
https://doi.org/10.1007/s12035-021-02613-5

Fingolimod Rescues Memory and Improves Pathological Hallmarks 
in the 3xTg‑AD Model of Alzheimer’s Disease

Steven G. Fagan1 · Sibylle Bechet1 · Kumlesh K. Dev1

Received: 24 May 2021 / Accepted: 19 October 2021 
© The Author(s) 2022

Abstract
Therapeutic strategies for Alzheimer’s disease (AD) have largely focused on the regulation of amyloid pathology while 
those targeting tau pathology, and inflammatory mechanisms are less explored. In this regard, drugs with multimodal and 
concurrent targeting of Aβ, tau, and inflammatory processes may offer advantages. Here, we investigate one such candidate 
drug in the triple transgenic 3xTg-AD mouse model of AD, namely the disease-modifying oral neuroimmunomodulatory 
therapeutic used in patients with multiple sclerosis, called fingolimod. In this study, administration of fingolimod was initi-
ated after behavioral symptoms are known to emerge, at 6 months of age. Treatment continued to 12 months when behavioral 
tests were performed and thereafter histological and biochemical analysis was conducted on postmortem tissue. The results 
demonstrate that fingolimod reverses deficits in spatial working memory at 8 and 12 months of age as measured by novel 
object location and Morris water maze tests. Inflammation in the brain is alleviated as demonstrated by reduced Iba1-positive 
and CD3-positive cell number, less ramified microglial morphology, and improved cytokine profile. Finally, treatment with 
fingolimod was shown to reduce phosphorylated tau and APP levels in the hippocampus and cortex. These results highlight 
the potential of fingolimod as a multimodal therapeutic for the treatment of AD.
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Abbreviations
AD  Alzheimer’s disease
Aβ  Amyloid-beta
APP  Amyloid precursor protein
FTY720  Fingolimod, Gilenya™
S1P  Spingosine-1-phosphate
CNS  Central nervous system
3xTg-AD  B6;1239-Tg(APPSwe,tauP301L)1Lfa 

 Psen1tm1Mpm mice
WT  Wild-type mice
NOL  Novel object location
MWM  Morris water maze

Introduction

Alzheimer’s disease (AD) is an age-related neurodegenera-
tive condition and the most common form of dementia which 
affects approximately 44 million people worldwide [55]. 
Symptoms of AD include the progressive loss of memory 
and cognition resulting in a dependency on full-time care 
[4]. Current treatments, including cholinesterase inhibi-
tors and N-methyl-D-aspartate receptor antagonists, aim to 
improve symptom severity but do not affect the course of the 
disease [76]. With an increasingly aged global population 
and ongoing failures in drug discovery efforts, the burden of 
AD and other dementias are a serious concern for healthcare 
systems worldwide [49, 55].

The characteristic hallmarks of AD include the devel-
opment of extracellular amyloid plaques and intracellu-
lar neurofibrillary tangles [21]. Amyloid plaques form 
through the aggregation of amyloid-β (Aβ), a cleaved 
product of the amyloid precursor protein (APP) [71]. 
Mutations to genes encoding APP and the enzymes that 
cleave APP have been implicated in a small number of AD 
cases and are regularly used as the basis for animal models 
[73]. Neurofibrillary tangles are intracellular aggregates of 
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hyperphosphorylated tau. Under pathological conditions 
tau becomes phosphorylated (phospho-tau), insoluble and 
aggregates, forming tangles [73]. Mutations to the MAPT 
gene that encodes tau have been implicated in the develop-
ment of dementia and increased phosphorylation at posi-
tions Ser-396, Ser-400, Thr-403, and Ser-404 [1].

Inflammation in the central nervous system (CNS) 
has emerged as a key driver in the development of AD 
[33]. Postmortem analyses have determined a significant 
upregulation in activated microglia and inflammatory 
markers in the brains of AD patients, and recent imaging 
studies have used microglial activation in combination 
with tau localization as a measure of cognitive decline 
[46–48, 70]. Previous epidemiological data indicated a 
reduced risk of developing AD among people receiving 
NSAID treatment, however, more recent studies have 
demonstrated that anti-inflammatory drugs alone are 
insufficient [68, 79]. Increasing evidence has implicated 
the peripheral immune response in AD pathology where 
T cell responses specific to Aβ have been observed in 
blood from AD patients, as has T-cell infiltration in the 
brains of AD patients where they surround Aβ and tau 
pathology [51, 52].

