Hubbard band at en-
ergy U−3JH �n=1�, and to the two low-spin Hubbard bands
at U−JH �n=2� and U+2JH �n=3� of Fig. 1�b�, have total
intensities given by the respective kinetic energies K

n

���, see

Eq. �2.15�. Using the classical wave functions given by Eqs.
�5.13�, one finds the following optical spectral weights. For
polarization along the c axis,

K1
�c� = Jr1�

2�1 − �2��3

4
+ sc� , �5.16�

K2
�c� =

4

3
Jr2�1 − �2��1 −

1

4
�2��1

4
− sc� , �5.17�

K3
�c� =

2

3
Jr3�1 − �2�2�1

4
− sc� . �5.18�

For polarization in the ab plane,

K1
�ab� = Jr1�1

2
�1 + �2� − ��2 + 	��2��3

4
+ sab� ,

�5.19�

K2
�ab� = Jr2�1

2
�1 + �2� +

1

3
��2 + 	��2��1

4
− sab� ,

�5.20�

K3
�ab� =

2

3
Jr3��2 + 	��2�1

4
− sab� . �5.21�

The kinetic energies K
n

��� depend on the same parameters
�J ,�� as the exchange constants �5.14� and �5.15�, on the
orbital state �5.13� via the coefficients �	 ,� ,��, and on the
spin-spin correlations �2.12�.

C. Application to LaTiO3 and YTiO3

It is now straightforward to investigate the dependence of
the magnetic and the optical properties in the four-sublattice
classical state �5.13� on the effective parameters �J ,�� and
on the type of OO given by the coefficients �	 ,� ,��. A pri-

ori, the average electron density in the �c� orbitals, nc= �nic�,
is different from the densities in the other two orbitals �na

and nb�, and the cubic symmetry of the expectation values J�
and Kn

� is explicitly broken by the OO given by Eq. �5.13�,
unless all the orbital amplitudes are equal,

	 = � = � =
1
�3

, �5.22�

as argued in Refs. 76 and 77. First we consider this isotropic
state and evaluate the exchange constants J� for increasing
Hund’s parameter �. One finds then AF superexchange
J��0.4J which decreases with increasing � 
Fig. 10�a��, but
the interactions remain AF in the physically relevant range of
��0.28. Note that this classical consideration seriously
overestimates the actual exchange interaction as one expects
instead J��0.16J when quantum effects are included.15

Nevertheless, having no information about the optical exci-
tations, we give here an example of estimating the exchange
constants and optical spectral weights using the spectro-
scopic values43 for Hund’s exchange JH0.59, and for
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Coulomb intraorbital interaction of U=4.8 eV, which give
�=0.123. Assuming now a hopping parameter t=0.2 eV, one
finds J33 meV which gives J�14 meV. While one
might expect that the effective U is somewhat reduced as in
the case of LaMnO3, and the value of � would then be larger,
the present crude estimate is accidentally quite close to the
experimental value of Jexp=15.5 meV.85

In the AF state, realized in LaTiO3, all three Hubbard
subbands contribute in the optical spectroscopy, and taking
the Néel state with sab=sc=−0.25 one finds the highest spec-
tral weight at T=0 for n=2 
Fig. 10�b��. For the realistic
value ��0.123 the spectral weight of the lowest-energy
�high-spin� Hubbard subband K1

��� is relatively weak, and is
similar to that of the n=3 low-spin excitation at the highest
energy 
Fig. 10�b��. Note, however, that in early optical ex-
periments the intensity was found to be practically indepen-
dent of energy �,86 so different excitations might be difficult
to separate from each other.

Let us verify now whether the wavefunctions as given by
Eqs. �5.13� could also lead to isotropic AF states for other
choices of orbital amplitudes than in Eq. �5.22�. Thus, we
considered equal amplitudes 	 and � in the states param-
etrized by  ,

	 = � = �1 −  �
1
�3

+  
1
�2

, �5.23�

with 0� �1. The normalization condition gives
�= �1−	2−�2�1/2 which vanishes at  =1. As expected, the

exchange interactions are anisotropic for small  �0 �Fig.
11�. The increasing occupancy of the c orbitals with increas-
ing  results in a somewhat enhanced exchange interaction
Jab near the isotropic state �for  �0.5�, while the interaction
Jc decreases almost linearly.87 At larger orbital anisotropy the
interaction Jab decreases as well. It is remarkable that the AF
interactions become again isotropic close to 	=�=1/�2
which gives a large charge density nc0.5 in the �c� orbitals,
but this feature is not generic and will likely be modified by
quantum effects. Note also that the state at �=0 is not a FM
state, contrary to some earlier suggestions.43

Finally we remark that the temperature dependence of the
optical spectral weights can again be studied in a similar way
as for LaMnO3, by solving the spin-spin correlation func-
tions at increasing temperature using the method of Appen-
dix B for S=1/2 spins. Having no experimental data either

TABLE V. Exchange constants J�, kinetic energies for Hubbard
subbands K

n

���, and total kinetic energies K��� �all in units of J� for
two orbital ordered states suggested for LaTiO3: state A �5.22�, and
state B �5.24� reported in Ref. 88, and for the OO state suggested
for YTiO3 in Ref. 81. Parameter: �=0.123.

LaTiO3 YTiO3

state A �5.22� state B �5.24� state F �5.25�
T=0 TTN T=0 TTN T=0 TTC

Jc 0.407 0.428 −0.148

Jab 0.407 0.351 −0.148

K1
�c� 0.176 0.264 0.172 0.258 1.057 0.792

K2
�c� 0.465 0.232 0.476 0.238 0.000 0.190

K3
�c� 0.118 0.059 0.124 0.062 0.000 0.000

K�c� 0.759 0.555 0.772 0.558 1.057 0.982

K1
�ab� 0.176 0.264 0.207 0.311 1.057 0.792

K2
�ab� 0.465 0.232 0.451 0.226 0.000 0.190

K3
�ab� 0.118 0.059 0.107 0.053 0.000 0.000

K�ab� 0.759 0.555 0.765 0.590 1.057 0.982

FIG. 10. �Color online� Magnetic and optical properties of
LaTiO3, as obtained for the classical wave functions �5.13� with
isotropic orbital amplitudes �5.22�, for increasing Hund’s exchange
�=JH /U: �a� exchange interactions Jc=Jab, and �b� kinetic energy
terms K

n

��� at T=0: high-spin �n=1, solid line�, and low-spin
intermediate-energy �n=2, dashed line�, and high-energy excitation
�n=3, long-dashed line�. The total kinetic energy K��� is shown by
the dashed-dotted line.

