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Abstract. Games on graphs with ω-regular objectives provide a model
for the control and synthesis of reactive systems. Every ω-regular objective
can be decomposed into a safety part and a liveness part. The liveness part
ensures that something good happens “eventually.” Two main strengths
of the classical, infinite-limit formulation of liveness are robustness
(independence from the granularity of transitions) and simplicity (ab-
straction of complicated time bounds). However, the classical liveness for-
mulation suffers from the drawback that the time until something good
happens may be unbounded. A stronger formulation of liveness, so-called
finitary liveness, overcomes this drawback, while still retaining robustness
and simplicity. Finitary liveness requires that there exists an unknown,
fixed bound b such that something good happens within b transitions.
While for one-shot liveness (reachability) objectives, classical and finitary
liveness coincide, for repeated liveness (Büchi) objectives, the finitary for-
mulation is strictly stronger. In this work we study games with finitary
parity and Streett (fairness) objectives. We prove the determinacy of these
games, present algorithms for solving these games, and characterize the
memory requirements of winning strategies. Our algorithms can be used,
for example, for synthesizing controllers that do not let the response time
of a system increase without bound.

1 Introduction

Games played on graphs are suitable models for multi-component systems: ver-
tices represent states; edges represent transitions; players represent components;
and objectives represent specifications. The specification of a component is typi-
cally given as an ω-regular condition [9], and the resulting ω-regular games have
been used for solving control and verification problems (see, e.g., [3, 11, 12]).

Every ω-regular specification (indeed, every specification) can be decomposed
into a safety part and a liveness part [1]. The safety part ensures that the com-
ponent will not do anything “bad” (such as violate an invariant) within any
finite number of transitions. The liveness part ensures that the component will
do something “good” (such as proceed, or respond, or terminate) within some
finite number of transitions. Liveness can be violated only in the limit, by infinite
sequences of transitions, as no bound is stipulated on when the “good” thing
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must happen. This infinitary, classical formulation of liveness has both strengths
and weaknesses. A main strength is robustness, in particular, independence from
the chosen granularity of transitions. Another main strength is simplicity, allow-
ing liveness to serve as an abstraction for complicated safety conditions. For
example, a component may always respond in a number of transitions that de-
pends, in some complicated manner, on the exact size of the stimulus. Yet for
correctness, we may be interested only that the component will respond “eventu-
ally.” However, these strengths also point to a weakness of the classical definition
of liveness: it can be satisfied by components that in practice are quite unsatis-
factory because no bound can be put on their response time. It is for this reason
that alternative, stronger formulations of liveness have been proposed. One of
these is finitary liveness [2, 4]: finitary liveness does not insist on response within
a known bound b (i.e., every stimulus is followed by a response within b transi-
tions), but on response within some unknown bound (i.e., there exists b such that
every stimulus is followed by a response within b transitions). Note that in the
finitary case, the bound b may be arbitrarily large, but the response time must
not grow forever from one stimulus to the next. In this way, finitary liveness
still maintains the robustness (independence of step granularity) and simplic-
ity (abstraction of complicated safety) of traditional liveness, while removing
unsatisfactory implementations.

In this paper, we study graph games with finitary winning conditions. The
motivation is the same as for finitary liveness. Consider, for example, the synthe-
sis of an elevator controller as a strategy in a game where one player represents
the environment (i.e., the pushing of call buttons on various floors, and the push-
ing of target buttons inside the elevators), and the other player represents the
elevator control (i.e., the commands to move an elevator up or down, and the
opening and closing of elevator doors). Clearly, one objective of the controller is
that whenever a call button is pushed on a floor, then an elevator will eventu-
ally arrive, and whenever a target button is pushed inside an elevator, then the
elevator will eventually get to the corresponding floor. Note that this objective
is formulated in an infinitary way (the key term is “eventually”). This is be-
cause, for robustness and simplicity, we do not wish to specify for each state the
exact number of transitions until the objective must be met. However, a truly
unbounded implementation of elevator control (where the response time grows
from request to request, without bound) would be utterly unsatisfactory. A fini-
tary interpretation of the objective prohibits such undesirable control strategies:
there must exist a bound b such that the controller meets every call request, and
every target request, within b transitions.

We formalize finitary winning for the normal form of ω-regular objectives
called parity conditions [13]. A parity objective assigns a non-negative integer
priority to every vertex, and the objective of player 1 is to make sure that
the lowest priority that repeats infinitely often is even. This is an infinitary
objective, as player 1 can win by ensuring that every odd priority that repeats
infinitely often is followed by a smaller even priority “eventually” (arbitrarily
many transitions later). The finitary parity objective, by contrast, insists that
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Fig. 1. A simple game graph

player 1 ensures that there exists a bound b such that every odd priority that
repeats infinitely often is followed by a smaller even priority within b transitions.
The finitary parity objective is stronger than the classical parity objective, as is
illustrated by the following example.

Example 1. Consider the game shown in Figure 1. The square-shaped states are
player 1 states, where player 1 chooses the successor state, and the diamond-
shaped states are player 2 states (we will follow this convention throughout this
paper). The priorities of states are shown next to each state in the figure. If
player 1 follows a memoryless strategy σ that chooses the successor s2 at state
s0, this ensures that against all strategies π for player 2, the minimum priority
of the states that are visited infinitely often is even (either state s3 is visited
infinitely often, or both states s0 and s1 are visited finitely often). However,
consider the strategy πw for player 2: the strategy πw is played in rounds, and
in round k ≥ 0, whenever player 1 chooses the successor s2 at state s0, player 2
stays in state s2 for k transitions, and then goes to state s3 and proceeds to
round k +1. The strategy πw ensures that for all strategies σ for player 1, either
the minimum priority visited infinitely often is 1 (i.e., both states s0 and s1 are
visited infinitely often and state s3 is visited finitely often); or states of priority 1
are visited infinitely often, and the distances between visits to states of priority 1
and subsequent visits to states of priority 0 increase without bound (i.e., the limit
of the distances is ∞). Hence it follows that in this game, although player 1 can
win for the parity objective, she cannot win for the finitary parity objective.