Given current failures in therapies for AD, approaches 
with multimodal targeting of inflammatory and neuronal 
systems may be worthy of consideration. One such can-
didate drug is fingolimod (FTY720, Gilenya®), the dis-
ease-modifying oral neuroimmunomodulatory therapeutic 
used in multiple sclerosis and that has been investigated in 
a number of neurodegenerative diseases [57]. Fingolimod 
readily passes the blood–brain barrier and when phospho-
rylated binds to sphingosine-1-phosphate (S1P) recep-
tors  (S1P1–5), except for  S1P2 [10, 50]. S1P receptors are 
G-protein coupled and expressed in many cell types includ-
ing the immune system and central nervous system. The 
canonical therapeutic activity of fingolimod arises from its 
retention of T cells in lymphoid organs, where it binds  S1P1 
on T cells causing receptor internalization thereby inhibit-
ing the S1P-mediated egress of T cells into the blood [9]. 
We and others have now shown that fingolimod can target 
S1P receptors expressed on neuronal and glial cells, where 
they can regulate neurogenesis, neurite outgrowth, myelina-
tion, inflammation, astrogliosis, and migration [22, 31, 54, 
56–58, 60, 63, 65, 66].

In AD, the S1P system is altered with a reduction in 
sphingosine kinase-1 and -2, and an increase in sphingosine 
lyase associated with advancing Braak stages [15, 20, 38]. 
Furthermore, a progressive decline in S1P is also observed 
throughout the course of the disease [20]. Previous stud-
ies have shown that fingolimod can reduce the production 
of Aβ, ϒ-secretase activity, and the formation of amyloid 
plaques in vitro and in vivo [7, 72]. Furthermore, pre-
symptomatic administration of fingolimod has been shown 

to prevent cognitive decline and reduce the severity of CNS 
inflammation [7, 12].

For this study, we utilized the 3xTg-AD mouse model of 
AD which displays cognitive impairment from 3 months, 
develops amyloid plaques and CNS inflammation from 
6 months, and neurofibrillary tangles of phospho-tau emerge 
from 12 months of age. Oral administration of fingolimod 
began after the onset of symptoms, at 6 months, and con-
tinued until 12 months of age. Previous studies have dem-
onstrated the preventative effects of fingolimod in models 
of AD; this study indicates that the beneficial effects of 
fingolimod are also apparent in older mice with developed 
pathologies. Treatment with fingolimod rescues memory 
impairment and reduces inflammation in the CNS. Further-
more, we have demonstrated for the first time that fingoli-
mod reduces tau phosphorylation and APP expression in 
3xTg-AD mice.

Methods

Animals

Male B6;129-Tg(APPSwe, tauP301L)1Lfa  Psen1tm1Mpm 
mice (3xTg-AD; stock 004,807) and B6129SF2 wild-type 
controls (WT; stock 101,045) were purchased from Jackson 
Laboratories. An increasing body of work has demonstrated 
greater Aβ pathology in female 3xTg-AD mice [27, 30, 53] 
and conflicting reports exist on sexual dimorphic tau bur-
den [30, 35, 53, 77]. No difference in working memory has 
been found between male and female 3xTg-AD mice [19], 
and male 3xTg-AD have been shown to perform worse at 
spatial memory tasks [69]. Furthermore, a more pronounced 
alteration in the immune system has been reported in male 
3xTg-AD mice [5, 29, 39]. Given the immunomodulatory 
mechanisms of fingolimod and inflammation being of pri-
mary focus to this study male, 3xTg-AD mice were chosen 
for this study. Mice were age-matched and housed under 
standard conditions (22 ± 2 °C, 12:12 h light:dark cycle, 
food and water ad libitum). Experiments were carried out 
under institutional and governmental guidelines.

Treatment

From 6–12 months of age fingolimod (Caymen Chemical 
#10,006,292 1 mg/kg/day) was administered via the drink-
ing water. At 8 and 12 months, blood was drawn from the 
submandibular vein for lymphocyte count (Sysmex KX-21 
blood analyzer) and fluorescent activated cell sorting 
(FACS) analysis. At 12 months animals were sacrificed by 
 CO2 asphyxiation, perfused with phosphate-buffered saline, 
and one hemisphere was fixed in 4% paraformaldehyde 
for 24 h for immunohistochemistry. From the remaining 
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hemisphere, the cortex and hippocampus were dissected and 
snap frozen for biochemical analysis.

Novel Object Location Test (NOL)

The NOL was carried out on a pilot cohort (n = 9) at 
8 months of age and the full cohort (n = 18) at 12 months of 
age. A cylindrical test arena (50 cm diameter × 30 cm height) 
with spatial cues and three different objects of similar size 
were used, and mice displayed no object preference during 
acquisition trials (Fig. 1C, E). On day 1, mice were habitu-
ated (1 × 10 min trial) to the test arena. The next day, mice 
received acquisition trials (2 × 5 min; 6 min inter-trial inter-
val) and were allowed to freely explore the test arena and 
the three objects therein. After 24 h, mice were reintroduced 
to the test arena for a single retention trial (5 min) with one 
object having moved location (Fig. 1B). Exploration was 
defined as touching the object with its nose or whiskers, or 
the animals’ snout was directed at the object at a distance 
of ≤ 2 cm. Exploration was assessed live by human obser-
vations and confirmed through video analysis by blinded 
analyzers. The results from the live measurements were used 
here. The discrimination index was calculated as the time 
spent exploring the displaced object  (Od) over the average 
time exploring the stationary objects  (Os) plus time explor-
ing displaced object multiplied by 100,  (Od/(Os +  Od))*100.

