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Abstract

We present an efficient computational procedure for finite abstraction of
discrete-time mixed monotone systems by considering a rectangular partition
of the state space. Mixed monotone systems are decomposable into increasing
and decreasing components, and significantly generalize the well known class
of monotone systems. We tightly overapproximate the one-step reachable set
from a box of initial conditions by computing a decomposition function at only
two points, regardless of the dimension of the state space. We first consider
systems with a finite set of operating modes and then extend the formulation
to systems with continuous control inputs. We apply our results to verify
the dynamical behavior of a model for insect population dynamics and to
synthesize a signaling strategy for a traffic network.

1. Introduction

Complex systems often possess intrinsic structure that significantly simplifies
analysis and control. An important class of systems exhibiting such structure is
monotone systems for which trajectories maintain a partial ordering on states
[1, 2]. The notion of monotonicity is applicable to both continuous-time systems
[2] and discrete-time systems [3], and has been extended to control systems with
inputs in [4].

References [5, 6, 7, 8] have observed that dynamics which are not monotone
may nonetheless be decomposable into increasing and decreasing components.
Such systems are called mixed monotone and significantly generalize the class of
monotone systems. Unlike the references above which exploit mixed monotonic-
ity for stability analysis, here we demonstrate that mixed monotonicity enables
efficient finite state abstraction.

Increased interest in verification and synthesis of cyber-physical systems has
motivated symbolic models that abstract the underlying system into a finite
set of symbols and transitions between symbols which reflect the dynamics [9,
10, 11]. The main reason for obtaining finite state abstractions is to allow
formal verification and synthesis for specifications given in, e.g., temporal logic
[12, 13, 14, 15].
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In rare cases, exact symbolic models exactly capture the underlying dynam-
ics [16, 17]. In other cases, exact symbolic models are either impossible to obtain
or computationally prohibitive; however it is still useful to obtain an abstrac-
tion which approximately captures the underlying dynamics [13, 18, 19, 20]. For
example, in [21, 22] the authors consider piecewise affine (PWA) systems and
construct a finite state abstraction using polyhedral computations.

In this work, we compute finite state abstractions of mixed monotone,
discrete-time systems by considering a rectangular partition of the state space.
In particular, we show that the reachable set from a box of initial conditions is
efficiently overapproximated by evaluating a decomposition function, obtained
from the mixed monotone system, at only two points. We accommodate
disturbance inputs in the dynamics by suitably generalizing the definition of a
mixed monotone system in [6]. Furthermore, we characterize a special class of
mixed monotone systems in which the dynamics are componentwise monotone
and show that our overapproximation is tight in a particular sense to be made
precise. Additionally, we suggest an efficient algorithm for identifying a class of
spurious trajectories from the abstraction.

For the case of synthesis, we consider two cases whereby a controlled input to
the system is available. We first consider systems with a finite set of operating
modes, each mode corresponding to a particular update map for the dynamical
system. At each time step an operating mode is selected, serving as the control
input at that time step. We next consider the case when a continuous set of
control inputs is available at each time step. In this scenario, we assume the
system is affine in control and the available set of inputs is a (possibly state-
dependent) polytope. By considering continuous inputs, we significantly extend
our prior paper [23].

The importance of monotonicity for reachability computation and abstrac-
tion has been noted in [24, 25, 26]. In particular, the authors of [24] study
discrete-time systems that are monotone with respect to the positive orthant
in Euclidean space and show that the reachable set from a box of initial con-
ditions is overapproximated by propagating only the least and greatest points
within this box. The present paper studies the broader class of mixed monotone
systems and recovers [24] as a special case.

In Section 2, we introduce the notation. In Section 3, we pose the general
problem statement and introduce mixed monotone systems. In Section 4, we
present an algorithm for efficiently constructing finite state abstractions of mixed
monotone systems. We extend the results to the case when the input takes values
from a continuous set in Section 5. In the case studies of Section 6, we analyze
a model for insect population dynamics and synthesize a signal controller for a
traffic network.

2. Preliminaries

For x ∈ Rn, we use superscripts to index the elements of x, i.e., xi is the
ith component of x and x = (x1, . . . , xn), except in the case studies of Section 6
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where we use subscripts for clarity. Let R≥0 = {x | x ≥ 0} and Rn≥0 = (R≥0)n.
For a set Z ⊂ Rn, int(Z) denotes the interior of Z.

Consider a set X ⊂ Rn along with a positive cone Y+ ⊂ Rn satisfying
αY+ ⊂ Y+ for all α ∈ R≥0, Y+ + Y+ ⊂ Y+, and Y+ ∩ (−Y+) = 0. The positive
cone Y+ induces an order relation ≤ on X defined by: x ≤ y if and only if
y − x ∈ Y+ for x, y ∈ X . Given x, y ∈ X with x ≤ y, we define the interval

[x, y] , {z ∈ X | x ≤ z ≤ y}. (1)

For Y+ = Rn≥0, ≤ denotes coordinate-wise inequality; we distinguish this partial
order by ≤+ and generalize it to arbitrary orthants in the following way: Let
ν = (ν1, . . . , νn) with νi ∈ {0, 1} for all i, and define Kν = {x ∈ Rn | (−1)νixi ≥
0 ∀i}. Kν is a cone corresponding to an orthant of Rn, and we denote the
induced orthant order by ≤Kν .

For a matrix M ∈ Rn×p, we interpet 0 ≤+ M to mean M is elementwise
nonnegative.

A set Z ⊂ Rn is a box if it is the Cartesian product of closed intervals
of R, that is, if there exists ai, bi ∈ R for i = 1, . . . n such that ai ≤ bi and
Z =

∏n
i=1[ai, bi]R≥0

where [·, ·]R≥0
denotes the usual interval on R.

We let x+ = F (x, d) describe a discrete-time dynamical system where the
state x+ at the next time step is a function of the current state x and a dis-
turbance input d. We denote the ith coordinate mapping of F by F i, that is,
(xi)+ = F i(x, d) and F (x, d) = (F 1(x, d), . . . , Fn(x, d)).

3. Mixed Monotone Systems

3.1. Problem Statement

We first consider discrete-time dynamical systems of the form

x+ = F (x, d) (2)

with state x ∈ X ⊂ Rn, disturbance input d ∈ D ⊂ Rp, and a continuous map
F : X ×D → X . We present a technique for efficiently computing a finite state
abstraction of (2) when F is mixed monotone as defined below. The resulting
symbolic model is amenable to standard formal methods techniques to verify
desirable properties, as demonstrated in the case study in Section 6.1.

Next, we consider the problem of controlling the switched discrete-time dy-
namical system

x+ = Fm(x, d) (3)

for m ∈ M where M is a finite set of modes and each Fm : X × D → X is
continuous. For switched systems of the form (3), the control input is the mode
m at each time step. When each Fm satisfies a mixed monotonicity property,
we propose an efficient algorithm for obtaining a finite state abstraction. As
demonstrated in the case study of Section 6.2, this abstraction is amenable
to synthesis algorithms to meet complex control objectives expressible in, e.g.,
Linear Temporal Logic (LTL). In Section 5, we extend this model to allow
continuous inputs rather than a finite set of modes.
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3.2. Basic Definitions and Results

For systems of the form (2), we let ≤X and ≤D denote order relations on
X ⊂ Rn and D ⊂ Rp, respectively, induced by positive cones. The notation
[·, ·]X (resp. [·, ·]D) denotes an interval with respect to ≤X (resp. ≤D). For
systems of the form (3), we wish to allow potentially different order relations
on X , and thus consider a set {≤m}m∈M of order relations on X and ≤D, a
fixed order relation on D. The notation [·, ·]m denotes an interval with respect
to ≤m. For notational convenience, we assume that the same partial order on
D holds for all modes; however different partial orders on D for each mode are
possible with suitable alterations to the development below.

We begin with the well-known class of monotone dynamical systems:

Definition 1 (Monotonicity). The system (2) is monotone with respect to
≤X and ≤D, or simply monotone, if

x1 ≤X x2 and d1 ≤D d2 =⇒ F (x1, d1) ≤X F (x2, d2). (4)

The switched system (3) is monotone with respect to {≤m}m∈M and ≤D, or
simply monotone, if each mode m is monotone with respect to ≤m and ≤D.