We prove that games with finitary parity objectives are determined: for every
state either there is a player 1 strategy (a winning strategy for player 1) that en-
sures that the finitary parity objective is satisfied against all player 2 strategies,
or there is a player 2 strategy (a winning strategy for player 2) that ensures that
the finitary parity objective is violated against all player 1 strategies. Similar
to games with infinitary parity objectives, we establish the existence of win-
ning strategies that are memoryless (independent of the history of the play)
for player 1. However, winning strategies for player 2 in general require infinite
memory; this is in contrast to infinitary parity objectives, where memoryless
winning strategies exist also for player 2 [5]. We present an algorithm to com-
pute the winning sets in time O(n2d−3 · d · m) for game graphs with n states
and m edges, and for finitary parity objectives with d priorities. Games with
infinitary parity objectives can be solved in time O(n� d

2 � · m) [8]. Since in the
case of finitary parity objectives, winning strategies for player 2 require infinite
memory in general, the analysis and the algorithm for games with finitary parity
objectives is more involved. We also show that polynomial-size witnesses exist
for the winning strategies of both players; in particular, even though the win-
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ning strategies for player 2 may require infinite memory, there exist polynomial
witnesses for these strategies. This allows us to conclude that, similar to games
with infinitary parity objectives, the winning sets for games with finitary parity
objectives can be decided in NP ∩ coNP.

In addition to finitary parity, we study finitary Streett objectives. Streett
objectives require that if some stimuli are repeated infinitely often, then the cor-
responding responses occur infinitely often. The finitary interpretation requires,
in addition, that there exists a bound b on all required response times (i.e., on
the number of transitions between stimulus and corresponding response). We
show that games with finitary Streett objectives can be solved by a reduction to
finitary parity objectives (on a different game graph). The reduction establishes
that games with finitary Streett objectives are determined. It also gives an algo-
rithm that computes the winning sets in time (n ·d!)O(d) ·O(m) for game graphs
with n states, m edges, and finitary Streett objectives with d pairs. Hence, the
winning sets can be decided in EXPTIME. The decision problem for winning
sets for games with infinitary Streett objectives is coNP-complete [5], and the
winning sets can be computed in time O(nd ·d!·m) [7]. For classical as well as fini-
tary Streett games, finite-memory winning strategies exist for player 1. However,
while in the classical case memoryless winning strategies exist for player 2 [5], in
the finitary case the winning strategies for player 2 may require infinite memory.

We focus on finitary parity and Streett objectives. The finitary parity objec-
tives are a canonical form to express finitary versions of ω-regular objectives;
they subsume finitary reachability, finitary Büchi, and finitary co-Büchi objec-
tives as special cases. The Streett objectives capture liveness conditions that
are of particular interest in system design, as they correspond to strong fairness
(compassion) constraints [9]. The finitary Streett objectives, therefore, give the
finitary formulation of strong fairness.

2 Games with ω-Regular Objectives

Game graphs. A game graph G = ((S, E), (S1, S2)) consists of a directed graph
(S, E) with a finite state space S and a set E of edges, and a partition (S1, S2) of
the state space S into two sets. The states in S1 are player 1 states, and the states
in S2 are player 2 states. For a state s ∈ S, we write E(s) = {t ∈ S | (s, t) ∈ E}
for the set of successor states of s. We assume that every state has at least one
out-going edge, i.e., E(s) is non-empty for all states s ∈ S.

Plays. A game is played by two players: player 1 and player 2, who form an
infinite path in the game graph by moving a token along edges. They start by
placing the token on an initial state, and then they take moves indefinitely in
the following way. If the token is on a state in S1, then player 1 moves the token
along one of the edges going out of the state. If the token is on a state in S2,
then player 2 does likewise. The result is an infinite path in the game graph;
we refer to such infinite paths as plays. Formally, a play is an infinite sequence
〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write Ω for
the set of all plays.
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Strategies. A strategy for a player is a recipe that specifies how to extend plays.
Formally, a strategy σ for player 1 is a function σ: S∗ ·S1 → S that, given a finite
sequence of states (representing the history of the play so far) which ends in a
player 1 state, chooses the next state. The strategy must choose only available
successors, i.e., for all w ∈ S∗ and s ∈ S1, if σ(w · s) = t, then t ∈ E(s). The
strategies for player 2 are defined analogously. We write Σ and Π for the sets of
all strategies for player 1 and player 2, respectively. Strategies in general require
memory to remember the history of plays. An equivalent definition of strategies
is as follows. Let M be a set called memory. A strategy with memory can be
described as a pair of functions: (a) a memory-update function σu: S × M → M
that, given the memory and the current state, updates the memory; and (b) a
next-state function σn: S × M → S that, given the memory and the current
state, specifies the successor state. The strategy is finite-memory if the memory
M is finite. The strategy is memoryless if the memory M is a singleton set.
The memoryless strategies do not depend on the history of a play, but only
on the current state. Each memoryless strategy for player 1 can be specified as
a function σ: S1 → S such that σ(s) ∈ E(s) for all s ∈ S1, and analogously
for memoryless player 2 strategies. Given a starting state s ∈ S, a strategy
σ ∈ Σ for player 1, and a strategy π ∈ Π for player 2, there is a unique play,
denoted ω(s, σ, π) = 〈s0, s1, s2, . . .〉, which is defined as follows: s0 = s and
for all k ≥ 0, if sk ∈ S1, then σ(s0, s1, . . . , sk) = sk+1, and if sk ∈ S2, then
π(s0, s1, . . . , sk) = sk+1.

