
Finite abstractions with robustness margins for temporal logic-based

control synthesis✩

Jun Liua, Necmiye Ozayb

aDepartment of Applied Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
bDepartment of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA

Abstract

This paper introduces a notion of finite abstractions that can be used to synthesize robust controllers

for dynamical systems from temporal logic specifications. These finite abstractions, equipped with certain

robustness margins, provide a unified approach to various issues commonly encountered in implement-

ing control systems, such as inter-sample behaviors of a sampled-data system, effects of imperfect state

measurements and unmodeled dynamics. The main results of this paper demonstrate that the robustness

margins can effectively account for the mismatches between a control system and its finite abstractions

used for control synthesis. The quantitative nature of the robustness margins also makes it possible to

study the trade-offs between the performance of controllers and their robustness against various types of

adversaries (e.g., delays, measurement errors, or modeling uncertainties). We use a simple adaptive cruise

control (ACC) example to illustrate such robustness-performance trade-offs.

Keywords:

Finite abstractions, control synthesis, robustness, temporal logic, hybrid systems.

1. Introduction

Designing hybrid controllers from high-level specifications using abstraction-based, hierarchical ap-

proaches has gained increased popularity over the last few years (see, e.g., [10, 16, 17, 21, 22, 25, 27, 33, 34,

40, 43]). The typical workflow of these approaches are as follows: (i) computation of finite abstractions of

the system to be controlled, (ii) discrete synthesis based on the computed abstractions and desired speci-

fications to obtain a discrete strategy, (iii) hybrid implementation of the discrete control strategy to ensure

correctness of the overall system. In particular, how to compute finite abstractions of nonlinear control sys-

tems has received special attention (see [31, 37] and references therein), as it is the first and most important

step in ensuring the overall correctness of such approaches.

One advantage of using abstraction-based methods is that they can provide a feedback solution, as op-

posed to open-loop trajectory generation strategies [15, 39]. While feedback has the potential to reduce

the effects of disturbances and deal with sensing and modeling uncertainties, it remains unclear how to

establish robustness of a hybrid feedback controller obtained from abstraction-based methods when the

requirements are given in a high-level temporal logic. Motivated by this question, in this paper, we present

a unified notion of finite abstractions that can be used to synthesize robust hybrid controllers from high-

level specifications. These finite abstractions are equipped with additional robustness margins to account

✩Research supported in part by EU FP7 Grant PCIG13-GA-2013-617377 and by NSF grant CNS-1446298. A preliminary version of
this paper was presented in the 17th International Conference on Hybrid Systems: Computation and Control (HSCC) [20].

Email addresses: j.liu@uwaterloo.ca (Jun Liu), necmiye@umich.edu (Necmiye Ozay)

Preprint submitted to Hybrid Systems: Nonlinear Analysis December 3, 2015

© 2015. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/

for imperfections in measurements and/or models. More specifically, by focusing on temporal logic spec-

ifications and nonlinear control systems, we show that, when the abstractions comply with these margins

with respect to a nominal dynamical system, then it is possible to synthesize a hybrid control strategy that

remains valid for a family of perturbed dynamical systems (i.e., that can be represented as the nominal

dynamical system subject to uncertainty).

The main results of this paper show that it is possible to establish robustness against various issues that

are commonly encountered in implementing control systems, namely inter-sample behaviors of a sampled-

data system, effects of imperfect state measurements, unmodeled dynamics, jitter and delays within an

abstraction-based framework. Such issues have been studied extensively for stability analysis, but they

received less attention in the context of temporal logic-based control for dynamical systems. The quanti-

tative nature of the robustness margins also provides explicit trade-offs between the performance of the

hybrid controllers being designed and their robustness against various types of adversaries (e.g., delays,

measurement errors, or modeling uncertainties).