We next provide a significant generalization of Definition 1:

Definition 2 (Mixed monotonicity). The system (2) is mixed monotone
with respect to ≤X and ≤D, or simply mixed monotone [6], if there exists
a function f : X ×D ×X ×D → X satisfying:

C1) ∀x ∈ X , ∀d ∈ D: F (x, d) = f(x, d, x, d)

C2) ∀x1, x2, y ∈ X , ∀d1, d2, e ∈ D: x1 ≤X x2 and d1 ≤D d2 implies
f(x1, d1, y, e) ≤X f(x2, d2, y, e)

C3) ∀x, y1, y2 ∈ X , ∀d, e1, e2 ∈ D: y1 ≤X y2 and e1 ≤D e2 implies
f(x, d, y2, e2) ≤X f(x, d, y1, e1).

We then call F (x, d) a mixed monotone map. We say that the switched system
(3) is mixed monotone with respect to {≤m}m∈M and ≤D, or simply mixed
monotone, if each mode x+ = Fm(x, d) is mixed monotone with respect to ≤m.

The function f is nondecreasing in the first pair of variables and nonincreas-
ing in the second pair of variables, and is henceforth called a decomposition
function:

Definition 3 (Decomposition function). A function f satisfying C1–C3
above is a decomposition function for F (x, d).

Clearly every monotone system is mixed monotone with f(x, d, y, e) , F (x, d).
In the case of a switched system (3), we denote by fm a corresponding decom-
position function for each mode m ∈M.
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Example 1. Consider the system

x+ = G(x, d)−H(x, d) (5)

for x ∈ X ⊂ Rn, d ∈ D ⊂ Rp, and G,H : X × D → X such that x+ = G(x, d)
and x+ = H(x, d) are monotone systems for ≤X=≤+ and ≤D=≤+. Then (5) is
mixed monotone for ≤X=≤+ and ≤D=≤+ and f(x, d, y, e) , G(x, d)−H(y, e)
is a decomposition function.

Example 2. Consider the system

x+ = A(x, d)x+B(x, d)d =: F (x, d) (6)

for x ∈ X ⊂ Rn≥0, d ∈ D ⊂ Rp≥0, such that:

• 0 ≤+ A(x, d) and 0 ≤+ B(x, d) for all x ∈ X for all d ∈ D,

• x1 ≤+ x2 and d1 ≤+ d2 =⇒ A(x2, d2) ≤+ A(x1, d1) and B(x2, d2) ≤+

B(x1, d1).

Equations of the form (6) arise in the study of population dynamics, [27]. With
f(x, d, y, e) = A(y, e)x + B(y, e)d, system (6) is mixed monotone for ≤X=≤+

and ≤D=≤+.

We now characterize a special class of mixed monotone systems in terms of
the sign of the entries in ∂F/∂x and ∂F/∂d, the Jacobians of F with respect to
x and d.

Proposition 1. Consider the system (2) where x ∈ X ⊂ Rn, d ∈ D ⊂ Rp, X
and D are boxes, and F is continuously differentiable. If for all i ∈ {1, . . . , n},

∀j ∈ {1, . . . , n} ∃sj ∈ {0, 1} : (−1)sj
∂F i

∂xj
(x, d) ≥ 0 ∀x, d (7)

and

∀j ∈ {1, . . . , p} ∃σj ∈ {0, 1} : (−1)σj
∂F i

∂dj
(x, d) ≥ 0 ∀x, d (8)

then (2) is mixed monotone with respect to any orthant order on X and D.

Proof. Let ν ∈ {0, 1}n and µ ∈ {0, 1}p characterize arbitrary orthant orders
≤Kν and ≤Kµ on X and D, respectively. Define

f i(x, d, y, e) , F i(zi, wi) (9)

where zi = (zi,1, . . . , zi,n), wi = (wi,1, . . . , wi,p), and

zi,j ,

{
xj if (−1)νi+νj∂F i/∂xj ≥ 0 ∀x ∈ X , d ∈ D
yj if (−1)νi+νj∂F i/∂xj ≤ 0 ∀x ∈ X , d ∈ D (10)

wi,j ,

{
dj if (−1)νi+µj∂F i/∂dj ≥ 0 ∀x ∈ X , d ∈ D
ej if (−1)νi+µj∂F i/∂dj ≤ 0 ∀x ∈ X , d ∈ D. (11)
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If ∂F i/∂xj = 0 ∀x, d for some i, j, then the assignment to zi,j is ar-
bitrary, likewise for wi,j if ∂F i/∂dj = 0 ∀x, d for some i, j. Let
f(x, d, y, e) = (f1(x, d, y, e), . . . , fn(x, d, y, e)). Clearly f(x, d, x, d) = F (x, d),
and a straightforward modification of the well-known Kamke conditions for
monotonicity [2, Section 3.1] proves that f satisfies the remaining conditions of
Definition 2. �

Proposition 1 states that if the partial derivatives of F are sign stable over
X ×D, then (2) is mixed monotone with respect to any orthant order on X and
D. The special class characterized in Proposition 1 plays an important role in
the case study of Section 6.2; see [28] for a similar characterization that excludes
disturbance inputs and [29] for a modified condition when the partial orders on
X and D are taken to be standard orthant orders.

Example 3. Let X = R2
≥0, D = R2

≥0, and consider the system

x+ = F (x, d) = (F 1(x, d), F 2(x, d)) (12)

= (5x1 − x3
2 + 5d2

1, x
2
1 + 3x2x1 − 6d1d2) (13)

where x = (x1, x2) ∈ R2
≥0 and d = (d1, d2) ∈ R2

≥0 (we momentarily abandon our
superscript convention for notational convenience). For all x ∈ X , d ∈ D,

∂F 1/∂x1 = 5 ≥ 0 ∂F 1/∂x2 = −3x2
2 ≤ 0 (14)

∂F 2/∂x1 = 2x1 + 3x2 ≥ 0 ∂F 2/∂x2 = 3x1 ≥ 0 (15)

∂F 1/∂d1 = 10d1 ≥ 0 ∂F 1/∂d2 = 0 (16)

∂F 2/∂d1 = −6d2 ≤ 0 ∂F 2/∂d2 = −6d1 ≤ 0. (17)

Thus, the system is mixed monotone by Proposition 1. Taking ≤X=≤+ and
≤D=≤+, we have that

f(x, d, y, e) = (5x1 − y3
2 + 5d2

1, x
2
1 + 3x2x1 − 6e1e2) (18)

is a decomposition function where y = (y1, y2), e = (e1, e2).

Although while Proposition 1 assumed that F is continuously differentiable,
the results in fact hold if F is continuous and piecewise differentiable, and thus
nondifferentiable on a set of measure zero as in the case study of Section 6.2.

3.3. Reachable Set Computation

In this section, we show that an overapproximation of the reachable set from
a box of initial states is efficiently computed by evaluating the decomposition
function at only two points, regardless of the state space dimension. In the next
section, we use this result to obtain finite state abstractions of mixed monotone
systems.

We begin with the following key theorem:
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Theorem 1. Let (2) be a mixed monotone system with decomposition function
f(x, d, y, e). Given x1, x2 ∈ X and d1, d2 ∈ D with x1 ≤X x2 and d1 ≤D d2,

f(x1, d1, x2, d2) ≤X F (x, d) ≤X f(x2, d2, x1, d1)

∀ x ∈ [x1, x2]X ∀ d ∈ [d1, d2]D. (19)

Proof. Consider x, d, y, e satisfying

x1 ≤X x and d1 ≤X d, and (20)

y ≤X x2 and e ≤X d2. (21)

It follows that

f(x1, d1, x2, d2) ≤X f(x, d, y, e), and (22)

f(y, e, x, d) ≤X f(x2, d2, x1, d1). (23)

Restricting to the set {(x, d, y, e) | x = y and d = e}, we obtain

f(x1, d1, x2, d2) ≤X f(x, d, x, d) = F (x, d)

≤X f(x2, d2, x1, d1). (24)

�
The analogous result for monotone systems is:

Corollary 1. Given x1, x2 ∈ X and d1, d2 ∈ D with x1 ≤X x2 and d1 ≤D d2.
If system (2) is monotone, then

F (x1, d1) ≤X F (x, d) ≤X F (x2, d2)

∀ x ∈ [x1, x2]X ∀ d ∈ [d1, d2]D. (25)

The result in [24] is a special case of Corollary 1 restricted to systems with no
disturbance input and ≤X=≤+.