Classical winning conditions. We first define the class of ω-regular objectives
and the classical notion of winning.

Objectives. Objectives for the players in non-terminating games are specified
by providing the sets Φ, Ψ ⊆ Ω of winning plays for player 1 and player 2,
respectively. We consider zero-sum games, where the objectives of both players
are complementary, i.e., Ψ = Ω \ Φ. The class of ω-regular objectives [13] are of
special interest since they form a robust class of objectives for verification and
synthesis. The ω-regular objectives, and subclasses thereof, can be specified in
the following forms. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf(ω) = {s ∈
S | sk = s for infinitely many k ≥ 0} to be the set of states that occur infinitely
often in ω.

1. Reachability and safety objectives. Given a set F ⊆ S of states, the reachabil-
ity objective Reach(F ) requires that some state in F be visited, and dually,
the safety objective Safe(F ) requires that only states in F be visited. For-
mally, the sets of winning plays are Reach(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥
0. sk ∈ F} and Safe(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ≥ 0. sk ∈ F}.

2. Büchi and co-Büchi objectives. Given a set F ⊆ S of states, the Büchi objec-
tive Buchi(F ) requires that some state in F be visited infinitely often, and
dually, the co-Büchi objective coBuchi(F ) requires that only states in F be
visited infinitely often. Thus, the sets of winning plays are Buchi(F ) = {ω ∈
Ω | Inf(ω) ∩ F �= ∅} and coBuchi(F ) = {ω ∈ Ω | Inf(ω) ⊆ F}.

3. Rabin and Streett objectives. Given a set P = {(E1, F1), . . . , (Ed, Fd)} of
pairs of sets of states (i.e, for all 1 ≤ j ≤ d, both Ej ⊆ S and Fj ⊆ S), the
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Rabin objective Rabin(P ) requires that for some pair 1 ≤ j ≤ d, all states in
Ej be visited finitely often, and some state in Fj be visited infinitely often.
Hence, the winning plays are Rabin(P ) = {ω ∈ Ω | ∃1 ≤ j ≤ d. (Inf(ω) ∩
Ej = ∅ and Inf(ω) ∩ Fj �= ∅)}. Dually, given P = {(E1, F1), . . . , (Ed, Fd)},
the Streett objective Streett(P ) requires that for all pairs 1 ≤ j ≤ d, if
some state in Fj is visited infinitely often, then some state in Ej be visited
infinitely often, i.e., Streett(P ) = {ω ∈ Ω | ∀1 ≤ j ≤ d. (Inf(ω) ∩ Ej �=
∅ or Inf(ω) ∩ Fj = ∅)}.

4. Parity objectives. Given a function p: S → {0, 1, 2, . . . , d−1} that maps every
state to an integer priority, the parity objective Parity(p) requires that of the
states that are visited infinitely often, the least priority be even. Formally,
the set of winning plays is Parity(p) = {ω ∈ Ω | min{p(Inf(ω))} is even}.
The dual, co-parity objective has the set coParity(p) = {ω ∈ Ω |
min{p(Inf(ω))} is odd} of winning plays.

Every parity objective is both a Rabin objective and a Streett objective. Hence,
the parity objectives are closed under complementation. The Büchi and co-Büchi
objectives are special cases of parity objectives with two priorities, namely, p:
S → {0, 1} for Büchi objectives with F = p−1(0), and p: S → {1, 2} for co-
Büchi objectives with F = p−1(2). The reachability and safety objectives can
be turned into Büchi and co-Büchi objectives, respectively, on slightly modified
game graphs.

Winning. Given an objective Φ ⊆ Ω for player 1, a strategy σ ∈ Σ is a winning
strategy for player 1 from a set U ⊆ S of states if for all player 2 strategies
π ∈ Π and all states s ∈ U , the play ω(s, σ, π) is winning, i.e., ω(s, σ, π) ∈ Φ.
The winning strategies for player 2 are defined analogously. A state s ∈ S is
winning for player 1 with respect to the objective Φ if player 1 has a winning
strategy from {s}. Formally, the set of winning states for player 1 with respect
to the objective Φ is W1(Φ) = {s ∈ S | ∃σ ∈ Σ. ∀π ∈ Π. ω(s, σ, π) ∈ Φ}.
Analogously, the set of winning states for player 2 with respect to an objective
Ψ ⊆ Ω is W2(Ψ) = {s ∈ S | ∃π ∈ Π. ∀σ ∈ Σ. ω(s, σ, π) ∈ Ψ}. We say that
there exists a (memoryless; finite-memory) winning strategy for player 1 with
respect to the objective Φ if there exists such a strategy from the set W1(Φ); and
similarly for player 2.

Theorem 1 (Classical determinacy and strategy complexity).

1. [6] For all game graphs, all Rabin objectives Φ for player 1, and the comple-
mentary Streett objective Ψ = Ω\Φ for player 2, we have W1(Φ) = S\W2(Ψ).