A preliminary version of this paper appeared in [20]. The current paper differs from [20] in a number

of ways. First, we provide a more in-depth discussion of abstractions and robustness margins both for

continuous-time and for discrete-time systems. Second, in this paper, we define the robustness margins to

be vector-valued parameters. This allows the use of hyper-boxes for computing abstractions and makes the

abstractions less conservative as demonstrated in the examples section. Third, we discuss in this paper the

trade-offs between robustness and performance of synthesized controllers using a new example on adap-

tive cruise control design. Fourth, we have added a more detailed explanation of the implementations of

discrete control strategies, including a formal definition of continuous implementations of discrete strate-

gies and new block diagrams showing the details of digital implementations. Making the implementation

semantics explicit is crucial to talk about the correctness of the closed-loop system. Fifth, we have added a

detailed model description for the case with imperfect state measurements. Finally, we have expanded the

related work section and added several new remarks to discuss more about relevant work.

The rest of the paper is organized as follows. Preliminaries on temporal logics and control system

models are given in Section 2. Finite abstractions with robustness margins are introduced in Section 3. The

main results that demonstrate the effectiveness of the new abstraction framework are presented in Section

4. An example on vehicular cruise control is used to illustrate the results in Section 6, highlighting robust-

performance trade-offs.

2. Preliminaries

Notation: R
n denotes the n-dimensional Euclidean space; given an n-vector x = (x1, · · · , xn) in R

n, let

|x| = (|x1| , · · · , |xn|), i.e., the n-vector obtained by taking entry-wise absolute value of x; given two n-

vectors x = (x1, · · · , xn) and y = (y1, · · · , yn), x ≤ y means xi ≤ yi for all i ∈ {1, · · · , n} (x < y, x > y, and

x ≥ y are similarly defined); an n-vector x is said to be positive if x > 0 ∈ R
n; given n-vectors δ ≥ 0 and

x, let Bδ(x) := {x′ ∈ R
n : |x′ − x| ≤ δ}; let R

+ denote the nonnegative real line; given an interval I ⊆ R
+

and U ⊆ R
m, U I denotes the set of control input signals from I to U; given a function f , dom(f) denotes

its domain; given a scalar r > 0, Cr denotes the space of R
n-valued continuous functions on [−r, 0].

2.1. Linear temporal logics

We use the stutter-invariant fragment of linear temporal logic (denoted by LTL\© [4], which means

LTL without the next operator ©) to specify system properties. This logic consists of propositional logic

operators (e.g., true, false, negation (¬), disjunction (∨), conjunction (∧) and implication (→)), and temporal

operators (e.g., always (�), eventually (♦), until (U) and release (R)).

The syntax of LTL\© over a set of atomic propositions Π is defined inductively follows:

2

• true and false are LTL\© formulae;

• an atomic proposition π ∈ Π is an LTL\© formula;

• if ϕ and ψ are LTL\© formulas, then ¬ϕ, ϕ ∨ ϕ, and ϕU ϕ are LTL\© formulas,

where atomic propositions are statements on a certain state space X. A labeling function L : X → 2Π maps

a state to a set of propositions that hold true for this state.

Negation Normal Form (NNF): All LTL\© formulas can be transformed into negation normal form [8,

p. 132], where

• all negations appear only in front of the atomic propositions1;

• only the logical operators true, false, ∧, and ∨ can appear; and

• only the temporal operators U and R can appear, where R is defined by ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2),

called the dual until operator.

For syntactic convenience, we can define additional temporal operators � and ♦ by �ϕ ≡ falseRϕ and

♦ϕ ≡ trueU ϕ.

Linear temporal logic formulas can be interpreted over both continuous-time signals and discrete se-

quences taking values in the state space X.

Continuous semantics of LTL\©: Given a continuous-time signal ξ ∈ XR
+

, we define ξ, t � ϕ with respect

to an LTL\© formula ϕ at time t inductively as follows:

• ξ, t � π if and only if π ∈ L(ξ(t));

• ξ, t � ϕ1 ∨ ϕ2 if and only if ξ, t � ϕ1 or ξ, t � ϕ2;

• ξ, t � ϕ1 ∧ ϕ2 if and only if ξ, t � ϕ1 and ξ, t � ϕ2;

• ξ, t � ϕ1U ϕ2 if and only if there exists t′ ≥ 0 such that ξ, t+ t′ � ϕ2 and for all t′′ ∈ [0, t′), ξ, t+ t′′ � ϕ1;

• ξ, t � ϕ1Rϕ2 if and only if, for all t′ ≥ 0, at least one of the following holds: ξ, t + t′ � ϕ2 or there

exists t′′ ∈ [0, t′) such that ξ, t + t′′ � ϕ1.