Morris Water Maze (MWM)

The MWM (145 cm diameter × 60 cm height) was set up 
with spatial cues surrounding the tank. On day 1, mice car-
ried out 5 × 1 min trials (20 min inter-trial interval) with 
randomized and changing entry points and a small escape 
platform (9 cm width × 9 cm length) visible 1.5 cm over the 
water placed in alternating quadrants. If unsuccessful, mice 
were guided to the platform and left for 20 s. On acquisition 
days 2–5, mice carried out 5 × 1 min trials (20 min inter-trial 
interval) with randomized and changing entry points and 
the platform location fixed and submerged. If unsuccessful, 
mice were guided to the platform for 20 s. On day 6, the 
probe trial consisted of a single 1 min trial with no platform 
present (Fig. 2A). Swimming traces are included in Sup. 
Figure 2. The time spent in the platform area, defined as the 
exact dimensions of where the platform was located in the 
acquisition trials, was recorded using EthoVision software 
as a measure of spatial learning and memory.

Sample Preparation for FACS

Preparation of FACS tissue was carried out as previously 
described [62]. Cortex from perfused brains was mechani-
cally homogenized and enzymatically digested before strain-
ing and separating through a Percoll gradient. Antibodies for 

CD3 (APC hamster anti-mouse CD3; 1:200; BD Bioscience 
#553,066), CD11b (PE rat anti-CD11b; 1:200; BD Biosci-
ence #557,397), and CD45 (FITC rat anti-mouse CD45; 
1:100; BD Bioscience #553,079) were added to cell sus-
pensions and whole blood samples before the samples were 
washed and centrifuged, and the pellet resuspended in flow 
cytometry buffer. Samples were sorted on a FACS Aria™ 
Fusion cell sorter (Becton Dickenson), lymphocytes were 
identified as CD3 + , and macrophages were identified as 
being CD11b + CD45hi.

Immunohistochemistry

Free-floating 30 µm sections were blocked with 10% BSA, 
0.5% triton-X for 2  h followed by incubation in rabbit 
anti-Iba1 (1:1000; Wako) overnight at 4 °C. Sections were 
incubated in goat-anti-rabbit ALEXA Fluor-488 (1:1000; 
Invitrogen #a11008) for 2 h before being counterstained 
with Hoechst and mounted using SlowFade Gold mounting 
medium. Z-stack images were taken on a Leica SP8 confo-
cal microscope at × 20 magnification. To measure micro-
glial number Iba1-positive cells were manually counted. 
Microglial branching was assessed by skeleton analysis as 
described [78].

Enzyme‑Linked Immunosorbent Assay

IL-6 (DY406) and IL-10 (DY417; R&D Systems) DuoSet 
ELISA kits were used for cytokine quantification and were 
carried out as per the manufacturer’s instructions. The plates 
were incubated in capture antibody overnight at room tem-
perature and then blocked-in reagent diluent. Samples and 
standards were added, and the plates were incubated over-
night at 4 °C. A detection antibody was added for 2 h at 
room temperature before streptavidin-HPR incubation for 
20 min and substrate incubation for 20 min. The reaction 
was terminated with a stop solution and the plate read at 
490 nm.

Immunoblot

Tissue was manually homogenized (10% w/v) in RIPA 
buffer containing cOmplete™ mini protease inhibitors 
(Sigma #04,693,159,001). The homogenate was soni-
cated (6 × 5 s, 20% pulse), centrifuged (12,000 g; 20 min; 
4 °C) and the supernatant stored at − 80 °C. Western blot-
ting was conducted as previously described (Rutkowska 
et al. 2017) and where required membranes were stripped 
with ReBlot plus (Millipore) for 3 min. For tau and p-tau, 
membranes were cut to allow for the simultaneous detec-
tion of actin. The primary antibodies were: mouse anti-
phospho-tau AT8 (1:500; Thermo Scientific #MN1020), 
mouse anti-tau46 (1:1000; Cell Signaling #4019), mouse 
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anti-β-amyloid 6E10 (1:500; Biolegend #SIG39320), and 
rabbit anti-β-actin (1:1000; Sigma #28,227). The second-
ary antibodies were: anti-mouse-HRP (1:1000; Sigma 
#a8924) and anti-rabbit-HRP (1:2000; GE Health #na934).