2. [5] For all game graphs and all Rabin objectives for player 1, there exists a
memoryless winning strategy for player 1.

3. [6] For all game graphs and all Streett objectives for player 2, there exists a
finite-memory winning strategy for player 2. However, in general no memo-
ryless winning strategy exists.
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3 Finitary Winning Conditions

We now define a stronger notion of winning, namely, finitary winning, in games
with parity and Streett objectives.

Finitary winning for parity objectives. For parity objectives, the finitary
winning notion requires that for each visit to an odd priority that is visited
infinitely often, the distance to a stronger (i.e., lower) even priority be bounded.
To define the winning plays formally, we need the concept of a distance sequence.

Distance sequences for parity objectives. Given a play ω = 〈s0, s1, s2, . . .〉 and a
priority function p: S → {0, 1, . . . , d − 1}, we define a sequence of distances
distk(ω, p), for all k ≥ 0, as follows: distk(ω, p) = 0 if p(sk) is even, and
distk(ω, p) = inf{k′ ≥ k | p(sk′) is even and p(sk′ ) < p(sk)} if p(sk) is odd.
Intuitively, the distance for a position k in a play with an odd priority at posi-
tion k, denotes the shortest distance to a stronger even priority in the play. We
assume the standard convention that the infimum of the empty set is ∞.

Finitary parity objectives. The finitary parity objective finParity(p) for a priority
function p requires that the sequence of distances for the positions with odd pri-
orities that occur infinitely often be bounded. This is equivalent to requiring that
the sequence of all distances be bounded in the limit, and captures the notion
that the “good” (even) priorities that appear infinitely often do not appear in-
finitely rarely. Formally, the sets of winning plays for the finitary parity objective
and its complement are finParity(p) = {ω ∈ Ω | lim supk→∞ distk(ω, p) < ∞}
and infParity(p) = {ω ∈ Ω | lim supk→∞ distk(ω, p) = ∞}, respectively. Observe
that if a play ω is winning for a co-parity objective, then the lim sup of the dis-
tance sequence for ω is ∞, that is, coParity(p) ⊆ infParity(p). However, if a play
ω is winning for a (classical) parity objective, then the lim sup of the distance se-
quence for ω can be ∞ (as shown in Example 1), that is, finParity(p) � Parity(p).
Given a game graph G and a priority function p, solving the finitary parity game
requires computing the two winning sets W1(finParity(p)) and W2(infParity(p)).

Remark 1. Recall that Büchi and co-Büchi objectives correspond to parity ob-
jectives with two priorities. A finitary Büchi objective is in general a strict subset
of the corresponding classical Büchi objective; a finitary co-Büchi objective co-
incides with the corresponding classical co-Büchi objective. However, it can be
shown that for parity objectives with two priorities, the classical winning sets and
the finitary winning sets are the same; that is, for all game graphs G and all pri-
ority functions p with two priorities, we have W1(finParity(p)) = W1(Parity(p))
and W2(infParity(p)) = W2(coParity(p)). Note that in Example 1, we have
s0 ∈ W1(Parity(p)) and s0 �∈ W1(finParity(p)). This shows that for priority
functions with three or more priorities, the winning set for a finitary parity ob-
jective can be a strict subset of the winning set for the corresponding classical
parity objective, that is, W1(finParity(p)) � W1(Parity(p)).

Finitary winning for Streett objectives. The notion of distance sequence
for parity objectives has a natural extension to Streett objectives.
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Distance sequences for Streett objectives. Given a play ω = 〈s0, s1, s2, . . .〉 and
a set P = {(E1, F1), . . . , (Ed, Fd)} of Streett pairs of state sets, the d sequences
of distances dist j

k(ω, P ), for all k ≥ 0 and 1 ≤ j ≤ d, are defined as follows:
dist j

k(ω, P ) = 0 if sk �∈ Fj , and dist j
k(ω, P ) = inf{k′ ≥ k | sk′ ∈ Ej} if sk ∈ Fj .

Let distk(ω, P ) = max{dist j
k(ω, P ) | 1 ≤ j ≤ d} for all k ≥ 0.

Finitary Streett objectives. The finitary Streett objective finStreett(P ) for a set P
of Streett pairs requires that the distance sequence be bounded in the limit, i.e.,
the winning plays are finStreett(P ) = {ω ∈ Ω | lim supk→∞ distk(ω, P ) < ∞}.

Example 2. Consider the game graph of Figure 2. Player 2 generates requests
of type Req1 and Req2; these are shown as labeled edges in the figure. Player 1
services a request of type Reqi by choosing an edge labeled Serv i, for i = 1, 2.
Whenever a request is received, further requests of the same type are disabled
until the request is serviced; then the requests of this type are enabled again. The
state s0 represents the case when there are no unserviced requests; the states
s1 and s2 represent the cases when there are unserviced requests of type Req1
and Req2, respectively; and the states s7 and s8 represent the cases when there
are unserviced requests of both types, having arrived in either order. On arrival
of a request of type Reqi, a state in Fi is visited, and when a request of type
Reqi is serviced, a state in Ei is visited, for i = 1, 2. Hence F1 = {s1, s8}, F2 =
{s2, s7}, E1 = {s5, s12}, and E2 = {s6, s11}. The Streett objective Streett(P )
with P = {(E1, F1), (E2, F2)} requires that if a request of type Reqi is received
infinitely often, then it be serviced infinitely often, for both i = 1, 2. The player 1
strategy s9 → s11 and s10 → s12 is a stack strategy, which always services first
the request type received last. The player 1 strategy s9 → s12 and s10 → s11
is a queue strategy, which always services first the request type received first.
Both the stack strategy and the queue strategy ensure that the classical Streett
objective Streett(P ) is satisfied. However, for the stack strategy, the number of
transitions between the arrival of a request of type Reqi and its service can be
unbounded. Hence the stack strategy is not a winning strategy for player 1 with
respect to the finitary Streett objective finStreett(P ). The queue strategy, by
contrast, ensures not only that every request that is received infinitely often is
serviced, but it also ensures that the number of transitions between the arrival
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Fig. 2. A request-service game graph
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of a request and its service is at most 6. Thus the queue strategy is winning for
player 1 with respect to finStreett(P ).