We write ξ � ϕ if ξ, 0 � ϕ.

Discrete semantics of LTL\©: Given a sequence ρ = {xi}
∞

i=0 in X, we define ρ, i � ϕ with respect to an

LTL\© formula ϕ inductively as follows:

• ρ, i � π if and only if π ∈ L(xi);

• ρ, i � ϕ1 ∨ ϕ2 if and only if ρ, i � ϕ1 or ρ, i � ϕ2;

• ρ, i � ϕ1 ∧ ϕ2 if and only if ρ, i � ϕ1 and ρ, i � ϕ2;

• ρ, i � ϕ1U ϕ2 if and only if there exists j ≥ i such that ρ, j � ϕ2 and ρ, k � ϕ1 for all k ∈ [i, j);

• ρ, i � ϕ1Rϕ2 if and only if, for all j ≥ i, at least one of the following holds: ρ, j � ϕ2 or there exists

k ∈ [i, j) such that ρ, k � ϕ1.

Similarly, we write ρ � ϕ if ρ, 0 � ϕ.

1Hence all negations can be effectively removed by introducing new atomic propositions corresponding to the negations of current

ones. We assume this has been done for all LTL\© formulas involved in this paper. This is for technical convenience in proving the

main results of the paper, where we can change the labels of states with atomic propositions consistently, rather than having to deal

with atomic propositions under negations separately.

3

2.2. Control systems

A continuous-time control system is a tuple S = (X, X0, U, f , Π, L) where X ⊆ R
n is a set of states,

X0 ⊆ X is a set of initial states, U ⊆ R
m is a set of inputs, f : R

n ×R
m → R

n is a vector field, Π is a set of

atomic propositions and L : X → 2Π is a labeling function. The state evolves according to:

ẋ = f (x, u). (2.1)

We assume that f satisfies the basic conditions [3] such that, given any sufficiently regular control input

signal u ∈ U[0,T] for some T ≥ 0 and any initial condition x0 ∈ X0, there exists a unique solution x defined

on [0, T] satisfying x(0) = x0 and ẋ(s) = f (x(s), u(s)) for all s ∈ [0, T].

A control strategy for S is a partial function of the form:

σ(x0, · · · , xi) = ui ∈ U[0,∆i], ∀i = 0, 1, 2, · · · , (2.2)

where x0, · · · , xi is a finite sequence of sampled states taken at sampling times τ0 = 0, · · · , τi and ui is a

control input signal with duration ∆i. The sampling times τ0, τ1, τ2, · · · satisfy τi+1 − τi = ∆i for all i ≥ 0.

Note that ∆i is not fixed a priori but to be computed as a part of the input signal ui.

Continuous Synthesis Problem: Given a continuous-time system S = (X, X0, U, f , Π, L) and an LTL\©
specification ϕ over Π, find a control strategy for the system such that all of its solutions satisfy ϕ for all

initial conditions in X0.

If there exists such a control strategy, we say that ϕ is realizable for S .

3. Abstractions with robustness margins

In this section, we define finite abstractions with robustness margins for S . These abstractions are finite

transition systems induced by an abstraction map.

A transition system is a tuple T = (Q, Q0,A,→T , Π, L), where Q is a (finite or infinite) set of states and

Q0 the initial states; A is a (finite or infinite) set of actions;→T ⊆ Q×A× Q is a transition relation; Π is a

set of atomic propositions; L : Q → 2Π is a labeling function. T is said to be finite if the cardinality of Q

and A are finite.

An abstraction map α : X → 2Q maps states in X into subsets of a finite set Q that effectively introduces

a finite covering of X given by
⋃

q∈Q α−1(q).