Statistics

All statistics were carried out on GraphPad Prism 9 soft-
ware. The data were normally distributed and data points 

Fig. 1  Fingolimod improves 
performance in the NOL at 
8 and 12 months of age. A 
Timeline of reported 3xTg-
AD mouse pathology and 
experimental plan for this 
study. B Experimental design 
for the NOL test. C, E At 8 
and 12 months of age mice 
demonstrated no preference 
to any of the three objects 
during the acquisition phase of 
the NOL test. D At 8 months 
of age a genotype-related 
reduction in discrimina-
tion index was observed 
(p = 0.0332, F(1,25) = 5.083). 
Post hoc analysis revealed that 
vehicle-treated 3xTg-AD mice 
performed significantly worse 
than WT (p = 0.0055, n = 6–8) 
and that this was attenuated 
by treatment with fingolimod 
(p = 0.0054, n = 6–8). (F) At 
12 months of age a genotype-
related reduction in discrimi-
nation index was observed 
(p = 0.0204, F(1,41) = 5.823). 
Post hoc analysis revealed that 
vehicle-treated 3xTg-AD mice 
performed significantly worse 
than WT (p = 0.0211, n = 9–14) 
and that this was attenuated 
by treatment with fingolimod 
(p = 0.0341, n = 9–14). All data 
was normally distributed and 
expressed as mean ± SEM, 
p < 0.05, **p < 0.01
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greater than two standard deviations from the mean were 
excluded from groups. In all cases, 2-way ANOVA was 
applied to compare the means and where significance was 
observed Tukey post hoc correction for multiple compari-
sons was carried out with p < 0.05 as the minimum level of 
significance. Graphical data is represented as mean ± SEM 
and post hoc significance indicated as follows: *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.

Results

Fingolimod Improves Memory Deficits in 3xTg‑AD 
Mice

Cognitive impairment, such as memory loss, is one of the 
primary symptoms of AD and is known to develop in 3xTg-
AD mice from 3 months of age [8, 16]. We assessed spatial 
learning and memory in 3xTg-AD mice at 8 and 12 months 
of age, after 2 and 6 months of fingolimod treatment (1 mg/

kg/day), respectively (Fig. 1A). At 8 months of age a geno-
type-related impairment in working memory was observed 
during the NOL test (p = 0.0332, F(1,25) = 5.083; Fig. 1D) and 
post hoc analysis revealed that treatment with fingolimod 
significantly improved NOL performance in 3xTg-AD mice 
(Veh: 49.12 ± 2.588, FTY: 65.32 ± 4.7; p = 0.0054, n = 6–8). 
The genotype-related impairment was again observed at 
12 months of age (p = 0.0204, F(1,41) = 5.823; Fig. 1F) and 
post hoc analysis determined that 3xTg-AD mice treated 
with fingolimod performed significantly better than vehi-
cle-treated controls (Veh: 43.45 ± 6.66, FTY: 61.9 ± 4.224; 
p = 0.0341, n = 9–14).

At 12 months of age, MWM was also carried out. No 
difference in athletic ability was observed as indicated by 
distance traveled and velocity between the groups (Sup. 
Figure 1A, B). Escape latency during the training days 2–5 
reduced in all groups over time but by training day 5 vehi-
cle-treated 3xTg-AD mice performed significantly worse 
than their WT counterparts (p = 0.017, n = 14–18; Sup. Fig-
ure 1C). On test day 6, frequency of entry to the platform 

Fig. 2  Fingolimod improves MWM performance in 3xTg-AD mice 
at 12  months of age. A Experimental design for the MWM test. B 
A genotype-related reduction in frequency of entries to (p = 0.0195, 
F(1,48) = 6.813), and duration in (p = 0.0331, F(1,52) = 4.79) the plat-
form area, with no difference observed in latency. Post hoc analysis 
revealed that vehicle treated 3xTg-AD mice entered the platform area 
less frequently (p = 0.0046, n = 13) and remained there for less time 
(p = 0.001, n = 14) than WT controls. Fingolimod treated 3xTg-AD 
mice entered the platform area more frequently (p = 0.0031, n = 13) 
and for a longer duration (p = 0.025, n = 12–14) than vehicle treated 
3xTg-AD mice. C In the north-west quadrant, where the platform was 

located, a genotype-treatment interaction in duration was observed 
(p = 0.0012, F(1,53) = 11.65) but no difference in frequency of entries 
or latency was noted. Post hoc analysis revealed that vehicle-treated 
3xTg-AD mice spent significantly less time in the northwest quadrant 
compared to WT controls (p = 0.0471, n = 13–15) and that this was 
alleviated by treatment with fingolimod (p = 0.002, n = 13). D, E, F 
No significant difference was observed between groups in frequency 
of entry, duration in the quadrant, or latency to the quadrant in the 
north-east, south-east, or south-west quadrants. All data was normally 
distributed and expressed as the mean ± SEM, *p < 0.05, **p < 0.01
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area (p = 0.0195, F(1,48) = 6.813; Fig. 2B), duration of time 
in the platform area (p = 0.0331, F(1,52) = 4.79; Fig. 2B), 
and duration of time in the north-west (platform contain-
ing) quadrant (p = 0.0012, F(1,53) = 11.65; Fig. 2C) were all 
reduced in 3xTg-AD mice compared with WT controls. 
Post hoc analysis revealed that 3xTg-AD mice receiving 
fingolimod entered that platform area more frequently than 
vehicle treated controls (Veh: 1.46 ± 0.48, FTY: 3.54 ± 0.43; 
p = 0.0031, n = 13) and spent a longer duration of time in 
the platform area (Veh: 0.78 ± 0.17, FTY: 1.89 ± 0.22; 
p = 0.0025, n = 12–14) and north-west quadrant (Veh: 
18.31 ± 2.89, FTY: 33.44 ± 3.07; p = 0.002, n = 13). Taken 
together these data demonstrate that fingolimod improves 
working memory in 8- and 12-month-old 3xTg-AD mice 
after 2 and 6 months of treatment, respectively.