4 Finitary Determinacy and Algorithmic Analysis

We present an algorithm to solve games with finitary parity objectives. The cor-
rectness argument for the algorithm also proves determinacy for finitary parity
games.1 We then show that games with finitary Streett objectives can be solved
via a reduction to finitary parity games.

Solving games with finitary parity objectives. We start with some prelim-
inary notation and facts that will be required for the analysis of the algorithm.

Closed sets. A set U ⊆ S of states is a closed set for player 2 if the following
two conditions hold: (a) for all states u ∈ (U ∩ S2), we have E(u) ⊆ U , i.e., all
successors of player 2 states in U are again in U ; and (b) for all u ∈ (U ∩ S1),
we have E(u) ∩ U �= ∅, i.e., every player 1 state in U has a successor in U . The
closed sets for player 1 are defined analogously. Every closed set U for player 	,
for 	 ∈ {1, 2}, induces a sub-game graph, denoted G � U . For winning sets W1
and W2, we write WG

1 and WG
2 to explicitly specify the game graph G.

Proposition 1. Consider a game graph G, and a closed set U for player 2. For
every objective Φ for player 1, we have WG�U

1 (Φ) ⊆ WG
1 (Φ).

Attractors. Given a game graph G, a set U ⊆ S of states, and a player 	 ∈ {1, 2},
the set Attr�(U, G) contains the states from which player 	 has a strategy to reach
a state in U against all strategies of the other player; that is, Attr�(U, G) =
WG

� (Reach(U)). The set Attr1(U, G) can be computed inductively as follows:
let R0 = U ; let Ri+1 = Ri ∪ {s ∈ S1 | E(s) ∩ Ri �= ∅} ∪ {s ∈ S2 | E(s) ⊆
Ri} for all i ≥ 0; then Attr1(U, G) =

⋃
i≥0 Ri. The inductive computation of

Attr2(U, G) is analogous. For all states s ∈ Attr1(U, G), define rank(s) = i if
s ∈ Ri \ Ri−1, that is, rank(s) denotes the least i ≥ 0 such that s is included in
Ri. Define a memoryless strategy σ ∈ Σ for player 1 as follows: for each state
s ∈ (Attr1(U, G)∩S1) with rank(s) = i, choose a successor σ(s) ∈ (Ri−1 ∩E(s))
(such a successor exists by the inductive definition). It follows that for all states
s ∈ Attr1(U, G) and all strategies π ∈ Π for player 2, the play ω(s, σ, π) reaches
U in at most |Attr1(U, G)| transitions.

Proposition 2. For all game graphs G, all players 	 ∈ {1, 2}, and all sets
U ⊆ S of states, the set S \ Attr�(U, G) is a closed set for player 	.

Notation. Given a priority function p: S → {0, 1, . . . , d − 1}, and a priority
j ∈ {0, 1, . . . , d − 1}, we write p−1(j) ⊆ S for the set of states with pri-
ority j. For 
� ∈ {<, ≤, >, ≥}, let p−1(
� j) =

⋃
j′��j p−1(j′). Moreover, let

1 The determinacy of games with finitary parity objectives can also be proved by
reduction to Borel objectives, using the determinacy of Borel games [10]; however,
our proof is direct.
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even(p) =
⋃

2j<d p−1(2j) be the set of states with even priorities. We define
the set ReachSafe(p) =

⋃
2j+1<d(Reach(p−1(2j + 1)) ∩ Safe(p−1(≥ 2j + 1))) of

plays, i.e., the objective ReachSafe(p) requires that a state of some odd pri-
ority 2j + 1 be reached, and that the play stay within the set of states with
priorities at least 2j + 1. The complementary objective is Ω \ ReachSafe(p) =⋂

2j+1<d((Ω \ Reach(p−1(2j + 1))) ∪ Reach(p−1(≤ 2j) ∩ even(p))).

Informal description of Algorithm 1. The algorithm takes as input a game graph
G and a priority function p: S → {0, 1, . . . , d−1} with d priorities. The algorithm
iteratively computes the winning sets W1(finParity(p)) and W2(infParity(p)) for
player 1 and player 2, respectively. We describe one iteration of the algorithm
(i.e., one execution of the loop body at Step 2). Let Gi be the game graph at
iteration i, and let (Si, Ei) be the underlying directed graph. In Step 2.1, the
set A = Attr1(p−1(0), Gi) is computed as the set of states from which player 1
can reach a state of priority 0. In the sub-game Gi � B, where B = Si \ A, the
set C denotes the set of player 2 states that have an edge into A. In Step 2.3,
the set D = Attr2(C, Gi � B) is computed and the sub-game Gi � H is solved
recursively, where H = B \ D. If a non-empty player 1 winning set U1 is dis-
covered in the sub-game Gi � H , then U1 and Attr1(U1, G