Definition 3.1. Given the continuous-time control system S = (X, X0, U, f , Π, L) and a tuple of positive

n-vectors (η, γ1, γ2, δ) satisfying γi ≥ η (i = 1, 2) and δ ≥ η, a finite transition system

TS = (Q, Q0,A,→TS , Π, L̂)

is called an (η, γ1, γ2, δ)-abstraction of S if there exists an abstraction map α : X → 2Q such that

(i) Q and A are finite subsets of X and
⋃

τ∈R+ U[0,τ], respectively, and
⋃

x∈X0
α(x) ⊆ Q0;

(ii) |x− q| ≤ η for all (x, q) ∈ X×Q such that q ∈ α(x);

(iii) (q, u, q′) ∈→TS if there exists ξ : [0, τ] → R
n such that |ξ(0)− q| ≤ γ1, |ξ(τ)− q′| ≤ γ2, and ξ̇(s) =

f (ξ(s), u(s)) and Bγ2(ξ(s)) ⊆ X for all s ∈ [0, τ], where dom(u) = [0, τ];

(iv) L̂ : Q→ 2Π is defined by

π ∈ L̂(q), q ∈ Q⇐⇒ π ∈ L(x), ∀x ∈ Bδ(q). (3.1)

We write S �(η,γ1,γ2,δ) TS .

4

Remark 3.1. Without loss of generality, we have assumed that Q is a subset of X; if not, for each q ∈ Q,

we can pick a point x ∈ X to represent q. Since each action in A is a control input signal of some finite

duration and A is a finite set, there exists a maximum duration for all signals in A, denoted by ∆(A) or ∆.

For example, if we restrict the actions to signals of a fixed duration ∆s (e.g., due to periodic sampling), we

have ∆ = ∆s. Also, note that by definition only input signals that lead to trajectories that remain in the set

X are considered.

Remark 3.2. Intuitively, the abstraction relation defined above is an over-approximation of the nominal

concrete model S by an abstract model TS in the sense that, under a given control signal, the transitions

in the abstract model should capture all possible behaviours of the concrete system. As such, the above

relation resembles the notion of alternating simulation [1] and is related to symbolic models for control sys-

tems using the notion of alternating (bi)simulations [30] (see also [43]). The key difference in the abstraction

introduced by Definition 3.1 is that it provides additional robustness parameters to explicitly account for

mismatches not only between the abstract model and the concrete nominal model, but also between the

nominal concrete model S and various perturbed models (as will be illustrated by the results in Section 4).

More specifically, the parameter η captures the granularity of the approximation, the parameter γ1 is use-

ful in accounting for imperfect state measurements; γ2 is useful in dealing with uncertainties/mismatches

in the models used for controller synthesis; δ is useful in modifying the annotation of discrete states with

atomic propositions such that, effectively, a robust specification [11] is used for discrete synthesis, which in

turn guarantees correctness of continuous-time trajectories of S despite approximation errors.

The following definition (adapted from [27]) defines a refinement relation between two abstractions for

S .

Definition 3.2. Given two tuples of positive n-vectors (η, γ1, γ2, δ) and (η̂, γ̂1, γ̂2, δ̂), let

TS = (Q, Q0,A,→TS , Π, L̂1)

be an (η, γ1, γ2, δ)-abstraction of S and

T̂S = (Q̂, Q̂0,A,→T̂S , Π, L̂2)

be an (η̂, γ̂1, γ̂2, δ̂)-abstraction of S . The transition system TS is said to be a refined abstraction of S relative

to T̂S if there exists a function r : Q→ Q̂ such that the following conditions hold:

(i) ∪q∈Q0
{r(q)} ⊆ Q̂0;

(ii) For all q ∈ Q, L̂2(r(q)) ⊆ L̂1(q);

(iii) For all (q, a, q′) ∈→TS , (r(q), a, r(q′)) ∈→T̂S .

We write S � TS � T̂S .

Note that the relations defined by Definitions 3.1 and 3.2 are different. The former defines an abstrac-

tion relation between a continuous system S described by (2.1) and a discrete system described by a finite

transition system TS . The latter is a refinement relation between two finite transition systems TS and T̂S
that are both abstractions of S . The refinement relation essentially says that, for every transition in the

refinement TS , there is a corresponding transition in the abstract model T̂S , which is allowed to have ad-

ditional transitions (i.e., more non-determinism). One motivation for computing a refinement is to reduce

such non-determinism in abstractions.