Fingolimod Reduces Microglial Activation 
in 3xTg‑AD Mice

Inflammation in the CNS compounds the progression 
of AD and is an important therapeutic target [41]. We 

therefore investigated the functional state of microglia 
in fingolimod-treated 3xTg-AD mice by assessing the 
proliferation (Fig. 3A, C) and morphology (Fig. 4A, B) 
of microglia in the hippocampus. A genotype-related 
increase in the number of Iba1-positive cells was observed 
in the CA1 (p = 0.0286, F(1,8) = 7.098; Fig. 3B) and CA3 
(p = 0.0076, F(1,8) = 12.56; Fig. 3D) and post hoc analy-
sis revealed that treatment with fingolimod significantly 
reduced the number of Iba1-positive cells in 3xTg-AD 
mice (Veh CA1: 0.251 ± 0.006, FTY CA1: 0.201 ± 0.009, 
p = 0.0174, n = 3; Veh CA3: 0.233 ± 0.012, FTY CA3: 
0.169 ± 0.013; p = 0.0151, n = 3). Skeleton analysis was 
carried out to further examine the morphology of micro-
glia. A genotype-related reduction in branch number was 
observed in the CA1 (p = 0.0061, F(1,8) = 13.65; Fig. 4C) 
while branch number (p < 0.0006, F(1,8) = 29.49; Fig. 4C) 
and length (p = 0.0001, F(1,8) = 45.61; Fig. 4D) was reduced 
in the CA3. Post hoc analysis determined that treatment 
with fingolimod increased microglial branch number in the 
CA1 (Veh: 14.13 ± 2.13, FTY: 25.15 ± 1.07; p = 0.0111, 
n = 3) and CA3 (Veh: 14.57 ± 0.63, FTY: 28.64 ± 1.88; 

Fig. 3  Fingolimod reduces 
microglial number in 3xTg-AD 
hippocampus. Iba1 stained sec-
tions were used to assess micro-
glial proliferation in the (A) 
CA1 and (C) CA3 regions of 
the hippocampus. A significant 
genotype-related increase in 
Iba1-positive cells was observed 
in the CA1 (B: p = 0.0286, 
F(1,8) = 7.098) and CA3 (D: 
p < 0.0076, F(1,8) = 12.56) 
of 3xTg-AD mice. Post hoc 
analysis revealed that 3xTg-AD 
mice had significantly more 
Iba1-positive cells than WT 
(B: CA1, p = 0.0446, n = 3; D: 
CA3, p = 0.0025, n = 3) and that 
this was alleviated in fingoli-
mod treated 3xTg-AD mice (B: 
CA1, p = 0.0174, n = 3; D: CA3, 
p = 0.0151, n = 3). Data are 
expressed as the mean ± SEM, 
*p < 0.05, **p < 0.01. Scale bar 
100 µm
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p = 0.0163, n = 3) as well as increasing microglial branch 
length in the CA3 (Veh: 34.6 ± 2.75, FTY: 58.37 ± 2.69; 
p = 0.0005) of 3xTg-AD mice. Taken together these data 
reveal that 3xTg-AD mice display increased microglial 
proliferation and the development of a reactive microglial 
morphology and that treatment with fingolimod reduces 
this microglial reactivity.

Fingolimod Reduces Circulating and Infiltrating 
Lymphocytes

The canonical activity of fingolimod is well described and 
involves the retention of lymphocytes in lymph nodes [10]. 
As expected, a treatment-related reduction in circulating lym-
phocytes was detected in mice treated with fingolimod after 2 
(p < 0.0001, F(1,22) = 36.49) and 6 (p = 0.0013, F(1,38) = 12.07) 
months of treatment (Fig. 5A). FACS analysis was carried 
out on blood and cortical tissue from experimental animals 
at 12 months of age (Fig. 5B). Cell sorting confirmed the 
treatment-related reduction in circulating CD3 + T cells 
(p = 0.049, F(1,22) = 4.335; Fig. 5C) and also demonstrated 
that fingolimod reduced the number of infiltrating CD3 + T 
cells in the cortex (p = 0.026, F(1,18) = 5.925; Fig. 5C).