FIG. 11. Exchange interactions Jc and Jab, Eqs. �5.12� �solid and
dashed line� for the titanite model for different types of orbital order
given by Eqs. �5.13�. The coefficients in the wave functions �5.13�
vary between the isotropic state 	=�=�=1/�3 and the state with
linear combinations of �a� / �b� and �c� orbitals, with the coefficients
given by: 	=�=1/�3+ �1/�2−1/�3� and �= �1−	2−�2�1/2.
Parameters: �=0.123.

OLEŚ et al. PHYSICAL REVIEW B 72, 214431 �2005�

214431-20



for LaTiO3 or for YTiO3, we shall limit ourselves to making
predictions concerning the overall change of the spectral
weights between low temperature T�0 where the spin-spin
correlations are maximal, and room temperature TTN �or
TTC�, where the spin-spin correlations may be neglected.
We take rigid classical wave functions with OO �5.13� and
discuss first AF states. Apart from the isotropic AF phase
�5.22�, called state A, we consider in Table V also somewhat
modified orbital amplitudes, as proposed by Itoh et al.:88

	 = 0.690, � = 0.452, � = 0.565, �5.24�

called here state B. One finds that the exchange interactions
Jc and Jab are then rather anisotropic �see Table V�, so we
believe that this state can be experimentally excluded on the
basis of the neutron data.85

Due to the AF order in the ground state for the wavefunc-
tions A and B, the lowest energy high-spin excitations are
suppressed at low temperature, but we predict that their
weight should increase by about 50% above the magnetic
transition �Table V�. An even stronger temperature depen-
dence is predicted for the low-spin part of the spectra with its
intensity decreasing by a factor 2 when the magnetic order is
lost. Thus, the spectral weight is shifted from the high-energy
to the low-energy part of the optical spectrum with increas-
ing temperature, and the total spectral weight decreases, both
features being typical of AF bonds. An experimental confir-
mation of this trend would also allow one to identify the
energy splitting between the high-spin and low-spin parts of
the upper Hubbard band, and to determine the value of
Hund’s exchange JH from experiment. Although the aniso-
tropy in spectral weights found in the state �5.24� proposed
by Itoh et al.88 might be too weak to be seen experimentally,
the predicted anisotropy in the exchange interactions is cer-
tainly detectable.

It is quite remarkable that an isotropic FM ground state of
YTiO3 can also be described classically by the OO state with
four sublattices, but the phase factors in the wave functions
have to be then selected differently:81

�!1� =
1
�3

��a� + �b� + �c�� ,

�!2� =
1
�3

�− �a� − �b� + �c�� ,

�!3� =
1
�3

�− �a� + �b� − �c�� ,

�!4� =
1
�3

��a� − �b� − �c�� . �5.25�

We call this state the orbital F state. Neglecting again orbital
�quantum� fluctuations, one finds �A

ij

����= �B
ij

����=0 in this
state, while n

i

���= 4
3 . At finite � this leads indeed to an isotro-

pic FM state with exchange constants,

Jc
FM = Jab

FM = −
2

3
J�r1r2, �5.26�

in lowest order ��,89 so this type of OO leads to a markedly
different exchange constant from that given by Eq. �5.14�.
Assuming again the same parameters as above one finds
J�

FM−5 meV, which is somewhat higher than the experi-
mental value J�

exp−3 meV.90 However, in view of the sim-
plicity of the present considerations this agreement can be
regarded as satisfactory.

Consider now the spectral weights in the optical spectros-
copy. One finds rather simple expressions for the �isotropic�
optical spectral weights for the F state

K1
��� =

2

3
Jr1�3

4
+ s�� , �5.27�

K2
��� =

2

3
Jr2�1

4
− s�� , �5.28�

K3
��� = 0. �5.29�

Thus, the optical spectrum of YTiO3 would be quite different
from that of LaTiO3 �see Table V�. For the FM state at
T=0 �with s�= 1

4 � only the high-spin spectral weight
K1

���= 2
3Jr1 contributes, and for the present parameters

K1
���J. Thus, future optical experiments on YTiO3 com-

bined with magnetic experiments could help to determine the
superexchange constant J. Furthermore, for the FM F orbital
state �5.25� one finds at high temperature a moderate reduc-
tion of the low-energy spectral weight by �25%, and a cor-
responding increase for the higher energy excitation n=2

the third excitation does not contribute as long as the OO
remains the same as in Eqs. �5.25��. The energy difference
between these excitations is 2JH �Fig. 1�, so they might serve
to determine this parameter from the optical spectroscopy.

The above results show once again that the magnetic in-
teractions and the optical spectral weights depend in a crucial
way on the underlying orbital state. Once the OO in F state
�5.25� has been fixed, the exchange constants Jc

FM �5.26�
were completely determined by the superexchange J �2.7�,
and by Hund’s exchange parameter �. For the optical spec-
tral weights K

n

��� �5.27�–�5.29� one needs in addition the
spin-spin correlation function s�. Most importantly, a strong
temperature dependence of the optical spectra follows here
from a classical orbital picture, and this should be a crucial
experimental test of the validity of the present approach.

VI. CUBIC VANADATES

A. Spin-orbital superexchange model

The last example of spin-orbital physics we want to give
here are the cubic vanadates, in which the orbital degrees of
freedom originate from the t2g

2 configuration of the V3+ ions
present in the ground state. Here our goal will be to answer
the question to what extent these systems could be described
by decoupling spin and orbital degrees of freedom and as-
suming classical states with OO. The OO in the cubic vana-
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dates is complementary to the spin order—the C-type AF
phase is found for G-type OO, and the G-type AF phase is
accompanied by C-type OO.91 Here we shall consider in
more detail G-type OO, relevant for the case of LaVO3. We
will show in particular that the superexchange spin-orbital
model16 allows one to understand the microscopic reasons
behind the C-AF phase observed in LaVO3, and predicts that
�Jc��Jab, as actually observed.92 The comparable size of FM
and AF exchange constants Jc and Jab, respectively, is unex-
pected when considering the Goodenough-Kanamori-
Anderson rules,34 which would suggest that �Jc� is by a factor
JH /U smaller.