5

q

Bγ1
(q)

x(τ;q,u)•

•
•

q,

ξ(0)

ξ(τ)•

•

Bβ(γ1 ,τ)+γ2
(x(τ;q,u))

Bβ(γ1 ,τ)
(x(τ;q,u))Bγ2

(ξ(τ))

Figure 1: Illustration of Proposition 3.1.

3.1. Computation of transitions

A question that remains is how to compute the transitions in→TS . Suppose that

|x(t; u, ξ)− x(t; u, ζ)| ≤ β(|ξ − ζ| , t), (3.2)

for all τ ∈ R
+, u ∈ U[0,τ], and t ∈ [0, τ], where x(t; u, ξ) and x(t; u, ζ) denote solutions of ẋ = f (x, u)

starting from ξ and ζ and with control input u, respectively, and β : R
n × R

+ → R
n is a continuous

function such that β(x, t) ≤ β(y, t) for all 0 ≤ x ≤ y and t ≥ 0. The following proposition provides a

concrete way of computing transitions in an abstraction TS by simulating a trajectory starting from each of

the point in Q and estimating the state evolution under the dynamics of (2.1).

Proposition 3.1. Suppose (3.2) holds. If (q, u, q′) ∈→TS whenever (q, u, q′) ∈ Q×A×Q and |q′ − x(τ; u, q)| ≤

β(γ1, τ) + γ2, then S �(η,γ1,γ2,δ) TS , where dom(u) = [0, τ].

Proposition 3.1 essentially says that, for each state in q ∈ Q and u ∈ A, if we add (q, u, q′) to →TS
for each q′ ∈ Q ∩ Bγ(x(τ; u, q)), where γ = β(γ1, τ) + γ2, then we obtain an (η, γ1, γ2, δ)-abstraction of S

in the sense of Definition 3.1. Figure 1 illustrates how transitions in→TS can be computed in Proposition

3.1, where, in view of condition (3.2), Bβ(γ1,τ)(x(τ; q, u)) includes ξ(τ) for all ξ : [0, τ] → R
n such that

|ξ(0)− q| ≤ γ1 and ξ̇(s) = f (ξ(s), u(s)) for all s ∈ [0, τ]. Hence, Bβ(γ1,τ)+γ2
(x(τ; q, u)) contains all q′ ∈ Q

that is γ2-close to ξ(τ) for some ξ defined above; that is, all q′ ∈ Q such that (q, u, q′) ∈→TS as required by

Definition 3.1.

Algorithm 1 outlines an abstraction procedure for computing an (η, γ1, γ2, δ)-abstraction for a given

continuous-time control system S using Proposition 3.1. Recall that the parameter η captures the granu-

larity of the approximation. If η is given, one can choose Q by gridding the state space X according to η

through different state dimensions. Though gridding is not the only option. For instance, when a partition

of the state space X is given, η can be chosen to be half the length of the intervals of the smallest hyperbox

that can contain each of the cells in the partition. Similarly, A can be chosen by gridding the input space U

6

and considering constant signals with a fixed duration τ but it is also possible to consider arbitrary signals

of finite length. The parameters γ1, γ2, and δ can be chosen in view of the main results in the next section.

Algorithm 1 Computation of an (η, γ1, γ2, δ)-abstraction TS for a given system S using Proposition 3.1

Require: S , η, γ1, γ2, δ, β

1: Set A to be a finite subset of
⋃

τ∈R+ U[0,τ]

2: Set Q to be a finite subset of X such that ∀x ∈ X, ∃q ∈ Q that satisfies |x− q| ≤ η

3: Set Q0 to be the collection of all q ∈ Q such that ∃x ∈ X0 that satisfies |x− q| ≤ η

4: Define L̂ according to (3.1)

5:
{

→TS

}

← ∅

6: for all q ∈ Q do

7: for all u ∈ A do

8: τ ← max {dom(u)}

9: x′ ← x(τ; u, q)

10: if Bβ(γ1,τ)+γ2
(x′) ⊆ X and q′ ∈ Bβ(γ1,τ)+γ2

(x′) then

11: {→TS
} ← (q, u, q′)

12: end if

13: end for

14: end for

15: return {TS = (Q, Q0,A,→TS , Π, L̂)}

Remark 3.3. The proof of Proposition 3.1 is omitted as it is similar to the scalar case presented in [20,

Proposition 1]. An explicit form of β can usually be obtained using differential inequality techniques. In

addition, if the system (2.1) is incrementally asymptotically stable, β can be chosen as a KL-function [2].