Fingolimod Improves the Cytokine Profile 
in 3xTg‑AD Mice

We next quantified the levels of the pro- and anti-inflam-
matory cytokines, IL-6 and IL-10, in tissue homogen-
ates of the hippocampus and cortex using ELISA. No 
difference in levels of hippocampal IL-6 was observed 
between groups; however, a genotype/treatment inter-
action was observed in cortical IL-6 (p = 0.0225, 
F(1,19) = 6.169; Fig. 6A). Post hoc analysis determined 
that cortical IL-6 was significantly reduced in 3xTg-AD 
mice receiving fingolimod compared to vehicle con-
trols (Veh: 2.424 ± 0.13, FTY: 1.881 ± 0.15; p = 0.0182, 
n = 5–6). A treatment-related increase in hippocampal 
IL-10 was observed (p = 0.0121, F(1,15) = 8.138; Fig. 6B). 
In cortical tissue, a genotype/treatment interaction was 
observed (p = 0.0298, F(1,22) = 5.398; Fig.  6B) and 
post hoc analysis revealed that IL-10 was significantly 
increased in 3xTg-AD mice receiving fingolimod com-
pared to vehicle-treated controls (Veh: 60.57 ± 4.04, 
FTY: 81.58 ± 8.15; p = 0.0277, n = 6–7). These data 
support a shift in the cytokine profile of 3xTg-AD mice 
after fingolimod treatment from pro-inflammatory to 
anti-inflammatory.

Fig. 4  Fingolimod reduces microglia reactivity in 3xTg-AD mice. 
Iba1-positive cells were assessed by skeleton analysis to determine 
(A) activated or (B) ramified morphology through branch num-
ber (low branch number yellow arrow, high branch number pur-
ple arrow) and branch length (short branch length blue arrow, long 
branch length red arrow). C A genotype-related reduction in branch 
number was observed in the CA1 (p < 0.0061, F(1,8) = 13.65) and CA3 
(p = 0.0006, F(1,8) = 29.49). Post hoc analysis revealed that microglia 
in vehicle treated 3xTg-AD mice had significantly fewer branches 
than in WT (CA1: p = 0.0215, n = 3; CA3: p = 0.007, n = 3) and 

that this was reversed with fingolimod treatment (CA1: p = 0.0111, 
n = 3; CA3: p = 0.0163, n = 3). D A genotype-treatment interaction 
in microglial branch length was observed in the CA3 (p = 0.0001, 
F(1,8) = 45.61) but not CA1. Post hoc analysis revealed that branch 
length in vehicle treated 3xTg-AD mice was smaller than that in WT 
controls (p < 0.0001, n = 3) and that increased branch length was 
observed in fingolimod treated 3xTg-AD mice (p = 0.0005, n = 3). 
Data are expressed as the mean ± SEM, *p < 0.05, ***p < 0.001, 
****p < 0.0001
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Fingolimod Reduces Tau Phosphorylation and APP 
Expression in 3xTg‑AD Mice

Neurofibrillary tangles of hyperphosphorylated tau and 
amyloid plaques are hallmarks of AD and develop in 3xTg-
AD [16, 59]. Phospho-tau burden and APP load were 
assessed through immunoblot (Fig. 7C). As expected a 
significant genotype-related increase in total tau protein 
was observed in the cortex and hippocampus of 3xTg-AD 
mice by Tau46 antibody (cortex: p = 0.0076, F(1,16) = 9.306; 
hippocampus: p = 0.0265, F(1,16) = 5.975; Fig. 7A). A con-
comitant genotype-related increase in tau phosphorylated 
at Ser202/Thr205 was observed using AT8 antibody (cor-
tex: p = 0.0242, F(1,12) = 6.649; hippocampus: p = 0.0018, 
F(1,23) = 12.5; Fig. 7B). Post hoc analysis revealed that treat-
ment with fingolimod significantly reduced the level of 
phosphorylated tau in the cortex (Veh: 138.2 ± 16.23, FTY: 
53.15 ± 15.82; p = 0.0198, n = 4) and hippocampus (Veh: 
215.9 ± 53.16, FTY: 55.44 ± 12.27; p = 0.0012, n = 6–7) of 
3xTg-AD mice. The deposition of Aβ plaques is another 
key feature in the development of AD, and while extensive 
plaque burden is present in female 3xTg-AD mice previous 
reports have demonstrated limited plaque burden in 3xTg-
AD males of this age [13]. Consistent with this, we observed 

a limited plaque burden in our mice (Supp. Figure 2). We 
then measure the level of the Aβ parent protein, APP. A 
genotype-related increase in APP was observed in the cor-
tex of 3xTg-AD mice using 6E10 antibody (p < 0.0001, 
F(1,8) = 147.6; Fig. 7D). Post hoc analysis determined that 
treatment with fingolimod reduced the level of APP in 
the cortex of 3xTg-AD mice (Veh: 105.7 ± 12.29, FTY: 
59.38 ± 4.99; p = 0.0051, n = 3). These data confirm the 
pathological phosphorylation of tau at Ser202/Thr205 in 
3xTg-AD mice and reveal that fingolimod treatment reduces 
both APP expression and tau phosphorylation.