Definition 4. For X ′ ⊆ X and D′ ⊆ D, the one-step reachable set from X ′
and D′ is

F (X ′,D′) , {F (x, d) | x ∈ X ′ and d ∈ D′}. (26)

Then we respectively write (19) and (25) as

F ([x1, x2]X , [d1, d2]D) ⊆ [f(x1, d1, x2, d2), f(x2, d2, x1, d1)]X (27)

and

F ([x1, x2]X , [d1, d2]D) ⊆ [F (x1, d1), F (x2, d2)]X . (28)

7



0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x
2

{F (x, d) : x ∈ [x, x̄]X , d ∈ [d, d̄]D}
f (x, d, x̄, d̄)

f (x̄, d̄, x, d)

Figure 1: The mixed monotone system in Examples 3 and 4. This
system satisfies the conditions of Theorem 1, thus we bound F (x, d)
when x and d are confined to lie within a given rectangle by evaluating
the decomposition function at two points, and the bounding is tight.

Example 4. Consider again Example 3 and let x = (0.6, 0.3), x = (1, 1), d =
(0, 0), d = (0.3, 0.3). From Theorem 1, it follows that

F ([x, x]X , [d, d]D) ⊂ [f(x, d, x, d), f(x, d, x, d)]X

= [(2, 0.36), (5.423, 4)]X . (29)

Figure 1 shows the set {F (x, d) | x ∈ [x, x]X , d ∈ [d, d]D} as a shaded region,
and plots f(x, d, x, d) f(x, d, x, d) as two corners of a box that bounds this set.

For monotone systems, Corollary 1 provides tight bounds since the upper
and lower bounds are achieved. For mixed monotone systems satisfying (7)–(8)
of Proposition 1, the bounds given in Theorem 1 are also tight as suggested
in Figure 1 for Example 4. We make this precise in the following proposition,
which follows immediately from the definition in (9):

Proposition 2. Suppose ≤X=≤Kν and ≤D=≤Kµ for some orthants Kν and
Kµ. If (2) is mixed monotone by (7)–(8) of Proposition 1, and f is the decom-
position function as defined in (9)–(11), then for all i ∈ {1, . . . , n} there exists
zi, zi ∈ [x1, x2]X and wi, wi ∈ [d1, d2]D such that

f i(x1, d1, x2, d2) = F i(zi, wi), and (30)

f i(x2, d2, x1, d1) = F i(zi, wi). (31)

In particular, zi as in (10) with x = x1 and y = x2, and wi as in (11) with d = d1

and e = d2 satisfies (30). A symmetric results holds for (31) after interchanging
x1, x2 and d1, d2.

4. Abstraction of Mixed Monotone Systems

We have seen that for mixed monotone systems, an overapproximation of
the one-step reachable set from the set [x1, x2]X under a disturbance input from
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the set [d1, d2]D can be computed by evaluating the decomposition function f
at only two particular points. We now exploit Theorem 1 and Corollary 1 and
present an efficient algorithm for computing a symbolic model, or finite state
abstraction of a mixed monotone system. For systems of the form (2), we wish
to verify that a certain property, usually given in a temporal logic, holds under
all possible disturbance inputs. For switched systems of the form (3), we wish
to synthesize a mode selection policy such that the resulting system satisfies a
given property. In Section 5, we extend this idea to systems where the input
takes values in a continuous set.

4.1. Finite State Abstraction

Now we introduce a partition of the domain X by intervals and construct a
finite state abstraction from the partition1. We discuss systems of the form (3),
since (2) is a special case.

Assume system (3) is mixed monotone with respect to {≤m}m∈M and ≤D.
Furthermore, assume D is representable as the union of intervals:

D =

L⋃
`=1

D` (32)

where D` , [d`1, d
`
2]D for d`1 ≤D d`2.

Definition 5 (Interval Partition). The collection {Iq}q∈Q for finite set Q
with Iq ⊆ X for all q ∈ Q is an interval partition of X if:

1. For all m ∈ M and for all q ∈ Q, there exists xq,m1 , xq,m2 ∈ X satisfying
xq,m1 ≤m xq,m2 and Iq = [xq,m1 , xq,m2 ]m,

2.
⋃
q∈Q Iq = X ,

3. int(Iq) ∩ int(Iq′) = ∅ for all q, q′ ∈ Q, q 6= q′.

In other words, {Iq}q∈Q is an interval partition of X if the sets Iq, q ∈ Q
partition X and each Iq is representable as an interval of X with respect to each
order ≤m. For notational convenience, in defining a partition we ignore the set
of measure zero where intervals overlap as is done in, e.g., [21]. However, as
noted in [21] and [22], if the dynamics are such that trajectories remain within
the boundaries after a certain time, one should account for such sets. Grid-based
abstractions are common in the literature; see, for example, [24, 30, 31, 32]. Here
we provide a novel technique in Theorem 2 for computing reachable states using
mixed monotonicity. Additionally, we consider a nonuniform interval partition
characterized by a general partial order on the domain, and thus the partition
does not necessarily arise by gridding along each dimension. We consider grid-
based partitions as a special case.

1If we wish to consider unbounded domains X for the system (72), we may then construct
a finite state abstraction on a bounded subset and include an overflow symbol in the finite
state abstraction as in [20] and [24].
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ξ2,4
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(a) (b)

Figure 2: Stylized depiction of (a) an interval partition, and (b) a
gridded partition.

If each ≤m is an orthant order, then a partition {Iq}q∈Q with each Iq a box
constitutes an interval partition of X ⊂ Rn, motivating the following special
case.

Definition 6 (Gridded Interval Partition). An interval partition is a grid-
ded interval partition, or simply gridded partition, if each ≤m is an orthant
order and for each i ∈ {1, . . . , n} there exists Ni > 0 and {ξi,1, . . . , ξi,Ni+1}
such that Q =

∏n
i=1{1, . . . , Ni} and for each q = (ι1, . . . , ιn) ∈ Q, we have

Iq =
∏n
i=1[ξi,ιi , ξi,ιi+1]R≥0

.

Figure 2 shows schematic depictions of two interval partitions, one of which
is a gridded partition.

When clear from context, we refer to the index set Q itself as an interval
partition with the associated notation as above. From such a partition, we
readily construct a finite state abstraction of the resulting dynamics.

Consider a map δ : Q×M→ 2Q that satisfies the following property:

If ∃x ∈ Iq, ∃d ∈ D such that Fm(x, d) ∈ Iq′
Then q′ ∈ δ(q,m).

(33)

The map δ includes a transition from q to q′ whenever it is possible for the
state x to transition from the interval Iq to Iq′ .

Definition 7 (Interval finite state abstraction). An interval finite state
abstraction or simply abstraction of system (3) is a tuple T = (Q,M, δ) where
Q is an interval partition of X and δ satisfies (33) for all m ∈M. We call δ a
transition function and say q′ ∈ Q is a successor of q in mode m if q′ ∈ δ(q,m).

T is a nondeterministic transition system, i.e., δ(q,m) is, in general, not
a singleton set. The nondeterminism arises because T abstracts an entire set
of states into one state or symbol, and the transitions account for all possible
states in the symbol as well as the disturbance. Nonetheless, T is a transition
system that overapproximates the dynamics (3), that is, for every trajectory x[t]
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satisfying x[t + 1] = Fm[t](x[t], d[t]) such that m[t] ∈ M and d[t] ∈ D for all t,
there exists q[t] such that x[t] ∈ Iq[t] and q[t+ 1] ∈ δ(q[t],m[t]) for all t.