In the case of the vanadates the superexchange between
the S=1 spins of V3+ ions in a perovskite lattice results from
virtual charge excitations �t2g

2 �i�t2g
2 � j⇋ �t2g

3 �i�t2g
1 � j. These

charge excitations involve the Coulomb interactions in the d3

configuration of a V2+ ion, parametrized for a pair of t2g

electrons, as for the titanates, by the intraorbital Coulomb
element U, and by Hund’s exchange element JH 
see Eq.
�5.3� and Table I�.39 The excitation spectrum which leads to
the superexchange model includes three states:16 �i� a high-
spin state 4A2 at energy U−3JH, �ii� two degenerate low-spin
states 2T1 and 2E at energy U, and �iii� a 2T2 low-spin state at
energy U+2JH �Fig. 1�. We parametrize it by two coeffi-
cients r1=1/ �1−3�� and r3=1/ �1+2��. A general Hamil-
tonian was already given in Ref. 16; here we shall analyze it
assuming that the xy��c�� orbitals are singly occupied at each
V3+ ion, as concluded from experiment93,94 and from elec-
tronic structure calculations.95 Therefore, the electron densi-
ties in the remaining two orbitals satisfy at each site i the
local constraint

nia + nib = 1. �6.1�

One finds then that the superexchange HU�d2� for a bond �ij�
along the c axis consists of

H1
�c� = −

J

3
r1�2 + S� i · S� j��1

4
− ��i · �� j� , �6.2�

H2
�c� = −

J

12
�1 − S� i · S� j��7

4
− �i

z� j
z − �i

x� j
x + 5�i

y� j
y� , �6.3�

H3
�c� = −

J

4
r3�1 − S� i · S� j��1

4
+ �i

z� j
z + �i

x� j
x − �i

y� j
y� , �6.4�

and for a bond in the ab plane

H1
�ab� = −

1

6
Jr1�S� i · S� j + 2��1

4
− �i

z� j
z� , �6.5�

H2
�ab� = −

1

8
J�1 − S� i · S� j��19

12
�

1

2
�i

z �
1

2
� j

z −
1

3
�i

z� j
z� ,

�6.6�

H3
�ab� = −

1

8
Jr3�1 − S� i · S� j��5

4
�

1

2
�i

z �
1

2
� j

z + �i
z� j

z� ,

�6.7�

where the operators ��i describe orbital pseudospins T=1/2
defined �for each direction �� by the orbital doublet
��yz� , �xz�����a� , �b��. At each site i there is precisely one
electron in these two orbitals, and both of them are active
along the c axis.

It has already been shown before20 that the quantum
fluctuations96 play a decisive role in LaVO3, and the
observed29 anisotropy and temperature dependence of the
high-spin excitations in optical spectroscopy is reproduced
when the theory includes them. In the next Sec. VI B we will
present now the limitations of a simplified approach which is
widely accepted94 and assumes that the OO in LaVO3 is
quite rigid already at the magnetic transition. Quantum fluc-
tuations lead to important corrections which go beyond this
picture and modify the temperature variation of the optical
spectral weights, as we discuss in Sec. VI C.

B. Spin exchange constants and optical spectral weights for

alternating orbital order

After decoupling of spin and orbital variables, the effec-
tive spin exchange constants Jc and Jab in Eq. �2.11� can be
obtained from Eqs. �6.2�–�6.7� by averaging over orbital cor-
relations, as derived in Ref. 20,

Jc = −
1

2
J��r1 − �r1 − �r1 − �r3��1

4
+ ���i · �� j��

− 2�r3��i
y� j

y�� , �6.8�

Jab =
1

4
J�1 − �r1 − �r3 + �r1 − �r1 − �r3��1

4
+ ��i

z� j
z��� .

�6.9�

They are determined by the orbital correlations, which result
not only from the superexchange HU�d2� but also from the
interactions with the lattice �from the JT term�,20 as dis-
cussed in detail in Sec. VI C. Here we shall consider first
classical states with alternating �a� and �b� orbitals in the ab

planes, i.e. G-type OO when these orbitals alternate also
along the c axis, and C-type OO for repeated either �a� or �b�
orbitals along the c axis. These classical states are frequently
assumed as a consequence of a strong JT term and observed
GdFeO3 distortions.94 Such classical order would naturally
follow from a strong JT effect, but it is still controversial
whether the JT interaction is actually that strong in the vana-
dates. Fortunately, there are already experimental results
which can help to resolve this controversy, and we address
this issue in more detail in Sec. VI C.

First we consider the limit of strong JT interaction with
rigid OO. This implies ���i ·�� j���i

z� j
z�=− 1

4 along each bond
for G-type OO, so one finds from Eqs. �6.8� and �6.9� fixed
values of the exchange constants
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Jc
C-AF = −

1

2
J�r1, �6.10�

Jab
C-AF =

1

4
J
1 − ��r1 + r3�� . �6.11�

The FM interaction Jc
C-AF increases in lowest order linearly

with Hund’s exchange �, and the above values of the ex-
change constants give C-AF spin order.

Whether or not such a classical OO is realized in the
ground state, can be investigated by analyzing the conse-
quences of the present theory for the distribution of spectral
weight in the optical spectroscopy. The optical spectral
weights follow by averaging the individual contributions to
the superexchange, see Eqs. �2.13� and �2.15�. One finds for
G-type OO the following optical spectral weights. For polar-
ization along the c axis,

K1
�c� =

1

3
Jr1�sc + 2� , �6.12�

K2
�c� =

1

3
J�1 − sc� , �6.13�

K3
�c� = 0. �6.14�

For polarization in the ab plane,

K1
�ab� =

1

6
Jr1�sab + 2� , �6.15�

K2
�ab� =

5

12
J�1 − sab� , �6.16�

K3
�ab� =

1

4
Jr3�1 − sab� . �6.17�

As in all other cases, they depend on two model parameters,
J and �, and on the spin-spin correlations �sc ,sab� �the OO is
already fixed�.

Again, as in the case of LaMnO3 �Sec. IV�, the analysis of
the optical spectra suggests that the effective parameters are
somewhat different from the atomic values, primarily due to
the screening of both Coulomb U and Hund’s exchange JH.
We use here the parameters deduced from the neutron
experiments98 and from the optical spectra29—one finds20

J=40 meV and �=0.13. These values imply that
Jc−4.3 meV and Jab6.8 meV, which lead to a MF esti-
mate of the transition temperature TN

MF270 K. This value
has to be still reduced by an empirical factor73 �close to 68%
for S=1� to estimate the effect of thermal fluctuations, so one
finds TN�180 K in reasonable agreement with the experi-
mental value of 140 K.97 We note that the above values of
the exchange constants are in good agreement with the neu-
tron experiments.92

It is instructive to test this classical approach by analyzing
its predictions for the optical spectral weights. We evaluated
the spin correlation functions for bonds in the ab plane and
along the c axis using the Oguchi method, and used an order

parameter �Sz� at neighboring sites, which acts on the con-
sidered bond by MF terms and vanishes at TN=0.4J, as ex-
plained in Ref. 20. The correlation sc for FM bonds along the
c axis can be obtained analytically,20 while sab for the AF
bonds was determined by a numerical approach described in
Appendix C. As expected, the spectral weight due to the
high-spin excitations dominates for c polarization. However,
when the OO is perfect, the anisotropy between K1

�c� and
K1

�ab� at T=0, being close to 8:1 �Fig. 12�, is now less pro-
nounced than in the case of joint spin and orbital dynamics.20

At low temperature the low-spin excitations dominate the
optical spectral weight for ab polarization. One finds that the
low-energy spectral weight along the c axis K1

�c� decreases
with increasing temperature. Simultaneously, the low-energy
spectral weight in the ab planes K1

�ab� increases, and the an-
isotropy goes down to �5:2 at T=0.85J �i.e., at T300 K
for TN=140 K�. It is quite remarkable that the present clas-
sical approach gives qualitatively a very similar distribution
of the spectral weights and their temperature dependence for
the FM and AF bonds in LaVO3 and in LaMnO3 �see Figs. 9
and 12�.