Discussion

In this study, we investigated the effect of fingolimod, an 
S1P receptor antagonist, on AD phenotypes in the 3xTg-
AD model. Animals were aged for 6 months to allow for the 
development of pathology and fingolimod was then adminis-
tered for a further 6 months via the drinking water. The data 
demonstrate that, in aged 3xTg-AD mice, treatment with 
fingolimod reverses disease-associated working memory 
impairment, alleviates inflammation in the CNS, and reduces 
the levels of phosphorylated tau and APP.

Fig. 5  Fingolimod reduces 
circulating and CNS-infiltrating 
lymphocytes. A Blood was 
drawn from the sub-mandibular 
vein and lymphocytes meas-
ured on the Sysmex KX-21. 
A significant genotype-
related increase in circulating 
lymphocytes was observed at 
8- (p = 0.0079, F(1,22) = 8.524, 
n = 5–10) and 12 months 
(p = 0.0077, F(1,38) = 7.917, 
n = 7–12) of age. Concomi-
tantly a treatment-related 
reduction was also observed at 
8 (p < 0.0001,  F(1,22) = 36.49, 
n = 5–10) and 12 months 
(p = 0.0013, F(1,38) = 12.07, 
n = 7–12) of age. B Representa-
tive gating strategy for sorting 
CD3 + T cells. C FACS analysis 
confirmed the treatment-
related reduction in circulat-
ing CD3 + T cells (p = 0.049, 
F(1,22) = 4.335, n = 6–9) and 
CD3 + T cells in the cortex 
(p = 0.026, F(1,18) = 5.925, 
n = 4–6). Data are expressed as 
the mean ± SEM
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AD is characterized by the progressive decline in cog-
nition, where memory impairment and behavioral distur-
bances affect daily activities [23, 26]. In 3xTg-AD mice 
impaired spatial working memory and increased anxiety 
have been reported from 3 and 6 months of age, respec-
tively [16, 18, 67, 80]. Previous studies have highlighted 
the potential benefits of fingolimod administration on 
memory impairment, however, in those studies treat-
ment began prior to the decline in cognition and must 
be considered a preventative measure [6, 12, 32]. Our 
data demonstrate that administration of fingolimod after 
the reported onset of memory decline in 3xTg-AD mice 
results in a restoration of spatial working memory extend-
ing to 12 months of age.

Inflammation in the CNS is an important factor in the 
onset and progression of AD. Recent studies using positron 
emission tomography have revealed chronic microglial acti-
vation in the AD brain and have used this as a predictor of 
cognitive decline [46–48, 61]. Postmortem analyses have 
also confirmed the significant increase in microglial activa-
tion observed in the AD brain [36, 70]. In 3xTg-AD mice 
increased microglial number and elevated proinflammatory 
cytokines have been reported from 6 months of age [12, 
14, 32, 37]. In line with this, we report increased micro-
glial number in the hippocampus of 12-month 3xTg-AD 
mice compared to WT controls and have demonstrated that 

these cells develop an activated morphology as measured by 
reduced branch length and number. Consistent with previ-
ous studies we have shown that treatment with fingolimod 
reduces the number of microglial cells and, furthermore, 
have demonstrated that microglia in treated mice display a 
resting morphology.

Mounting evidence has highlighted the infiltration of 
peripheral lymphocytes to the brain parenchyma of AD 
patients [24, 51, 75]. This has also been reported in APP 
and tau transgenic mice and has been shown to further com-
pound inflammation in the CNS [11, 25, 43]. Here, we report 
for the first time the detection of CD3 + T-cell lymphocytes 
in the cortex of 3xTg-AD mice. Furthermore, treatment with 
fingolimod reduced the level of circulating lymphocytes and 
we note a concomitant reduction in CD3 + T-cell lympho-
cytes in the brains of 3xTg-AD mice.

Previous Aβ-infusion models of AD have shown that fin-
golimod reduces proinflammatory TNF-α and COX-II levels 
while increasing brain-derived neurotrophic factor (BDNF) 
[6],Fukumoto et al. 2014a; [32]. Similarly, our data have 
identified a fingolimod-mediated switch from a pro-inflam-
matory to anti-inflammatory cytokine profile in the cortex 
and hippocampus of 3xTg-AD mice with a reduction in IL-6 
and an increase in IL-10 concentrations. Interestingly, the 
effect of fingolimod on IL-6 and IL-10 is observed in 3xTg-
AD mice only and not WT. No genotype-related alteration in 