Computing a transition function δ that is useful in practice is a serious
difficulty for standard abstraction approaches. Many existing results apply only
to linear or piecewise linear systems, and even in this case, scale poorly with
the state space. For example, the polytope-based computations suggested in
[21] require computing Fm at a number of points that scales exponentially with
the dimension of the state space and disturbance space. By exploiting the
mixed monotonicity properties of system (3), we propose an efficient method
for computing an abstraction that requires evaluating fm at only 2L points for
each q ∈ Q and m ∈M.

Theorem 2. Consider a mixed monotone system (3) with interval partition Q.
Let δ : Q×M→ 2Q be given by q′ ∈ δ(q,m) if and only if

∃` : [fm(xq,m1 , d`1, x
q,m
2 , d`2), fm(xq,m2 , d`2, x

q,m
1 , d`1)]X

∩ [xq
′,m

1 , xq
′,m

2 ]X 6= ∅. (34)

Then T = (Q,M, δ) is a finite state abstraction of (3).

Proof. Consider x ∈ Iq and d ∈ D such that x′ = Fm(x, d) ∈ Iq′ =

[xq
′,m

1 , xq
′,m

2 ]m. Let ` ∈ {1, . . . , L} be such that d ∈ D`. From Theorem 1,
it holds that also

x′ ∈ [fm(xq,m1 , d`1, x
q,m
2 , d`2), fm(xq,m2 , d`2, x

q,m
1 , d`1)]m,

which implies q′ ∈ δ(q,m), thus δ satisfies (33). �

Corollary 2. Consider a monotone system (3) with interval partition Q. Let
δ : Q×M→ 2Q be given by q′ ∈ δ(q,m) if and only if

∃` : [Fm(xq,m1 , d`1), Fm(xq,m2 , d`2)] ∩ [xq
′,m

1 , xq
′,m

2 ] 6= ∅. (35)

Then T = (Q,M, δ) is a finite state abstraction of (3).

We summarize the algorithm implied by Theorem 2 in Algorithm 1. For
systems of the form (2), we interpret M as a singleton and proceed as above.
We then notationally omit M and instead write T = (Q, δ), and δ(q) ⊂ Q.

4.2. Computing Successor States

Theorem 2 and Corollary 2 provided a method for overapproximating the
one-step reachable set of an interval. How do we identify the successor states
from this overapproximation? Lemma 1 below provides an efficient method for
determining if two intervals overlap.

Lemma 1. Consider [α1, β1]X and [α2, β2]X for α1, β1 ∈ X and α2, β2 ∈ X .
Then [α1, β1]X ∩ [α2, β2]X 6= ∅ implies α1 ≤X β2 and α2 ≤X β1.
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1: function FiniteStateAbtraction(system, D, Q) returns T
2: inputs: system, a mixed monotone system (3) with

domain X , modes M and decomposition
functions {fm}m∈M

3: D, the disturbance set D = ∪L`=1D` with
D` , [d`1, d

`
2]D for d`1 ≤D d`2

4: Q, an interval partition X
5: for each m ∈M do
6: for each q ∈ Q do
7: δ(q,m) := ∅
8: for ` := 1 to L do
9: y1 := fm(xq,m1 , d`1, x

q,m
2 , d`2)

10: y2 := fm(xq,m2 , d`2, x
q,m
1 , d`1)

11: Q′ := ComputeSuccessors(y1, y2,Q)
12: δ(q,m) := δ(q,m) ∪Q′
13: end for
14: end for
15: end for
16: return T := (Q,M, δ) . abstraction of (3)
17: end function

Algorithm 1: Computing an interval finite state abstraction of (3).

Proof. Choosing x ∈ [α1, β1]X ∩ [α2, β2]X , the lemma follows from transitivity
of ≤X . �

For special types of partitions, however, more efficient methods exist for com-
puting the successor states. In particular, when each ≤m is an orthant order and
Q is a gridded partition, computing successor states is accomplished by consid-
ering each coordinate separately. This algorithm scales linearly with

∑n
i=1Ni.

When all Ni are approximately the same, the algorithm scales approximately
linearly with n.

4.3. Computational Requirements

We now address the computational requirements of the proposed algorithms.
Determining δ(q,m) requires first evaluating the decomposition function fm at
2L points where L is the number of boxes constituting the disturbance set
D. For each ` = 1, . . . L, the corresponding pair of evaluations of fm is then
used to determine successor states representing an overapproximation of the
reachable set from q. For general interval partitions, this requires 2|Q| order
comparisons of vectors in Rn, and each comparison scales linearly with n. For
gridded partitions, determining successor states requires

∑n
i=1Ni scalar order

comparisons.
Thus, computing δ scales linearly with |M| and linearly with L. For general

interval partitions, the computation further scales quadratically with |Q| and
linearly with n, and for gridded partitions, it scales linearly with |Q| and linearly

12



with
∑n
i=1Ni. In contrast, computing successor states from a polyhedral region

as in, e.g., [21] requires polyhedral computations that scale exponentially in
both n and p [33]. The approximation of reachable sets in [20] also relies on
polyhedral operations and scales exponentially with n. Above, we have assumed
that fm requires constant computation time. This is reasonable in some cases,
such as the case study in Section 6.2 where intrinsic sparsity of traffic networks
implies that the required computation time of fm does not increase with n or
p. However, in other cases, the complexity of evaluating fm must be taken into
account.

Several abstraction approaches in the literature require a single evaluation
of the system dynamics per discrete partition per input. These approaches rely
on some known relationship between nearby trajectories in the form of, e.g.,
incremental stability [19], incremental forward completeness [30], a discrepancy
function [34], or a growth bound [35]. Often, such relationships are conservative
as they must hold between any pair of trajectories throughout the space and
thus require a fine gridding of the state space. Our proposed method, which also
requires a constant number of evaluations per discrete state, exploits additional
structure in the dynamics to reduce the conservatism.

We further remark that |Q| typically increases exponentially with n. How-
ever, this dependence can be mitigated via various techniques such as interval
partitions that incorporate domain specific knowledge. For example, the au-
thors of [24] consider monotone systems that converge to a low-dimensional
manifold, and suggest a methodology for abstracting the low dimensional man-
ifold while retaining the intrinsic high dimensional dynamics. Future research
will investigate related techniques for mixed monotone systems.

4.4. Control Synthesis From Abstraction

Finding a controller for a finite state abstraction amounts to finding a se-
quence of modes such that, regardless of how the nondeterminism in the tran-
sition map δ is resolved, every possible execution of the finite state transition
system satisfies a given objective. When this objective is given in, e.g., linear
temporal logic (LTL), the synthesis algorithm may be interpreted as a game
between the adversarial nondeterminism and the controller [36, 37]. Central
to these approaches are fixed point algorithms which determine states that are
guaranteed to be reached and states that are guaranteed to be avoided. Simi-
lar fixed point algorithms for safety and reachability games appear in [11]. In
these cases, the result is a state feedback controller with memory. That is, we
interpret the controller itself as another finite transition system with a set of
memory states. At each time step t, the controller prescribes a particular mode
m[t] ∈ M as a function of the controller’s memory state and the current finite
state q ∈ Q.

The finite state abstraction T overapproximates the behavior of the original
system in the sense that, for any mode m, the transitions of T account for at
least all possible executions of the underlying dynamical system. This overap-
proximating property is sufficient for control synthesis for properties that must
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hold for any possible execution of the closed loop system (e.g., properties given
in LTL [15]) including safety and reachability.

Various relationships have been proposed in the literature to capture this
sufficiency for control synthesis. For example, it is straightforward to show that
the finite state abstraction computed above is alternatingly simulated [11] by
the underlying dynamical system (3). Furthermore, since the set of modes are
the same for the abstraction and the underlying system (3), it is additionally the
case that the abstraction is a feedback refinement [35] of the system (3). For our
problem setup, both notions capture the fact that for each mode m ∈M, each
possible transition of (3) from some state x ∈ Iq is matched by a transition from
state q in the abstraction. Alternating simulations and feedback refinements
are both sufficient for control synthesis as shown in [11, Proposition 8.7] and
[35, Theorem V.4], that is, a controller synthesized for the abstraction can be
suitably applied to the original system with the same guarantees.