i) are identified as
subsets of W1(finParity(p)), removed from Gi, and the algorithm proceeds to
iteration i + 1 (Step 2.5). Otherwise, the game graph Gi � B is solved with
the objective ReachSafe(p) for player 2 (and the complementary objective for
player 1). If the winning set for player 2 is empty, then all of Si is identified
as a subset of W1(finParity(p)), and the algorithm stops (Step 2.7). Otherwise,
let X2 be the winning set for player 2 in the sub-game Gi � B with respect to
the objective ReachSafe(p), and let L = Attr2(X2, G

i). The sub-game Gi � Q
is solved recursively, where Q = Si \ L. If a non-empty player 1 winning set Z1
is discovered in Gi � Q, then Z1 and Attr1(Z1, G

i) are identified as subsets of
W1(finParity(p)), removed from Gi, and the algorithm proceeds to iteration i+1
(Step 2.8.3). Otherwise, all of Si is identified as a subset of W2(infParity(p)),
and the algorithm stops (Step 2.8.4).

Claim 1: Correctness of Step 2.5. We first argue that the set H defined in Step 2.3
is a closed set for player 2. Observe that for all states s ∈ (S2 ∩ B), if E(s) is
not a subset of B, then s ∈ C. Hence for all states in s ∈ B \ C, we have
E(s) ⊆ B. It follows from Proposition 2 that H = B \ Attr2(C, Gi � B) is a
player 2 closed set in the game graph Gi. It follows from Proposition 1 that the
set U1 = WGi�H

1 (finParity(p)) in the sub-game Gi � H is winning for player 1.
Hence U1 and Attr1(U1, G

i) are correctly identified as subsets of the player 1
winning set W1(finParity(p)).

Claim 2: Correctness of Step 2.7. Observe that if Step 2.7 is executed, then
X2 = ∅, and hence player 1 wins with respect to the objective Φ =

⋂
2j+1≤d((Ω \

Reach(p−1(2j + 1))) ∪ Reach(p−1(≤ 2j) ∩ even(p))) from every state s ∈ B in
the sub-game Gi � B. Recall that B = Si \ A, and A = Attr1(p−1(0), Gi). It
follows that player 1 wins with respect to the objective Φ from all states s ∈ Si
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Algorithm 1. FinitaryParity

Input: a game graph G and a priority function p.
Output: the sets W1 = W1(finParity(p)) and W2 = W2(infParity(p)).

1. W1 = ∅; W2 = ∅; G0 = G; i = 0;
2. repeat

2.1. A = Attr1(p−1(0), Gi); B = Si \ A;
2.2. C = {s ∈ (B ∩ S2) | Ei(s) ∩ A �= ∅};
2.3. D = Attr2(C,Gi � B); H = B \ D;
2.4. (U1, U2) = FinitaryParity(Gi � H,p);
2.5. if U1 �= ∅ then

2.5.1. W1 = W1 ∪ Attr 1(U1, G
i); Si+1 = Si \ Attr 1(U1, G

i);
2.5.2. goto Step 2.9;

2.6. (X1, X2) = GameSolve(Gi � B, Ω \ ReachSafe(p));
2.7. if X2 = ∅ then

2.7.1. W1 = W1 ∪ Si;
2.7.2. return (W1, W2);

2.8. else
2.8.1. L = Attr2(X2, G

i); Q = Si \ L;
2.8.2. (Z1, Z2) = FinitaryParity(Gi � Q,p);
2.8.3. if Z1 �= ∅ then

2.8.3.1. W1 = W1 ∪ Attr1(Z1, G
i); Si+1 = Si \ Attr1(Z1, G

i);
2.8.3.2. goto Step 2.9;

2.8.4. else
2.8.4.1. W2 = W2 ∪ Si;
2.8.4.2. return (W1, W2);

2.9. Gi+1 = Gi � Si+1; i := i + 1;
until Si = ∅;

3. return (W1, W2).

in the game graph Gi. Hence p−1(2j + 1) ⊆ Attr1(p−1(≤ 2j) ∩ even(p), Gi)
for all 2j + 1 < d. We inductively define the following sets: let A0 = A =
Attr1(p−1(0), Gi); and let A2j = Attr1(p−1(2j), Gi � (Si\A2j−2)) for 2 ≤ 2j < d.
Observe that p−1(2j + 1) ⊆

⋃
j′≤j A2j′ . A memoryless strategy σ for player 1

can be constructed as follows: in A0, reach p−1(0) within |A0| transitions;
and in the sub-game Gi � (Si \ A2j−2), reach p−1(2j) within |A2j | transi-
tions from all states in A2j . If player 1 follows the strategy σ, then for all
player 2 strategies π, if the play visits a state in p−1(2j + 1), then it visits
p−1(≤ 2j)∩even(p) within |Si| transitions. Thus, for all states s and all player 2
strategies π, we have distk(ω(s, σ, π), p) ≤ |Si| for all k ≥ 0, and therefore
lim supk→∞ distk(ω(s, σ, π), p) < ∞.