A crucial test of the present theory concerns the tempera-
ture dependence of the high-spin spectral weight along the c

axis K1
�c�, which according to experiment decreases by about

50% between low temperature and T=300 K.29 In the
present theory based upon frozen OO this decrease amounts
only to about 27% 
Fig. 12�a��, and the maximal possible

FIG. 12. �Color online� Kinetic energy terms �in units of J� per
bond �2.13�, as obtained for the C-AF phase of the cubic vanadates:
high-spin K1

��� �solid lines� and low-spin K2
��� �dashed lines� and K3

���

�long-dashed lines�, for increasing temperature T /J: �a� along the
FM c axis ��=c�; �b� within the AF ab plane ��=ab�. In part �a� the
experimental points from Ref. 91 for the low-energy spectral weight
were reproduced, after proper rescaling to match the value of K1

��� at
T→0. Parameters: �=0.13.
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reduction of K1
�c� reached in the limit of T→� is by 33%.

This result suggests that the frozen OO scenario in LaVO3 is
excluded by experiment; further arguments supporting this
point of view are given in Sec. VI C. Note also that the
actual values of K1

�c�, shown in Refs. 20 and 74, had to be
reduced to match the classical prediction at T=0.

A second classical state with C-type OO, as proposed for
the low temperature G-AF phase of YVO3,94 gives an AF
exchange constant along the c axis

Jc
G-AF =

1

4
J�1 − �r3� , �6.18�

while the value of Jab
G-AF is the same as Jab

C-AF, see Eq. �6.11�,
so in the present classical approach it does not change when
the OO changes from the G type to C type. In contrast,
depending on the type of OO, the exchange constant along
the c axis can be either FM or AF, as suggested by
experiment91 and confirmed by the data in Table VI. The
actual values estimated with the same parameters as for
LaVO3 are Jc=9.0 and Jab=6.8 meV. Here one finds that
Jc�Jab as in experiment, but the agreement with the experi-
mental values,98 Jc

exp=3.1 and Jab
exp=2.6 meV, is much poorer.

Hence, we conclude that quantum effects beyond the present
classical analysis such as orbital fluctuations,16 orbital Peierls
effect,98,99 and spin-orbit coupling,100 play here an important
role and have to be included in a quantitative theory.

Furthermore, while the weights in the ab planes are given
by spin-spin correlations sab, as in Eqs. �6.15�–�6.17�, for the
spectral weights in the C-type OO one finds along the c axis

K1
�c� = 0, �6.19�

K2
�c� =

1

4
J�1 − sc� , �6.20�

K3
�c� =

1

4
Jr3�1 − sc� . �6.21�

We evaluated these spectral weights �see Table VI� for the
standard value of �=0.13 and for the spin-spin correlation
function sc determined within the Oguchi method for an AF
bond along the c axis �Appendix C�, stabilized by the above
value of the AF interaction Jc, and taking again TN=0.4J. It
is along this axis where the theory predicts a markedly dif-
ferent behavior of the spectral weights from that found above
for G-type OO, see Table VI. In spite of AF bonds in all
three directions, the spectral weight distribution is again
anisotropic—the weights are considerably higher for the ab

planes due to the broken cubic symmetry in orbital space. In
addition, the spectral weights obtained in ab planes at low
temperature differ between the two AF phases, as the MF
terms are larger in G-AF phase and make this case somewhat
closer to the classical limit of sab=−1. Particularly the pre-
diction that K1

�c�=0, following from the classical C-type OO,
is easy to verify. In fact, the experimental data are puzzling
as one finds instead finite and temperature-dependent spec-
tral weight also for the low-energy regime in the G-AF phase
of YVO3,29,30 pointing out once again that the present calcu-
lation with frozen OO is oversimplified.

C. Composite spin-orbital dynamics in LaVO3

Finally, we demonstrate that the scenario of strong JT
interaction, quenching the orbital dynamics, cannot apply to
LaVO3. We do so by investigating its consequences for the
orbital transition temperature To and for the temperature de-
pendence of the optical intensity K1

�c� of the lowest multiplet
transition. Consider first the transition temperature To asso-
ciated with the phase transtion into the state with OO. We
have already seen in Secs. III and IV that strong orbital-
lattice coupling in a perovskite structure would in fact nec-
essarily decouple orbital and spin degrees of freedom and
lead to ToTN, contradicting the experiment.29

The JT coupling between the JT-active local lattice modes
Qi and the pseudospin �orbital� variables �i

z �which refer to
the active ��a� , �b�� orbitals along the c axis� may be written
as follows:

TABLE VI. Exchange constants J� and optical spectral weights
K

n

��� �all in units of J� as obtained for LaVO3 �C-AF phase with
G-type OO�, and for YVO3 �G-AF phase with C-type OO� at
T=0, and above the magnetic transition at T=0.85J ��300 K�.
Parameters: �=0.13 and TN=140 K.

LaVO3 YVO3

C-AF phase G-AF phase

T�K� 0 300 0 300

Jc −0.107 0.224

Jab 0.171 0.171

K1
�c� 1.640 1.181 0.0 0.0

K2
�c� 0.0 0.280 0.586 0.494

K3
�c� 0.0 0.0 0.465 0.392

K1
�ab� 0.219 0.471 0.249 0.471

K2
�ab� 0.916 0.532 0.871 0.532

K3
�ab� 0.436 0.253 0.415 0.253

FIG. 13. �Color online� Orbital transition temperature To for
increasing JT interaction JJT in: orbital-only model 
Eq. �6.24�,
dashed line�, and spin-orbital model 
Eqs. �6.24� and �6.25�, solid
line�, compared with the Néel temperature TN �dashed-dotted line�.
Both To and TN in units of Jc

�. The inset shows intersite orbital
correlations due to JT distortions in LaVO3.
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HJT = g�
i