The final step is specifying how to refine the controller developed for the
abstraction so that it is applicable to the original system. For our problem
setup, this is straightforward; at each time t, if the state of the system is x[t] ∈
Iq, then whichever mode m is prescribed at finite state q by the controller is
instead applied to the original system. The above mentioned properties of the
abstraction ensure that the closed loop trajectories of the dynamical system
satisfy the control objective.

We remark that controller refinement from abstractions differs substantially
depending on the abstraction approach; see, e.g., [38], [39], [32] for alternative
approaches in the literature and [35] for a discussion of the intricate relationship
between feedback refinements and alternating simulation relations.

5. Continuous Inputs

In this section, we extend finite state abstractions to the case when the
system is driven by a continuous input rather than by a set of discrete input
modes. Instead of (3), we consider

x+ = F(x, d, u) (36)

where, as before, x ∈ X ⊂ Rn, d ∈ D ⊂ Rp, and F : X × D × Rr → X . In the
present setting, u ∈ U(x) ⊆ Rr is the control input with the state-based input
constraint U(x), that is, at state x only inputs from the set U(x) are admissible.

In Section 5.1, we first extend the notion of finite state abstraction to this
continuous input case; the development procedes abstractly and does not require
mixed monotonicity assumptions on F . In Section 5.2 we propose a computa-
tional procedure for the case when F(x, d, u) = F (x, d)+Bu with F (x, d) mixed
monotone and B a matrix.

5.1. Modified Definition of Finite State Abstraction

Let {Iq}q∈Q be an interval partition of X . We again seek a finite state
abstraction that suitably overapproximates the dynamics of (36) based on the
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partitionQ. One approach is to grid the input space in order to obtain a discrete
number of inputs. Instead, we follow the line of reasoning in, e.g., [21], which
suggests partitioning the set of inputs to obtain a finite state abstraction where
we use the underlying dynamics to obtain the partition. Here, we compute a
finite collection of subsets of the input space at each q ∈ Q such that each subset
induces a fixed set of possible transitions in Q. To this end, let

Uq = {u ∈ Rr | u ∈ U(x) ∀x ∈ Iq} (37)

be the set of inputs admissible for any state x in interval Iq. For each Q′ ⊆ Q,
let

Uq�Q′ , {u ∈ Uq | ∀x ∈ Iq,∀d ∈ D F(x, d, u) ∈ ∪q′∈Q′Iq′} (38)

denote the set of inputs under which the system (36) is guaranteed to only make
a transition to some partition q′ ∈ Q′ when initialized anywhere in partition q.
In general, Uq�Q′ may be empty, however we assume Uq�Q 6= ∅ to ensure the
finite abstraction defined below is nonblocking, that is, there always exists some
input inducing some transition.

From (38) we construct a finite state abstraction as follows. For each q ∈ Q,
let Qq ⊆ 2Q be some collection of subsets of interval indices such that for each

Q′ ∈ Qq, we have nonempty Uq�Q′ satisfying Uq�Q′ ⊆ Uq�Q′ . We allow Uq�Q′

to be a subset of Uq�Q′ as the latter may be difficult to compute where an
underapproximation is not. Define

Uq = {Uq�Q′ | Q′ ∈ Qq} (39)

as the input symbols2 available at state q. Construct the transition map δc :
{(q,U) | q ∈ Q, U ∈ Uq} → 2Q by defining

δc(q,Uq�Q′) , Q′ ∀q ∈ Q,Q′ ⊆ Q s.t. Uq�Q′ ∈ Uq. (40)

Let U = ∪q∈QUq. Then δc satisfies the following property, directly analogous
to (33):

∀Uq�Q′ ∈ U, ∀u ∈ Uq�Q′ :

If ∃x ∈ Iq, ∃d ∈ D such that F(x, d, u) ∈ Iq′
Then q′ ∈ δc(q,Uq�Q′) = Q′.

(41)

Definition 7b (Interval finite state abstraction, modified). An interval
finite state abstraction or simply abstraction of system (36) is a tuple T =
(Q,U, δc) where Q is an interval partition of X and δc satisfies (41) for all

Uq�Q′ ∈ Uq with U = ∪q∈QUq a finite set of input symbols.

2We freely conflate notation for subsets of U and input symbols (that is, inputs to the

finite state abstraction) by using, e.g., Uq�Q′ for both.
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X
q3 q4

q2

q1

Uq1→Q3,4

Uq1→Q2,3

Figure 3: Input symbols of the finite state abstraction are subsets
of the continuous input space Rr that induce a certain set of transi-
tions. In the figure, Q2,3 = {q2, q3} and Q3,4 = {q3, q4}, and Uq1→Q2,3 ,

Uq1→Q3,4 are input symbols to the finite state abstraction such that
δc(q1,Uq1→Q2,3) = Q2,3 and δc(q1,Uq1→Q3,4) = Q3,4.

We first note that input symbols to the finite abstraction are identified with
subsets of Rr, the input space. This is because if we apply as input to the

original system (36) any u ∈ Uq�Q′ for some Uq�Q′ , we have that necessarily
x+ ∈ ∪q′∈Q′Iq′ for any x ∈ Iq by (41), thus we can choose any input u from the

set (i.e., symbol) Uq�Q′ to realize a transition to some state in Q′ as illustrated
in Figure 3. This freedom may be exploited in, e.g., control algorithms that
minimize some cost subject to an abstraction-based synthesis procedure. Fur-
thermore, by considering explicitly the transitions induced by the underlying
dynamics in computing Uq�Q′ , we reduce spurious transitions as compared to,
e.g., a naive gridding of the input space.

Additionally, when the finite state abstraction is to be used in synthesis for
satisfying a linear time property (e.g., a linear temporal logic (LTL) formula),
we need not compute all possible inputs Uq�Q′ . For example, if Uq�Q′ 6= ∅
for some Q′, then we need not consider Uq�Q′′ for any Q′′ ⊇ Q′ for the pur-
poses of control synthesis since Uq�Q′′ ⊇ Uq�Q′ . As an alternative interpre-
tation from the automata theoretic perspective, in obtaining a successor state
q′ from δc(q,Uq�Q′′) = Q′′, the (assumed adversarial) nondeterminism may al-
ways choose q′ ∈ Q′ and no additional control authority is obtained by choosing
Uq�Q′′ as the input symbol.

5.2. Computing A Finite Set of Inputs

In this section, we address computing approximations Uq�Q′ of the sets
Uq�Q′ defined in (38) in order to obtain a finite state abstraction as in Definition
7b. We specialize to the case

x+ = F (x, d) +Bu (42)

where F (x, d) is a mixed monotone map and B is a n × r matrix. We assume
all partial orders are orthant orders, and then without loss of generality, we
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take ≤X=≤+ and ≤D=≤+ and equip the input space Rr with the partial order
≤U=≤+. For convenience, we consider D = [d1, d2]+ for some d1 ≤+ d2; that
is, L = 1 in (32).

We assume that each Uq as in (37) is a polytope, that is, there exists M > 0,
Hq ∈ RM×rand Kq ∈ RM such that

Uq = {u | Hqu ≤+ Kq}. (43)

For example, suppose that for each x ∈ X , U(x) ⊂ Rr is a polytope dependent
on x, specifically, we assume there exists M > 0 and H ∈ RM×r, G ∈ RM×n,
K ∈ RM such that

U(x) = {u ∈ Rr | Hu ≤+ Gx+K}. (44)

The affine state-based constraint (44) is relevant for a number of physically-
motivated applications, e.g., ramp metering control as described in [40]. For
this case, the set Uq in (37) is efficiently computed from H, G, K and the
extremal points of Iq and has the form (43). Specifically, let G+, G− ∈ RM×n
be given elementwise as

G+[i, j] ,

{
G[i, j] if G[i, j] ≥ 0

0 else
G−[i, j] ,

{
G[i, j] if G[i, j] ≤ 0

0 else.
(45)

Then Uq is given by

Uq , {u | Hu ≤+ G+x
q
1 +G−x

q
2 +K} (46)

= {u | Hqu ≤+ Kq} (47)

for Hq , H and Kq , G+x
q
1 +G−x

q
2 +K.