Claim 3: Correctness of Step 2.8.3. Observe that L = Attr2(X2, G
i), and hence

Q = Si \ L is a closed set for player 2 (by Proposition 2). It follows from
arguments similar to the correctness of Step 2.5 that Z1 and Attr1(Z1, G

i) are
correctly identified as subsets of W1(finParity(p)).
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Claim 4: Correctness of Step 2.8.4. Observe that if Step 2.8.4 is executed, then
the following two conditions hold: (i) player 2 has a winning strategy πH from
H with respect to the objective infParity(p) in the sub-game Gi � H (because
the test of Step 2.5 fails); and (ii) player 2 has a winning strategy πQ from Q
with respect to the objective infParity(p) in the sub-game Gi � Q (because the
test of Step 2.8.3 fails). We construct a winning strategy π for player 2 from Si

which is played in rounds. In every round, there are five stages, and we describe
each stage of the strategy π for round r as follows:

Stage 1. [play in Q] As long as the play stays in Q, play the strategy πQ (the
player 2 winning strategy from Q in the sub-game Gi � Q with respect to
the objective infParity(p)). If the play enters L = Si \Q, proceed to Stage 2.

Stage 2. [play in L] Play a strategy πL to reach X2 within |L| transitions, and
proceed to Stage 3 when the play reaches X2.

Stage 3. [play in X2] Play a winning strategy πX2 with respect to the objective
ReachSafe(p) in the sub-game Gi � B. After the play reaches a state in
p−1(2j + 1) ∩ B, and stays in p−1(≥ 2j + 1) ∩ B for r transitions, proceed
to Stage 4.

Stage 4. [play in H ] As long as the play stays in H , play the strategy πH (the
player 2 winning strategy from H in the sub-game Gi � H with respect to
the objective infParity(p)). If the play enters D = B \H , proceed to Stage 5.

Stage 5. [play in D] Play a strategy to reach C within |D| transitions, then
leave B via an edge from C to A, and proceed to Stage 1 of round r + 1.

Given the player 2 strategy π, consider a player 1 strategy σ and a state s ∈ Si.
Observe that if the play ω(s, σ, π) reaches Stage 2 of a round r, then Stages 3
and 4 of round r are also reached. Similarly, if stage 5 of round r is reached, then
Stages 1 or 2 of round r+1 are also reached. If the play ω(s, σ, π) remains forever
in Stage 1 or Stage 4 for some round r, then by properties of πH and πQ (condi-
tions (i) and (ii) from above), it follows that ω(s, σ, π) ∈ infParity(p). Otherwise,
the play proceeds through infinitely many rounds. Stage 3 of the strategy π en-
sures that in round r, there is a position k ≥ 0 such that distk(ω(s, σ, π), p) ≥ r.
Hence it follows that lim supk→∞ distk(ω(s, σ, π), p) = ∞, and thus again
ω(s, σ, π) ∈ infParity(p).

The claims 1–4 establish the correctness of Algorithm 1, and also establish the
determinacy of games with finitary parity objectives.

Theorem 2 (Finitary determinacy). For all game graphs and all priority
functions p, we have W1(finParity(p)) = S \ W2(infParity(p)).

Running time of Algorithm 1. Recall from Remark 1 that for priority functions
p with two priorities, the winning sets for the classical parity objective Parity(p)
and for the finitary parity objective finParity(p) coincide. Hence, for two priori-
ties the winning set W1(finParity(p)) can be computed in O(n · m) time, where
n is the number of states and m is the number of edges (by algorithms for
solving Büchi and co-Büchi games). For priority functions with d priorities, let
T (n, m, d) be the running time of Algorithm 1 to compute W1(finParity(p)) and
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W2(infParity(p)). The running time of one iteration of the algorithm (i.e., one
execution of the loop body at Step 2) can be bounded by n · (T (n, m, d − 1) +
O(d · m)). Since in each iteration at least one state is removed from the game
graph, we obtain the recurrence T (n, m, d) = n2 · (T (n, m, d − 1) + O(d · m)) for
d > 2. This yields the time bound in the following theorem.

Theorem 3 (Algorithm 1). Given a game graph with n states and m edges,
and a priority function p with d priorities, Algorithm 1 computes the winning
sets W1(finParity(p)) and W2(infParity(p)) in O

(
n2d−3 · d · m

)
time.

Winning strategies for finitary parity objectives. We first show that win-
ning strategies for player 2 with respect to the objective infParity(p) in general
require infinite memory. To see this, recall Example 1: the player 2 winning
strategy πw constructed in the example requires infinite memory, and against
any finite-memory strategy πf for player 2, the player 1 strategy σ that chooses
the successor s2 at state s0, ensures that in the play ω(s0, σ, πf ) the distances
between states of priority 1 and priority 0 are always bounded. In contrast to
winning strategies for player 2, which may require infinite memory, we now ar-
gue that memoryless winning strategies exist for player 1. This follows from the
analysis of Steps 2.5, 2.7, and 2.8.3 of Algorithm 1. In the correctness argu-
ment for Step 2.7, a memoryless winning strategy is constructed. The existence
of memoryless winning strategies for Steps 2.5 and 2.8.3 follow from inductive
arguments (induction on the number of priorities for Step 2.5, and induction on
the size of the state space for Step 2.8.3).