Qi�i
z +

1

2�
i

Qi
2, �6.22�

where Qi is the appropriate linear combination of coordinates
of the ligand ions next to site i. The above local coupling
induces local distortions and an associated energy gain of
EJT=g2 /8 �the JT energy� per site, and moreover generates a
cooperative JT effect in the following way. As the oxygens
are shared by two neighboring vanadium ions in the perov-
skite structure of LaVO3, the JT distortions Qi at nearest-
neighbor sites are not independent from each other. Hence
the electron densities in �a� / �b� orbitals at two vanadium ions
at sites i and j in the ab plane �see inset in Fig. 13� get
coupled to each other, basically because they depend on the
actual displacement  of the shared oxygen ion. More spe-
cifically, this displacement generates interactions between
the orbitals7,101 and one finds, taking care of the orthogonal-
ity constraint on the Qi variables

Hab�ij� = JJT�i
z� j

z, �6.23�

with the interaction constant being given by JJT=2"EJT

= 1
4"g2. Here the coefficient " is determined by the phonon

spectrum, viz. by all branches in which the local coordinates
Qi participate,101 and "�1 �see, e.g., Refs. 102 and 58 for
how to estimate " for the perovskite lattice�. The JT interac-
tion �6.23� reflects the cooperative nature of the JT problem.
It favors orbital alternation and thus supports the superex-
change orbital interaction Jab

� ,20 and the orbital model rel-
evant for the C-AF phase of LaVO3 is then

H� = Jc
� �

�ij�	c
���i · �� j −

1

4
� + Vab �

�ij�	ab

�i
z� j

z, �6.24�

with Vab=Jab
� +JJT. The first term follows from the spin-

orbital model, and Jc
�=Jr1.

While the superexchange contribution to Vab is small
�adopting the values of Ref. 26, Jab

� 2 meV, i.e.,
Jab
� �Jc

�33 meV�, one finds that yet Vab�Jc
� if one assumes

"=1, i.e. if one basically identifies the JT interaction with
the JT energy, and further accepts the estimate for
EJT�27 meV given in Ref. 26. Then the Ising term
quenches the Jc

�-driven orbital dynamics and leads to a coop-
erative transition at To which locks the orbitals in all three
directions. However, one should be aware that the total en-
ergy decrease produced by the JT distortion of the lattice EJT�

as obtained in an ab initio calculation such as in Ref. 26,
actually equals EJT� =EJT+EJT

o , i.e., it comprises both the local
energy gain EJT, which does not contribute to the ordering,101

as well as the JT ordering energy EJT
o =zabJJT /8="EJT.

The JT contribution to Vab is therefore given by JJT
=2"EJT� / �1+"�, and since " is usually appreciably smaller
than 1 one should expect that JJT is definitely smaller than
EJT� , so that it is more likely that actually Vab�Jc

�.
To gain more insight in the role of the JT interaction we

performed exact diagonalization of eight-site chains along
the c axis, combined with a MF treatment of the orbital in-
teractions in the ab plane, to determine the orbital transition
temperature To. As expected, it scales with JJT in the regime
of large JT interaction JJT�0.1Jc

� �but still JJT�2Jc
�� as

shown in Fig. 13, as was also found in Ref. 26. However, we
were surprised to see that Motome et al.26 have discarded
this result considering it to be “an artifact of the MF treat-
ment,” and argued that the coupling between neighboring
sites is determined solely by Jc

�. The latter applies only in the
limit of extremely anisotropic coupling, Vab�Jc

�, which is
not relevant here. In fact, it is a classical result101 that the JT
coupling of Eq. �6.22� also induces intersite interactions be-
tween the orbitals as in Eq. �6.23� which may actually domi-
nate over the superexchange term and determine To in the
limit of large g. As To is 20–80 % above TN in other RVO3
�R=Ce, Pr, Nd, Y, etc.� compounds,91 it is not plausible that
for R=La it is determined by superexchange alone. There-
fore we argue that as the ab plane correlations are of Ising-
type, the MF result should be in fact a reasonable estimate
for To. Thus, the proximity of the orbital and the magnetic
transitions in LaVO3,29 To�TN�0.4J�, implies that the JT
interaction is small, JJT�0.1Jc

�, and the JT splitting of the
xz /yz doublet is actually smaller than the superexchange en-
ergy scale itself �JT=zabJJT /2=2JJT�0.2Jc

�.
Furthermore, as the spin and orbital exchange interactions

are interrelated,20,26 spin disorder should reduce the effective
orbital exchange Jc

�. Indeed, we have verified that this fol-
lows from the full spin-orbital superexchange model16 which
contains an extra term

Hs� =
1

2
Jc
� �

�ij�	c
�S� i · S� j − 1���1 − � − �

r3

r1
����i · �� j +

1

4
� − �� ,

�6.25�

describing the coupling of spins and orbitals along the c axis.
However, To obtained from the complete spin-orbital model

HU�d2�  H� + Hs� �6.26�

has about the same value as that found from H� alone �see
Fig. 13�, and the estimate �JT0.2Jc

� remains valid.

FIG. 14. �Color online� Temperature dependence of �a� optical
spectral weight of the high-spin transition K1

�c� in units of J �J is the
principal energy scale of the spin-orbital model� and �b� orbital
correlations ���i ·��i+1� along the c axis �bottom�, as obtained for the
spin-orbital model Eqs. �6.26�, as given in Ref. 16, with small
JJT=0.2Jc

� �solid lines�, and the orbital model Eq. �6.24� with
JJT=1.6Jc

�, as analyzed in Ref. 26 �dashed lines�.
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Moreover, one finds that for large JJT �e.g., JJT=2EJT�

=54 meV, i.e. for "=1 and EJT� =27 meV0.8Jc
�, following

Ref. 26� the temperature dependence of the optical intensity
K1

�c� derived from H� is weak below 300 K �Fig. 14�, so
adding orbital correlations in this range of parameters to the
spin correlations of Sec. VI B cannot improve the agreement
with experiment. Hence, this analysis clearly shows that �i� a
substantial variation of K1

�c� below 300 K ��J, see Fig. 14�
observed in Ref. 29 is obtained only for small JJT and �ii�
while neither spin correlations for frozen OO, nor orbital
correlations that follow from H� alone would suffice, only
the full spin-orbital model �6.26� that includes coupled spin-
orbital fluctuations is able to explain a large enhancement of
K1

�c� at low temperature. This was indeed demonstrated in
Ref. 20, where spin and orbital correlations were treated self-
consistently, and only then the strong temperature depen-
dence of K1

�c� could be successfully reproduced by the theory.
Summarizing, on comparing the results of Figs. 13 and 14

with the experimental data,29 one has to conclude that the
proximity of To and TN in LaVO3 implies that JJT is in fact
much smaller than the total energy associated with the coop-
erative JT distortion EJT� 27 meV estimated in Ref. 26. The
enhanced optical conductivity along the c axis29 also sug-
gests that the local splitting �JT is smaller than the dynamical
orbital exchange Jc

�, thus supporting the scenario of fluctuat-
ing orbitals16 in LaVO3. Therefore, the assumption of rigid
OO, which was so successful for LaMnO3, fails for LaVO3
and the full quantum spin-orbital many-body problem has to
be treated explicitly.20