The assumption (43) is motivated in particular by systems for which r is
small and thus polyhedral operations are not excessively expensive in Rr; mixed
monotonicity of F (x, d) allows us to still exploit the computational efficiencies
developed in Section 4 for reachability computations in Rn.

We now compute subsets of Uq that induce a certain set of transitions.
Consider q ∈ Q with Iq = [xq1, x

q
2]+ and Q′ ⊆ Q and let IQ′ = [xQ

′

1 , xQ
′

2 ]+ be
an interval such that

IQ′ ⊆ ∪q′∈Q′Iq′ (48)

as illustrated in Figure 4(a) where IQ′ equals ∪q′∈Q′Iq′ because Q′ is a con-
tiguous block of boxes that is itself a box. Equality in (48) can always be
ensured for such subsets of gridded partitions as defined in Definition 6 with
Q =

∏n
i=1{1, . . . , Ni}. In particular, consider

Q′ =

n∏
i=1

{ιi, ιi + 1, . . . , ιi} ⊆ Q (49)
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Q′

xQ
′

1

xQ
′

2
X

xQ
′

1

xQ
′

2

f(xq
1, d1, x

q
2, d2)

f(xq
2, d2, x

q
1, d1)

Q′

(a) (b)

Figure 4: (a) A contiguous block Q′ of boxes is represented as one

interval defined by the extreme points xQ
′

1 , xQ
′

2 . In this case, the
input symbol of the finite state abstraction for transitioning to Q′
is computed using the control remainder (50)–(51). Otherwise, the
input symbol is computed by removing inputs that may cause tran-
sitions outside Q′ as in (60). (b) The additive control input updates
the state of the system beyond [f1(xq1, d1, x

q
2, d2), f2(xq1, d1, x

q
2, d2)]+, the

overapproximated one-step reachable set in the absence of input. The
control remainder guarantees a transition within Q′ while the set dif-
ference (54) considers the possibility of a transition.

with ιi, ιi ∈ {1, . . . , Ni}, ιi ≤ ιi for all i = 1, . . . , n. Then we take xQ
′

1 =

(ι1, . . . , ιn) and xQ
′

2 = (ι1, . . . , ιn) so that IQ′ = ∪q′∈Q′Iq′ .
Define the control remainder

X q�Q′ , [xQ
′

1 − f(xq1, d1, x
q
2, d2), xQ

′

2 − f(xq2, d2, x
q
1, d1)]+ (50)

⊆ {x′ ∈ Rn | ∀x ∈ Iq,∀d ∈ D F (x, d) + x′ ∈ IQ′}. (51)

The set X q�Q′ may be empty, in particular, X q�Q′ = ∅ if xQ
′

2 − xQ
′

1 ≤+

f(xq2, d2, x
q
1, d1)−f(xq1, d1, x

q
2, d2). The control remainder is illustrated in Figure

4(b). We let

Uq�Q′ , {u ∈ Uq | Bu ∈ X q�Q′} (52)

= {u ∈ Rp | Hqu ≤+ Kq and Bu ≤+ (xQ
′

2 − f(xq2, d2, x
q
1, d1))

and −Bu ≤+ −(xQ
′

1 − f(xq1, d1, x
q
2, d2))}. (53)

The set Uq�Q′ as defined in (53) is a polytope and is efficiently computed using

polyhedral operations [41]. Moreover, Uq�Q′ ⊆ Uq�Q′ and thus is suitable as
an allowable input symbol to the abstraction according to (39).

Thus far, we have assumed availability of an interval IQ′ satisfying (48),
motivated by Q′ that is a block of adjacent boxes. The advantages of doing so
is the efficient computation (53).

We now adapt a technique from [21] that does not require IQ′ satisfying
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(48). To that end, consider q, q′ ∈ Q and define3

X q′	q , [xq
′

1 − f(xq2, d2, x
q
1, d1), xq

′

2 − f(xq1, d1, x
q
2, d2)]+ (54)

⊇ {x′ ∈ Rn | ∃x ∈ Iq,∃d ∈ D s.t. F (x, d) + x′ ∈ Iq′}. (55)

Note in particular the exchange of universal quantifiers for existential quantifiers
and the exchange of ⊆ for ⊇ in comparing (50)–(51) with (54)–(55). Further
define

Uq′	q , {u ∈ Uq | Bu ∈ X q′	q} (56)

so that Uq′	q contains the set of inputs for which the system may transition to
partition q′ from some state in partition q. Analogous to (52), we have

Uq′	q = {u ∈ Rp |Hqu ≤+ Kq and Bu ≤+ (xq
′

2 − f(xq1, d1, x
q
2, d2))

and −Bu ≤+ −(xq
′

1 − f(xq2, d2, x
q
1, d1))}. (57)

Consider Uq�Q satisfying

Uq�Q ⊆ {u ∈ Uq | x′ +Bu ∈ X ∀x′ ∈ [f(xq1, d1, x
q
2, d2), f(xq2, d2, x

q
1, d1)]+}

(58)

⊆ Uq�Q (59)

so that Uq�Q is a subset of inputs that ensures the state of the system does
not leave the domain from partition q. For example, we may compute Uq�Q
according to the approximation (52)–(53) with Q′ = Q. We assume Uq�Q is
not empty, i.e., there exists some input that is guaranteed to keep the system
within the domain X . By removing from Uq�Q possible inputs that may take
the system outside Q′, we obtain a set of allowable inputs:

Proposition 3.

Ûq�Q′ , Uq�Q\
⋃

q′′∈Q\Q′
Uq′′	q (60)

⊆ Uq�Q′ . (61)

Proof. Consider u ∈ Ûq�Q′ , x ∈ Iq, d ∈ D, and let x′ = F (x, d) + Bu. It
follows that x ∈ X by (58). Let q′ be such that x′ ∈ Iq′ . Suppose q′ ∈ Q\Q′.
But then Bu ∈ X q′	q by (54)–(55) so that u ∈ Uq′	q, contradicting (60).
Therefore q′ ∈ Q′ and thus u ∈ Uq�Q′ . �

We now have two methods for obtaining a set of inputs that guarantees a
transition to Q′. We conclude with the following:

3The set X q′	q is the Minkowski difference of Iq′ and [f(xq
1, d1, x

q
2, d2), f(xq

2, d2, x
q
1, d1)]+.
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Proposition 4. Consider Q′ ⊆ Q and IQ′ = [xQ
′

1 , xQ
′

2 ]+ such that IQ′ =
∪q′∈Q′Iq′ . Then

Ûq�Q′ ⊆ Uq�Q′ . (62)

Proof.
Let u ∈ Ûq�Q′ . Trivially u ∈ Uq so that Hqu ≤+ Kq. We consider the

possibility that u 6∈ Uq�Q′ and, in light of (53), first suppose Bu 6≤+ xQ
′

2 −
f(xq2, d2, x

q
1, d1). Let x̃ = Bu + f(xq2, d2, x

q
1, d1). It follows that x̃ 6∈ IQ′ since

x̃ 6≤+ xQ
′

2 . Since u ∈ Uq�Q, we have x̃ ∈ X from (58), and thus there exists

q′′ 6∈ Q′ such that x̃ ∈ Iq′′ , i.e., let q′′ satisfy xq
′′

1 ≤+ x̃ ≤+ xq
′′

2 . Then

xq
′′

1 − f(xq2, d2, x
q
1, d1) ≤+ Bu ≤+ xq

′′

2 − f(xq2, d2, x
q
1, d1), (63)

and since −f(xq2, d2, x
q
1, d1) ≤+ −f(xq1, d1, x

q
2, d2), we have Bu ∈ X q′′	q and

thus u ∈ Uq′′	q, a contradiction. A symmetric argument demonstrates a con-

tradiction for the case −Bu 6≤+ −(xQ
′

1 − f(xq1, d1, x
q
2, d2)), thus u ∈ Uq�Q′ .