Witness sizes for winning strategies. Since memoryless winning strategies exist
for player 1, there exist polynomial-size witnesses (in fact, linear-size witnesses)
for player 1 winning strategies. We now argue that although player 2 winning
strategies may require infinite memory, there exist polynomial-size witnesses for
these strategies as well. Consider the correctness argument for Step 2.8.4 of
Algorithm 1. The sets used in the analysis can serve as witness for the player 2
winning strategy. The witness consists of the following components: (a) the sets
A = Attr1(p−1(0), Gi) and B = Si \ A; (b) the sets C and D = Attr2(C, Gi �
B) and H = B \ D; (c) the set X2 = WGi�B

2 (ReachSafe(p)), and a player 2
winning strategy in X2 with respect to the objective ReachSafe(p); (d) the set
L = Attr2(X2, G

i), and a player 2 winning strategy in L to reach X2; and
(e) player 2 winning strategies in the sub-games Gi � H and Gi � Q. Given
such a witness, the existence of a player 2 winning strategy follows from the
construction presented in the correctness argument for Step 2.8.4. It is easy to
argue that linear-size witnesses exist for parts (a)–(d). The witness for part (e) is
recursive. A key observation to obtain a polynomial-size witness is the following:
in Stage 1 of the strategy construction, in the set Q ∩ H player 2 can follow the
winning strategy in H of the sub-game Gi � H . Hence the witness in Q can follow
the witness of H in the set Q ∩ H , and we need to exhibit a different witness
in Q only for the subset that is disjoint from H . Let Size(t) denote the size of
the witness for a set of size t. Hence the witness consists of the witness in H of
Size(|H |), the witness in Q of size Size(|Q\H |), and witnesses of linear size. Thus
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we have the recurrence Size(n) ≤ max{Size(h)+Size(n−h)+O(n) | 1 ≤ h ≤ n},
where h denotes the size of the set H , that is, h = |H |. This recurrence is satisfied
by Size(n) = O(n2).

Theorem 4 (Finitary strategy complexity). For all game graphs and all
priority functions p, there exists a memoryless winning strategy for player 1
with respect to the objective finParity(p). However, in general no finite-memory
winning strategy exists for player 2 with respect to the complementary objective
infParity(p). For game graphs with n states, there are witnesses of size O(n) and
O(n2) for the winning strategies for player 1 and player 2, respectively.

Computational complexity. The existence of memoryless winning strategies for
player 1 implies that whether a given state lies in W1(finParity(p)) can be de-
cided in NP. Moreover, because of the existence of polynomial-size witnesses for
player 2 winning strategies, also whether a given state lies in W2(infParity(p))
can be decided in NP.

Corollary 1. For all game graphs, all priority functions p, and all states s,
whether s ∈ W1(finParity(p)) can be decided in NP ∩ coNP.

It remains an open problem if there is a polynomial-time algorithm to compute
W1(finParity(p)). The existence of memoryless winning strategies for finitary
parity objectives also gives the following refined characterization of the winning
set, which shows that distances can be bounded by the size of the state space.

Corollary 2. For all game graphs with n states, and all priority func-
tions p, we have W1(finParity(p)) = {s ∈ S | ∃σ ∈ Σ. ∀π ∈ Π.
lim supk→∞ distk(ω(s, σ, π), p) ≤ n}.

Solving games with finitary Streett objectives. The index appearance
record (IAR) construction [13] translates games with player 1 Streett objec-
tives into games with parity objectives, preserving the abilities of both play-
ers to win. Given a game graph G with n states and m edges, and a set
P = {(E1, F1), . . . , (Ed, Fd)} of d Streett pairs, the IAR construction yields a
game graph G′ with n · d! · d2 states and m · d! · d2 edges, and a priority function
p with O(d) priorities. We only sketch the construction here. An IAR is a triple
(τ, e, f), where τ is a permutation of (1, 2, . . . , d), and e, f ∈ {1, 2, . . . , d}. The
permuation τ remembers the order of the latest appearances of the sets Ej , for
1 ≤ j ≤ d, and the indices e and f remember the previous positions in τ of the
most recent sets Ej and Fj , respectively. The new game graph G′ is obtained as
the synchronous product of the original game graph G and the IAR; see [13]. For
a state 〈s, (τ, e, f)〉 of G′ (where s is a state of G), the priority function p is defined
such that p(〈s, (τ, e, f)〉) = 2e if f ≤ e, and otherwise p(〈s, (τ, e, f)〉) = 2f − 1.
The IAR reduction from Streett to parity games ensures that for every play
in G, the limsup of the Streett distance sequence is bounded by d! · d2 times the
limsup of the parity distance sequence for the corresponding play in G′.

Theorem 5 (Finitary Streett games). Given a game graph G with n states,
m edges, and a set P of d Streett pairs, let G′ be the game graph with n · d! · d2
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states and m · d! · d2 edges, and let p be the corresponding priority function
with O(d) priorities, obtained by the IAR construction. For a play ω′ in G′, let
ω be the corresponding play in G. If lim supk→∞ distk(ω′, p) = α < ∞, then
lim supk→∞ distk(ω, P ) ≤ α · d! · d2, and if lim supk→∞ distk(ω′, p) = ∞, then
lim supk→∞ distk(ω, P ) = ∞.

Hence solving games with finitary Streett objectives can be reduced to solv-
ing games with finitary parity objectives. Using Theorem 2, Theorem 3, and
Theorem 4 we obtain the following corollary.

Corollary 3. For all game graphs with n states and m edges, and all sets P of
d Streett pairs, the following assertions hold.

1. W1(finStreett(P )) = S \ W2(Ω \ finStreett(P )).
2. W1(finStreett(P )) can be computed in O((n · d! · d2)2d−3 · m · d! · d3) time.
3. There exists a finite-memory winning strategy for player 1 with respect to the

objective finStreett(P ). However, in general no finite-memory strategy exists
for player 2 with respect to the complementary objective Ω \ finStreett(P ).

It follows that whether a state lies in W1(finStreett(P )) can be decided in
EXPTIME. The exact complexity of the problem remains open.
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