VII. SUMMARY AND CONCLUSIONS

The main purpose of this paper was to make the experi-
mental consequences of the superexchange spin-orbital mod-
els for correlated transition metal oxides with orbital degen-
eracy more transparent. We formulated a general approach to
the spectral weights in optical spectroscopy and illustrated it
on several examples with different multiplet structure. While
a general feature of all the superexchange spin-orbital mod-
els is a tendency towards enhanced quantum fluctuations,9,15

we gave reasons why in many situations such fluctuations are
quenched. One then arrives at much simpler reduced models,
where certain states with OO allow for a good insight into
the mechanisms responsible for the magnetic interactions
and for the optical spectral weights. The common feature of
all these cases is that the knowledge of only a few effective
parameters, the superexchange energy J, Hund’s exchange �
and the charge-transfer parameter R, is sufficient to work out
the quantitative predictions of the theory for a given type of
orbital ordered state. In some of these cases the theoretical
models simplify so much that it is even possible to perform
calculations with the help of a pocket calculator.

The cases of copper fluoride KCuF3 and the manganite
LaMnO3 turned out to be simpler, and could be understood
with frozen OO and quenched orbital dynamics below the
structural transitions which occur at much higher tempera-
tures than the Néel temperature TsTN. However, we have
also seen that particularly in t2g systems, in the cubic titan-
ates and vanadates, the orbital dynamics may not be

quenched. Therefore, in some cases only the full quantum
many-body problem gives proper answers for the experimen-
tal situation.

We came to these conclusions by analyzing in detail the
consequences of decoupling of the spin and orbital degrees
in states with rigid OO and by comparing the predictions of
the theory with the experimental data, wherever available. In
the undoped manganite LaMnO3 we could provide a consis-
tent explanation of the magnetic and optical experimental
data by deducing the values of the above effective param-
eters �J ,� ,R�, and next showing that both the magnetic ex-
change constants Jab and Jc, and the anisotropy and the tem-
perature dependence of the low-energy optical spectral
weights can be reproduced by the theory in a satisfactory
way. In the case of the copper fluoride KCuF3 optical data
were not available, but the constraints in the theory given by
the exchange constants are so strong that we could conclude
that the insulating state in this compound has charge-transfer
character. It remains to be verified by future experiments to
what extent the predictions made here concerning the optical
spectral weights and based on the classical picture with or-
dered eg orbitals apply to KCuF3.

Also for LaTiO3 and YTiO3 we investigated the classical
states with OO given by certain wave functions which guar-
antee that the observed isotropic AF or FM states are real-
ized. As in all other cases, the theory predicts in such states a
rather pronounced temperature dependence and spectral
weight transfers in the optical spectra near the magnetic tran-
sition. Future experiments will have to establish whether and
to what extent such a scenario relying on rigid OO could be
valid. However, already without these data we could demon-
strate, by looking at the exchange constants, that there are
certain indications that orbital fluctuations play a role and
thus the quantum physics might dominate here over the ther-
mal fluctuations of the spins alone.

The case of the cubic vanadate LaVO3 really shows that
one may encounter the full complexity of the spin-orbital

TABLE VII. Values of the effective parameters of spin-orbital
models: superexchange J �in meV�, Hund’s parameter �, the CT
parameter R, and the microscopic parameters consistent with these
effective parameters: intraorbital Coulomb interaction U, Hund’s
exchange JH, and the energy of the lowest CT excitation � �all in
eV�, deduced from the present analysis of the magnetic and optical
properties of representative transition metal compounds with perov-
skite structure. The values of JH and U in case of LaVO3 and
LaMnO3 were obtained from the optical spectra, while the ones for
KCuF3 are the same as in Ref. 55.

LaVO3 LaMnO3 KCuF3

Parameters Orbitals t2g eg eg

effective J 40 150 33

� 0.13 0.18 0.12

R �0.4 0.6 1.2

microscopic U 3.8 3.8 7.5

JH 0.50 0.67 0.90

� �5.0 3.5 4.0
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superexchange model when the spins and orbitals fluctuate
coherently, and these fluctuations are essential to get a mean-
ingful quantitative description of the optical data. This case
in particular demonstrates the importance of combining the
magnetic and optical data. Whereas the classical analysis of
the spin fluctuations for frozen orbitals seems to suffice to
explain the exchange constants in LaVO3, by looking at the
optics one realizes that the picture of frozen OO induced by
large JT coupling is here misleading, and the complete spin-
orbital dynamics has to be considered instead.

Before concluding this paper, we summarize in Table VII
the effective parameters of the spin-orbital models,103 and
the possible values of the microscopic parameters—the Cou-
lomb interaction U, Hund’s exchange JH, and the charge
transfer energy �, that are consistent with these effective
parameters. The values of the superexchange constant are
33�J�40 meV for KCuF3 and LaVO3, while for LaMnO3
the value of this parameter is much higher, J�140 meV.
This difference reflects a rather high value of the effective
hopping parameter t in the undoped manganite. By consid-
ering the optical data of LaVO3 and LaMnO3 we came to the
conclusion that Hund’s exchange JH is somewhat reduced
from the respective atomic values,54 and we give already
these reduced parameters in Table VII, accompanied by the
corresponding values of U.

Summarizing, we have illustrated a common approach to
the optical and the magnetic data in Mott insulators with
orbital degeneracy, which provides the basis for a better the-
oretical understanding of the experimental constraints on the
underlying phenomena and on the model parameters. It is a
unique feature of these systems that the superexchange inter-
actions, and the spin, orbital, and composite spin-and-orbital
correlations induced by them, are responsible for the distri-
bution of spectral weight in the optical excitations. We hope
that extending the present analysis of the high-energy exci-
tations in the upper Hubbard band by an analysis of the
low-energy excitations that occur in doped systems will al-
low one to develop a quantitative theoretical approach de-

signed to describe the optical spectra of doped transition
metal insulators.

ACKNOWLEDGMENTS

We thank J. van den Brink, N. Kovaleva, B. Keimer, and
C. Ulrich for insightful discussions. A. M. Oleś would like to
acknowledge support by the Polish Ministry of Education
and Science under Project No. 1 P03B 068 26.

APPENDIX A: EFFECTIVE MODEL FOR LaMnO3

Here we present an analysis of the magnetic and optical
data within an effective d-d model for LaMnO3, given by the
HU�d4� term alone, i.e., assuming R=0 in Eq. �4.10�. Unlike
in KCuF3, the alternating OO in LaMnO3 refers to the orbit-
als occupied by electrons, and is characterized by a single
angle � in Eqs. �3.17�. We performed an analysis of the ex-
change constants Jc �4.23� and Jab �4.22� as functions of the
effective parameters J and �. Although these parameters can-
not be uniquely determined, we have verified that only a
narrow range of the orbital angle ��90°−100° gives reason-
able agreement with experiment. Here we present the results
obtained with J=170 meV and �=0.16.