�
From Proposition 4, we see that whenever Q′ is a block of contiguous boxes

equivalent to a larger box IQ′ , we should approximate Uq�Q′ with Uq�Q′ as it
is simpler to compute and is less conservative compared to Ûq�Q′ . In practice,
we need only consider Q′ such that

Q′ ⊆ Post(Iq,Uq) (64)

, {q′ | ∃x′ ∈ [f(xq1, d1, x
q
2, d2), f(xq2, d2, x

q
1, d1)]+

∃u ∈ Uq s.t. x′ + u ∈ Iq′}, (65)

that is, Q′ is a subset of the states that are reachable from Iq under an in-
put from Uq. The set Post(Iq,Uq) is easily computed using polyhedral op-
erations or efficiently overapproximated. For example, if y1, y2 ∈ Rn satisfy
{Bu | ∃x s.t. u ∈ U(x)} ⊆ [y1, y2]+, then Post(Iq,Uq) ⊆ [f(xq1, d1, x

q
2, d2) +

y1, f(xq2, d2, x
q
1, d1) + y2]+.

Computing Uq�Q′ and Uq′	q require polyhedral operations that scale ex-

ponentially in r, the dimension of the input space. Computing Uq�Q′ requires
only one such polyhedral operation per Q′ satisfying (64). To compute Ûq�Q′

requires computing Uq′	q for each q′′ ∈ Q\Q′. In practice, we need only consider
q′′ ∈ Post(Iq,Uq) in (60).

6. Case Studies

6.1. Verifying Oscillations in Insect Population Dynamics

We consider the following model from [42] for the population dynamics of
the flour beetle Tribolium castaneum:

x+ = A(x)x, x = (x1, x2, x3) ∈ R3, (66)
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A(x) =

0 0 b exp(−ce`x1 − ceax3)
p 0 0
0 exp(−cpax3) q

 , (67)

where x1, x2, and x3 represent populations of the insect at various stages of
life (larvae, pupae, and adults, respectively), and p, q ∈ (0, 1] are probabilities
of survival. The exponential nonlinearities are the result of cannibalism of eggs
and pupae. The dynamics are mixed monotone with f(x, d, y, e) = A(y)x where
≤X=≤+.

Using parameters from [42], we let b = 7.88, cea = 0.011, ce` = 0.014,
p = 0.839, q = 0.5, and cpa = 0.0047, with a time step of 2 weeks. We first note
that the domain

X = [0, (265, 225, 450)]+ (68)

is invariant. This follows because bx3 exp(−ceax3) ≤ 265 for all x3 ≥ 0 and,
thus, x1 ≤ 265 is invariant, from which x2 ≤ p ·265 ≤ 225. Since x+

3 ≤ x2 +qx3,
we conclude that x3 ≤ 225/(1− q) = 450 is invariant.

For certain sets of parameters, the dynamics (66)–(67) induce oscillations
in the number of larvae—a phenomenon documented in controlled laboratory
experiments [42]. We wish to verify the following LTL formula which is a con-
sequence of this oscillatory behavior:

�
((

(x1 ≤ 10) ∧ (x3 ≥ 40)
)
→ ♦(x1 ≥ 150)

)
. (69)

In words, “if the larvae population (x1) reduces to a small number or zero
and the adult population (x3) is not too small, then the larvae population will
eventually reach a large population size.”

We partition the state space into 2,376 intervals using a gridded partition.
The grid points along the x1, x2, and x3 dimensions are, respectively,

{0, 10, 20, 40, 50, 60, 80, 100, 125, 150, 175, 200, 275},
{0, 20, 40, 50, 60, 80, 100, 125, 150, 175, 200, 225}, and

{0, 10, 20, 40, 50, 60, 80, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 450}.

Computing the finite state abstraction takes less than one second on a standard
personal computer. We remove 14 self transitions that are spurious, i.e., do not
correspond to actual trajectories of the system [21], [43]; see [23, Algorithm 4].
Checking the model with SPIN [44] took 103 seconds, and we verify that (69)
is satisfied. Figure 5 shows a sample trajectory of the population dynamics
initialized at (x1, x2, x3) = (0, 0, 300). We see that the larvae population does
not reach the desired population 150 immediately, but it does so eventually
around week 26.

6.2. Synthesizing Control Laws for Traffic Networks

We next synthesize a traffic signal control policy for a network of signalized
intersections. We consider a discrete-time model of traffic flow where each road
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Figure 5: Sample trajectory of the insect population model (66)–(67),
plotting x1 over time when the system is initialized at (x1, x2, x3) =
(0, 0, 300). The trajectory satisfies (69).

link contains a queue of vehicles waiting to proceed through an intersection.
Each intersection signal actuates a subset of its queues at a given time step,
and the vehicles in actuated queues are allowed to flow to downstream links if
there is available space. In [29], we considered a similar model for which the
dynamics are piecewise affine. Here, we build on this prior result and consider a
more general nonlinear model with the help of the theory developed in Sections 3
and 4.

We consider a network of L links and a set V of signalized intersections.
We assume each link ` ∈ L has a queue of size x` ∈ [0, xcrit

` ] representing the
number of vehicles on the link where xcrit

` > 0 is the capacity of link ` ∈ L
so that X =

∏
`∈L[0, xcrit

` ]. By allowing x` to be continuous, we adopt a fluid
model of traffic flow.

For ` ∈ L, let η(`) ∈ V denote the head node of link ` and let τ(`) ∈ V ∪ ∅
denote the tail node. A link ` with τ(`) = ∅ serves as an entry-point into the
network, and we assume η(`) 6= τ(`) for all ` ∈ L (i.e., no self-loops). Link
k 6= ` is upstream of link ` if η(k) = τ(`), downstream of link ` if τ(k) = η(`),
and adjacent to link ` if τ(k) = τ(`). Roads exiting the traffic network are not
modeled explicitly. For each v ∈ V, define

Lin
v = {` | η(`) = v}, Lout

v = {` | τ(`) = v}. (70)

For simplicity of notation, we assume each intersection v ∈ V has two
possible states actuating either “East-West” (EW) incoming links or “North-
South” (NS) incoming links. Thus, we have the partition L = LEW ∪ LNS,
LEW∩LNS = ∅. At each junction v ∈ V, we define the signal variablemv ∈ {0, 1}
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as follows:

mv =

{
1 if links Lin

v ∩ LEW are actuated

0 if links Lin
v ∩ LNS are actuated.

(71)

Let m = {mv}v∈V so that M = {0, 1}V . When a link ` is actuated, the turn
ratio β`k denotes the fraction of vehicles exiting link ` that is routed to link k.
It follows that β`k 6= 0 only if η(`) = τ(k) and∑

k∈Lout
η(`)

β`k ≤ 1. (72)

Strict inequality in (72) implies that a fraction of vehicles on link ` are routed
off the network via unmodeled roads.

Each link ` ∈ L possesses a demand function Φout
` : [0, xcrit

` ]→ R that gives
the number of vehicles wishing to flow downstream in one time step and a supply
function Φin

` : [0, xcrit
` ] → R that gives the available road space for incoming

upstream vehicles in one time step. Thus, Φout
` is an increasing function and

Φin
` is a decreasing function of queue length. In this example, we let

Φout
` (x`) = c`(1− exp(−x`/c`)) (73)

Φin
` (x`) = w`(x

crit
` − x`) (74)

where c` > 0 is a saturation rate and 0 < w` < 1 scales the available queue
capacity to account for, e.g., vehicles still traveling on the link and not enqueue.
This demand-supply approach to vehicular traffic flow is rooted in the Cell
Transmission Model [45].

Movement of vehicles among link queues is governed by mass-conservation
laws and the state of the signalized intersections. When a link is actuated, a
maximum of Φout

` (x`) vehicles are allowed to flow from link ` to links Lout
η(`) per

time step. We let α`k denote the fraction of link k’s supply available to link `.
Since only incoming EW or NS links are actuated in each time step, we have∑

`∈Lin
τ(k)
∩LEW

α`k =
∑

`∈Lin
τ(k)
∩LNS

α`k = 1 (75)

for all k ∈ L. It then follows that the dynamics on link ` are given by

x+
` = F `m(x, d) (76)

, x` − fout
` (x,m) +

∑
j∈Lin

τ(`)

βj`f
out
j (x,m) + d` (77)

where

fout
` (x,m) = s`(m) ·min

{
Φout
` (x`), min

k s.t.
β`k 6=0

α`k
β`k

Φin
k (xk)

}
(78)

s`(m) =

{
mη(`) if ` ∈ LEW

1−mη(`) if ` ∈ LNS.
(79)
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Assumption 1. For all ` ∈ L and all k upstream of `,

exp

(−1

c`

(
xcrit` − βk`

w`αk`
ck

))
≤ 1− w`. (80)

Assumption 1 ensures that an increase in xi does not lead to a decrease in x+
i .