Fig. 6  Fingolimod alters the 
cytokine profile in the 3xTg-AD 
brain. IL-6 and IL-10 con-
centrations in the cortex and 
hippocampus were assessed by 
ELISA. A A genotype-treatment 
interaction in IL-6 was observed 
in the cortex (p = 0.0225, 
F1,19 = 6.169) but not hip-
pocampus. Post hoc analysis 
revealed a significant reduction 
in fingolimod-treated 3xTg-
AD mice compared to vehicle 
treated (p = 0.0182, n = 5–6). 
B A significant genotype-treat-
ment interaction was observed 
in IL-10 levels in the cortex 
(p = 0.0298, F(1,22) = 5.398) and 
a treatment-related increase 
in IL-10 was observed in the 
hippocampus (p = 0.0121, 
F(1,15) = 8.138). Post-hoc analy-
sis revealed that 3xTg-AD mice 
treated with fingolimod had sig-
nificantly higher levels of IL-10 
in the cortex compared with 
vehicle controls (p = 0.0277, 
n = 6–7). Data are expressed as 
the mean ± SEM, *p < 0.05
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these cytokines was recorded. Further research is required to 
elucidate this genotype-specific effect of fingolimod.

The characteristic hallmarks of AD are the deposition 
of extracellular amyloid plaques and the formation of 
intraneuronal neurofibrillary tangles of hyperphosphoryl-
ated tau [21]. These pathologies have been implicated in 
the death of the neuronal population and chronic activa-
tion of the immune response [17, 34, 42, 45]. In 3xTg-
AD mice both amyloid and tau pathology develop by 6 
and 12 months of age, respectively [59]. Previous in vitro 
and in vivo studies have demonstrated that fingolimod 
reduces Aβ production in neurons and the formation of 
amyloid plaques [7, 72], and reduces APP expression in 
Schwann cells [2]. The use of male mice only in this study 

limited our examination of Aβ40/42 levels and plaque bur-
den [13], and we note that future studies should include 
the examination of female mice in the cohort. However, 
consistent with previous findings, our data indicates that 
fingolimod reduces the expression of APP in the cortex 
of 3xTg-AD mice which may explain the reduction in Aβ 
previously reported. Furthermore, alteration of the S1P 
system in the form of reduced S1P-lyase has been shown 
to affect APP degradation [40]. While out of the scope of 
this current study the effect of the S1P system on APP pro-
duction and degradation merits further study. Finally, we 
demonstrate for the first time that fingolimod reduces the 
level of phosphorylated tau in the cortex and hippocampus 
of 3xTg-AD mice with no effect on total tau. One possible 

Fig. 7  Fingolimod reduces 
pathological hallmarks in 3xTg-
AD mice. C The protein levels 
of Tau (Tau46), phospho-Tau 
(AT8), and APP (4G8) were 
measured in the cortical and 
hippocampal tissue of experi-
mental mice. A A genotype-
related increase in tau protein 
was observed in the cortex 
(p = 0.0076, F(1,16) = 9.306) 
and hippocampus (p = 0.0265, 
F(1,16) = 5.975). B A concomi-
tant genotype-related increase 
in phospho-tau protein was 
also observed in the cortex 
(p = 0.0242, F(1,12) = 6.649) 
and hippocampus (p = 0.0018, 
F(1,23) = 12.5). Post hoc analyses 
revealed that phospho-tau pro-
tein was increased in 3xTg-AD 
mice compared to WT (cortex: 
p = 0.02, n = 4; hippocampus: 
p = 0.0011, n = 6–7) and that 
treatment with fingolimod alle-
viated this (cortex: p = 0.0198, 
n = 4; hippocampus: p = 0.0012, 
n = 6–7). D A significant 
genotype-related increase was 
observed in the level of cortical 
APP (p < 0.0001, F(1,8) = 147.6). 
Post hoc analysis revealed that 
APP was increased in 3xTg-
AD mice compared to WT 
(p < 0.0001, n = 3) and that 
this was reduced by treatment 
with fingolimod (p = 0.0051, 
n = 3). Data are expressed as 
the mean ± SEM, *p < 0.05, 
**p < 0.01, ****p < 0.0001
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mechanism is through the reduction in glycogen synthase 
3β, one of the primary kinases for tau. While it has not yet 
been demonstrated in neurons, fingolimod has been shown 
to reduce the level of glycogen synthase 3β in a number of 
cell types [44, 64, 74].

AD is a multifactorial disease involving the complex 
interaction between amyloid plaque formation, phosphoryl-
ated tau misfolding, and chronic inflammation in the CNS 
resulting in widespread neuronal loss and fatal cognitive 
decline. Therapeutic intervention is currently limited and 
clinical trials targeting these hallmarks individually have 
yielded little success. This study has demonstrated that 
treatment with fingolimod reduces inflammation in the CNS, 
reduces APP and tau phosphorylation, and restores spatial 
working memory in male 3xTg-AD mice. The results here 
add to the increasing body of evidence indicating that fin-
golimod should be considered a viable therapeutic agent for 
the treatment of AD.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12035- 021- 02613-5.
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