Both exchange constants exhibit a rather strong depen-
dence on the orbital angle � �Fig. 15�. In contrast to the case
of KCuF3, the effective model parameters obtained at R=0
suffices to explain even almost quantitatively the observed
exchange constants in LaMnO3. This result is also
consistent104 with the earlier analysis of Ref. 13. Due to the
strong dependence of the exchange constants Jab and Jc on
the angle �, one can exclude the OO of alternating direc-
tional �3x2−r2� / �3y2−r2� orbitals, obtained with �=120° in
Eqs. �3.17�.

While it is frequently assumed that the t2g superexchange
�4.20� is large, the present analysis shows that a consistent
description of the magnetic properties requires instead a
rather moderate value of Jt in LaMnO3. For the present pa-
rameters one finds Jt=1.70 meV,105 and Jt increases by
�35% when the CT terms are included �see Sec. IV C�. Al-
though it might be argued that Jt�2 meV is too large as the
experimental value of TN in CaMnO3 is only 110 K,106 one
deals here de facto with different values of the U, JH, and �
parameters, namely, with those for Mn2+ ions instead of the
ones for Mn3+ ions, which apply in the intermediate excited
states contributing to the superexchange in CaMnO3. Yet the
differences in these parameter values cannot be large from
the very nature of their physical origin, and so Jt for LaMnO3
cannot differ by more than a factor of 2 from the value of the
t2g-induced superexchange in CaMnO3.13 This supports our
finding that a small ratio Jt�4�10−3t corresponds to realis-
tic parameter values for LaMnO3.

Next we consider the temperature dependence of the spin-
spin correlations and the optical spectral weights �2.15�. As
in the full model discussed in Sec. IV D, one may assume
frozen OO in the relevant temperature range below room
temperature, and derive the temperature dependence of the
optical spectral weights from that of the intersite spin-spin
correlations �2.12�, with the latter determined in a cluster

FIG. 15. �Color online� Superexchange interactions −Jab �4.22�
and Jc �4.23� as functions of the orbital angle � �solid lines�, ob-
tained within the effective superexchange model HU�d4��R=0�. Ex-
perimental values �Ref. 62� of −Jab and Jc for LaMnO3 �indicated
by circle and diamond� are nearly reproduced for the OO with
�=94°. Parameters: J=170 meV, �=0.16.
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method as explained in Appendix B. Using the exchange
interactions obtained with the present parameters at �=94°
�Fig. 15�, one finds the empirical estimate73 TN146 K,
which reasonably agrees with the experimental value
TN

exp=136 K.62 The AF bonds feel staggered MF terms for
T�TN, so the spin-spin correlations sc had to be determined
by a numerical solution, as explained in Appendix B. Both
correlation functions change fast close to TN, reflecting the
temperature dependence of the Brillouin function, and re-
main finite at TTN 
Fig. 16�a��.

The effective model also allows one to discuss the quali-
tative features of the spectral weight distribution in the opti-
cal spectra. The theory predicts that only high-spin optical
excitations are allowed at T=0 for the FM bonds in the ab
planes, and one finds for this polarization a large kinetic
energy K1

�ab� 
Fig. 16�b��. In contrast, the optical excitations
for the AF bonds along the c axis are predominantly of low-
spin character, and thus the kinetic energy K1

�c� is rather
small, resulting in a large anisotropy K1

�ab� :K1
�c��10:1 of the

low-energy optical intensities confirmed by experiment.28

When the temperature increases and the spin-spin correla-
tions weaken, this anisotropy is reduced, but remains pro-
nounced also at T�TN and still exceeds 2:1 at T=300 K due
to the persisting OO. As shown elsewhere,74 also a quantita-
tive analysis of the present effective model gives a rather
satisfactory agreement with the optical data28 in the entire
temperature range. In contrast, the total optical intensities
have a much weaker temperature dependence and anisotropy

Fig. 16�b��. Thus, the main features on the experimentally
observed intensity distribution and its temperature variation
in the optical spectra28 are well reproduced already by the
present effective model.

Finally, we verify whether the used parameters
J=170 meV and �=0.16 could be derived from the micro-
scopic parameters of the CT model. The value of
JH=0.90 eV follows from the spectroscopic values of the B

and C Racah parameters,64 so �=0.16 implies U5.6 eV.
Knowing the value of J, this leads to an estimated effective
d-d hopping element t0.49 eV. Indeed, one finds that these
microscopic parameters are in the expected range. The effec-
tive Coulomb interaction was estimated within the effective
d-d model for LaMnO3 as U�5.5 eV from spectroscopic
data,43 so the agreement is close to perfect. Furthermore,
taking the usually accepted values of tpd=1.5 eV and
�=5.0 eV, following Refs. 64 and 43, one finds a very
plausible value of the effective hopping parameter
t= tpd

2 /�=0.45 eV, again quite close to the value derived
above. Note that the experimental magnetic interactions in
doped bilayer manganites were explained with a similar
value of t=0.48 eV fixed by experiment.107 This favorable
comparison emphasizes once again our main conclusion that
the relevant model parameters can be derived by combining
the results of magnetic and optical experiments, whenever
available.

APPENDIX B: SPIN-SPIN CORRELATIONS IN LaMnO3

Here we describe briefly a simple method which we used
to determine the spin-spin correlation functions sab and sc for
a pair of interacting spins S=2 at nearest-neighbor Mn ions
in LaMnO3. The spin-spin correlations were obtained by per-
forming a statistical average over the exact eigenstates for a
single �FM or AF� bond, found in the presence of MF terms
acting at each spin of the bond and originating from its
neighboring spins. This, in fact, is the simplest cluster MF
theory, known in the theory of magnetism as the Oguchi
method.72 As long as the MF terms vanish �at T�TN�, one
finds for the various eigenstates with degeneracy �2Stot+1�,
labeled by the total spin Stot=0,1,…,4,

�Stot�S� i · S� j�Stot� =
1

2
Stot�Stot + 1� − 6. �B1�

Depending on Stot the scalar product �Stot�S� i ·S� j�Stot� varies
between −6 and 4.