This assumption is mild because (80) is satisfied for small enough c` and ck,
and these parameters decrease for shorter time steps; indeed, violation of the
assumption would indicate that the chosen time step is too large to accurately
capture the queue dynamics.

Lemma 2. Assumption 1 ensures that
∂F `m
∂x`

(x, d) ≥ 0 for all m whenever the

partial derivative exists4.

Proof. We have

∂F `m
∂x`

(x, d) = 1− ∂fout
`

∂x`
(x`,m) +

∑
j∈Lin

τ(`)

βj`
∂fout

j

∂x`
(x,m). (81)

Note that
∂fout
`

∂x`
(x`,m) ≤ 1. Furthermore,

∂fout
j

∂x`
(x,m) 6= 0 only if sj(m) = 1

and
αj`
βj`

Φin
` (x`) is the minimizer in (78). As Φout

j (xj) ≤ cj , the latter condition

can only occur if

cj ≥
αj`
βj`

w`(x
crit
` − x`) ⇐⇒ x` ≥ xcrit

` − βj`
w`αj`

cj . (82)

It then follows that
∑
j∈Lin

τ(`)
βj`

∂fout
j

∂x`
(x,m) < 0 only if there exists j ∈ Lin

τ(`)

such that the inequalities in (82) hold. But this implies
∂fout
`

∂x`
(x`,m) ≤ 1 − w`

by Assumption 1 and the fact that exp(− 1
c`
x`) decreases in x`. Furthermore,∑

j∈Lin
τ(`)

βj`
∂fout
j

∂x`
(x,m) ≥ −w`, and we thus conclude that

∂F `m
∂x`

(x, d) ≥ 0. �

We make the natural choice ≤X=≤+ and ≤D=≤+.

Proposition 5. The traffic model (76)–(77) is mixed monotone.

In the proof below, we show that (76)–(77) satisfies the conditions of Proposition
1. In [29], we refer to this stronger condition as componentwise monotonicity.
Proof. We show for all `, k ∈ L, and all m ∈M,

∂F `m
∂xk

(x, d) ≤ 0 if τ(k) = τ(`), k 6= ` (83)

∂F `m
∂xk

(x, d) ≥ 0 if k = ` or τ(k) 6= τ(`) (84)

∂F `m
∂dk

(x, d) =

{
1 if k = `

0 if k 6= `.
(85)

4The minimization in (78) implies that some partial derivatives do not exist on a set of
measure zero. However, as noted above, the results developed in this paper still apply.
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This implies that the conditions of Propositions 1 are satisfied, specifically, we
take sj = 1 if and only if τ(j) = τ(i), j 6= i and σj = 0 for all j in (7)–(8). Note
that (85) follows immediately from (77). We now show (83)–(84) by considering
4 exhaustive cases:
(Case 1, τ(k) = τ(`), k 6= `). We have that

∂F `m
∂xk

(x, d) =
∑

j∈Lin
τ(`)

βj`
∂fout

j

∂xk
(x,m). (86)

Since
∂fout
j

∂xk
∈ {0, αjkβjk

dΦin
k

dxk
} and Φin

k is decreasing, we have
∂F `m
∂xk

(x, d) ≤ 0.

(Case 2, η(k) = τ(`) or τ(k) = η(`)). We have that
∂F `m
∂xk

(x, d) ∈
{0,−∂f

out
`

∂xk
, βk`

∂fout
k

∂xk
,−∂f

out
`

∂xk
+ βk`

∂fout
k

∂xk
} where the second possibility oc-

curs only if τ(k) = η(`), the third occurs only if η(k) = τ(`), and the fourth
occurs only if τ(k) = η(`) and η(k) = τ(`). We have ∂fout

k /∂xk ≥ 0 since

Φout
k is increasing and

∂fout
`

∂xk
∈ {0, α`kβ`k

dΦin
k

dxk
} ≤ 0 since Φin

k is decreasing, thus
∂F `m
∂x`

(x, d) ≥ 0.

(Case 3, k = `).
∂F `m
∂x`

(x, d) ≥ 0 by Lemma 2.

(Case 4, else). Trivially,
∂F `m
∂x`

(x, d) = 0. �
The decomposition function is as constructed in the proof of Proposition 1.
Consider the traffic network show in Figure 6 consisting of two signalized

intersections and eight links. We have LEW = {1, 2, 3, 4} and LNS = {5, 6, 7, 8}.
The leftmost signal actuates the EW links 1 and 3 simultaneously, or the NS
links 5 and 6 simultaneously, and similarly for the rightmost signal. We take
the time step to be 15 seconds and assume c1 = c2 = c3 = c4 = 20, c5 =
c6 = c7 = c8 = 5, xcrit

1 = xcrit
4 = 50, xcrit

2 = xcrit
3 = 60, xcrit

5 = xcrit
6 = xcrit

7 =
xcrit

8 = 40, w` = 0.75 for all `, β12 = β43 = β52 = β62 = β73 = β83 = 0.5,
α52 = α62 = α73 = α83 = 0.5, α12 = 1, and α43 = 1. For the disturbance input,
we assume that at each time step, up to 7 vehicles join each of the queues on
links 1 and 3, or up to 8 vehicles join each of the queues on links 5 and 6, or
up to 8 vehicles join each of the queues on links 7 and 8, thus D is the union of
three hyperrectangles.

We partition the domain of the traffic network, representing the state of all
queues, into 3,600 boxes using a gridded partition; the grid points for links 1 and
4 are {0, 30, 40, 50}, the grid points for links 2 and 3 are {0, 20, 30, 40, 50, 60},
and the grid points for links 5, 6, 7, and 8 are {0, 20, 40}. Using the mixed
monotonicity properties of the dynamics, we obtain a finite state abstraction of
the dynamics in 43.8 seconds on a Macbook Pro laptop using software written
in Python. To allow specifications on the sequence of inputs, we augment the
transition system with the current and previous control inputs, see [29] for
details. The abstraction thus contains a total of 57,600 states and 16.9 million
transitions.

Next, we wish to find a controller that satisfies the specification:
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Figure 6: A traffic network with two signalized intersections and 8
links. The blue links represent queues of vehicles. The leftmost signal
actuates links 1 and 3 simultaneously, or links 5 and 6 simultaneously.
Likewise, the rightmost signal actuates links 2 and 4 or 7 and 8 simul-
taneously.

“Infinitely often, the cross streets on links 5 and 6 are actuated, AND
infinitely often, the cross streets on links 7 and 8 are actuated, AND even-
tually, the queue lengths on links 2 and 3 are each less than 40 vehicles and
remain so for all future time, AND whenever the queue on link 1 exceeds
40 vehicles, it eventually is less than 30 vehicles, AND whenever the queue
on link 4 exceeds 40 vehicles, it eventually is less than 30 vehicles.”

The above specification can be expressed in linear temporal logic and encoded
in a deterministic Rabin automaton [15] with 46 states. By solving a Rabin
game, we construct a controller that is guaranteed to satisfy the specification.
For synthesis, we use a modified version of the CONPAS2 software package [21]
which implements in MATLAB the algorithm proposed in [37] and required 2.04
hours for computation. In Figure 7, we plot an example trajectory of the system
where we assume the maximum number of allowed vehicles enters the network
in each time step. We see in the figure that the trajectory satisfies the above
specification.

7. Conclusions

We have efficiently computed finite state abstractions for mixed monotone
discrete-time systems. Mixed monotonicity is a general property encompassing
many practical systems and provides a powerful tool for analysis and control.
The primary feature that permits efficient abstraction is overapproximation of
reachable sets by evaluating a decomposition function at two points. Future
research will investigate using mixed monotonicity to reduce the number of
intervals required to establish an effective partition of the state space.
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