Consider first a FM bond �ij� in the ab plane, with the
Hamiltonian given by

Hij
�ab� = − �Jab�S� i · S� j − hab�Si

z + S j
z� , �B2�

where for the A-AF phase with uniform order parameter in
the ab plane �Sz�= �Si

z� the identical MF acting at both spins
is

hab = �3�Jab� + 2Jc��S
z� . �B3�

At T�TN the eigenenergies of H
ij

�ab� follow from Eq. �B1�.
For T�TN the order parameter �Sz� could, in principle, be
determined self-consistently in the present cluster approach.
However, to gain a qualitative insight into the temperature
dependence of sab it suffices to use a self-consistent solution
of the MF equation

FIG. 16. �Color online� Temperature dependence of �a� spin-

spin correlations �S� i ·S� j�� for �=a ,c, and the order parameter �Sz�
�dashed line� and �b� kinetic energies K1

��� for the high-spin excita-
tions, standing for the optical intensities �2.15� at low energy along
�=a ,c axes �solid lines�, and total kinetic energies K��� �long-
dashed lines�, as obtained for LaMnO3 within the effective super-
exchange model HU�d4� for the OO given by an angle �94°.
Parameters as in Fig. 15.
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�Sz� =
2S + 1

2
coth�2S + 1

2

TN

2T
�Sz�� −

1

2
coth�1

2

TN

2T
�Sz�� .

�B4�

As the MF value kBTN
MF=4�2�Jab�+Jc� is overestimated, it is

appropriate to use in Eq. �B4� the value of TN after an em-
pirical reduction,73 leading to TN0.705TN

MF. One finds an
analytic solution for sab:

sab =
4z4 − 3z2 − 5z1 − 6z0

z4 + z3 + z2 + z1 + z0
, �B5�

where the terms zi refer to the subspaces of total spin Stot,

z4 = 1 + 2 cosh x + 2 cosh 2x + 2 cosh 3x + 2 cosh 4x ,

�B6�

z3 = �1 + 2 cosh x + 2 cosh 2x + 2 cosh 3x�exp�− 4��Jab�� ,

�B7�

z2 = �1 + 2 cosh x + 2 cosh 2x�exp�− 7��Jab�� , �B8�

z1 = �1 + 2 cosh x�exp�− 9��Jab�� , �B9�

z0 = exp�− 10��Jab�� , �B10�

with x=�hab and �=1/kBT. Note that the term �z3 is absent

in the numerator of Eq. �B5�, because �Stot=3�S� i ·S� j�Stot=3�
=0 
see Eq. �B1��.

For an AF bond �ij� along the c axis the Hamiltonian is
given by

Hij
�c� = JcS

�
i · S� j − hc�Si

z − S j
z� , �B11�

where the molecular field

hc = �4�Jab� + Jc��S
z� �B12�

alternates between the sites i and j, so �Si
z�=−�S j

z�= �Sz�. Un-
like for the FM bond, the field hc couples now states which
belong to different values of Stot �but to the same value of
Stot

z �. The staggered MF plays no role for Stot
z =4, while for

Stot
z �4 the eigenstates have been found by diagonalizing the

matrices, with diagonal elements following from Eq. �B1�,
and offdiagonal ones �hc. For Stot

z =3

� 4Jc − hc

− hc 0
� , �B13�

for Stot
z =2

�
4Jc − 2�3

7
hc 0

− 2�3

7
hc 0 − 4�1

7
hc

0 − 4�1

7
hc − 3Jc

� , �B14�

for Stot
z =1

�
4Jc −�15

7
hc 0 0

−�15

7
hc 0 −

16
�70

hc 0

0 −
16
�70

hc − 3Jc −�21

5
hc

0 0 −�21

5
hc − 5Jc

� ,

�B15�

and for Stot
z =0

�
4Jc −

4
�7

hc 0 0 0

−
4
�7

hc 0 −
12
�35

hc 0 0

0 −
12
�35

hc − 3Jc − 2�7

5
hc 0

0 0 − 2�7

5
hc − 5Jc − 2�2hc

0 0 0 − 2�2hc − 6Jc

� .

�B16�

In this way a complete set of eigenstates ��n�� with energies
�En� for n=1,2,¯,25 was determined. Finally, the spin-spin
correlation function sc was found using a standard formula

sc =
1

Z
�

n

�n�S� i · S� j�n�exp�− �En� , �B17�

where Z=�nexp�−�En� is the partition function.

APPENDIX C: SPIN-SPIN CORRELATIONS IN LaVO3

AND IN YVO3

The short-range spin-spin correlations s� for the cubic
vanadates were determined using the Oguchi method72 for a
bond of interacting S=1 spins. As in the case of LaMnO3
�see Appendix B�, we solve exactly a single FM �AF� bond
�ij� with interaction Jc �Jab�, and the MF terms ��Sz� origi-
nating from neighboring spins and acting on each spin of the
bond. In the present case the scalar product is given by

�Stot�S� i · S� j�Stot� =
1

2
Stot�Stot + 1� − 2. �C1�

For a FM bond, now along the c axis, one finds an
analytic solution.20 This problem is analogous to that given
by Eq. �B3�. Using the MF approximation, the order
parameter �Sz� was determined from Eq. �B4� with S=1, and
TN

MF=4�2Jab+ �Jc�� /3 was reduced to TN0.684TN
MF as ap-

propriate for S=1 spins.73 The final result for sc reads
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sc =
z2 − z1 − 2z0

z2 + z1 + z0
, �C2�

where the terms zi originate from different subspaces of total
spin Stot=2,1,0,

z2 = 1 + 2 cosh x + 2 cosh 2x , �C3�

z1 = �1 + 2 cosh x�exp�− 2��Jc�� , �C4�

z0 = exp�− 3��Jc�� . �C5�

Here

hc = �4Jab + �Jc���S
z� , �C6�

x=�hc and �=1/kBT; compare with Eq. �B12�.
For an AF bond �ij� in the ab plane the MF Hamiltonian

is given by

Hij
�ab� = JabS� i · S� j − hab�Si

z − S j
z� , �C7�

In analogy to an AF bond in LaMnO3 �see Appendix B�, the
correlation function sab can be found numerically by consid-
ering the subspaces of Stot

z . The molecular field

hab = �3Jab + 2�Jc���S
z� �C8�

does not contribute to the highest eigenenergies E8,9=Jab in
the subspace of Stot

z =2 
cf. with Eq. �B3��, while the remain-
ing eigenstates had to be found by diagonalizing the matrices
corresponding to other values of Stot

z . For Stot
z =1

� Jab − hab

− hab − Jab

� , �C9�

and for Stot
z =0

�
Jab −

2
�3

hab 0

−
2
�3

hab − Jab − 2�2

3
hab

0 − 2�2

3
hab − 2Jab

� . �C10�

By solving the above eigenvalue problems, we determined a
complete set of eigenstates ��n��, with energies En, labeled by
n=1,2,…,9. Therefore, the spin-spin correlation function sab

for two interactings S=1 spins on an AF bond follows in the
present case from an equation similar to Eq. �B17�, with the

relevant matrix elements �n�S� i ·S� j�n� now given by Eq. �C1�.
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