The idea of using incremental stability to construct (bi)similar symbolic models was first introduced by

[28]. This has later been extended to systems under forward completeness assumptions by [43]. As noted in

Remark 3.2, the key difference in the abstraction introduced in by Definition 3.1 is the robustness margins

provided by the parameters γi (i = 1, 2). In addition, using vector-valued parameters allows the use of

hyper-boxes for computing abstractions and also makes the vector-valued estimate provided by (3.2) and

hence Proposition 3.1 less conservative, compared with existing results. If γ1 = γ2 = η ∈ R
+, Proposition

3.1 becomes a special case of Theorem 4.1 in [43].

Remark 3.4. To make the computation of transitions less conservative, one could rely on local reachable

set computation of (2.1) for computing transitions in TS . The idea is to replace a global, analytical bound

on reachable sets provided by (3.2) with reachable sets computed using local dynamics and relevant sets of

initial conditions (see also Section 4.4 for further discussions and [18] for some preliminary results in this

direction).

3.2. Discrete synthesis

The main reason to construct a finite abstraction such as TS in Definition 3.1 is to formulate discrete syn-

thesis problems that can be used to solve the continuous synthesis problem previously defined for S . Given

a set of atomic propositions Π on X, an LTL\© formula over Π can be interpreted over executions of TS . An

execution of TS is a sequence of pairs ρ = (q0, a0)(q1, a1)(q2, a2) · · · , where q0 ∈ Q0 and (qi, ai, qi+1) ∈→TS
for all i ≥ 0. A control strategy for TS is a partial function µ : (q0, · · · , qi) 7→ ai that maps the sequence of

states up to qi to an action ai. A µ-controlled execution of TS is an execution of TS , where for each i ≥ 0, the

action ai is chosen according to the control strategy µ.

We now formulate the discrete synthesis problem as follows.

7

Discrete Synthesis Problem: Given the transition system TS and an LTL\© specification ϕ, find a control

strategy µ such that all µ-controlled executions of TS satisfy ϕ for all initial conditions in Q0.

If there exists such a control strategy µ, we say that ϕ is realizable for TS . The discrete synthesis problem

can be recast as a temporal logic game. While the complexity of solving general LTL games can be of high

complexity, efficient solvers exist for solving such games with expressive fragments of LTL (e.g., [5, 9]),

together with publicly available toolboxes (e.g., [41]).

Augmented Progress Properties. In view of comments after Proposition 3.1, if τ is sufficiently small compared

with γ, then the ball Bγ(x(τ; u, q)) will almost always include q itself, which introduces a self-transition

(q, u, q) for almost all q ∈ Q. As we shall treat all non-determinism as adversary when solving the discrete

synthesis problem, these self-transitions can render the problem unrealizable if the specification involves

making progress. In addition to self-transitions, non-determinism can potentially induce spurious cyclic

executions in the abstract system that do not exist in the continuous system (2.1). To deal with these issues,

we can use augmented finite transition systems [27] to enforce additional progress assumptions when solv-

ing the discrete synthesis problem. Such progress assumptions can be captured by the following LTL\©
formula:

ϕg
.
=

∧

u∈A

∧

G∈G(u)

¬♦�((∨ q∈Gq) ∧ u), (3.3)

over an extended set of atomic propositions2, where each G ∈ G(u) represents a progress group. That

is, the set
⋃

q∈G α−1(q) does not contain any invariant sets for system (2.1) when a fixed u is repeatedly

executed. Such progress groups can be trivially computed for affine or incrementally stable dynamics. It is

also possible to approximate them when the dynamics are polynomial [27]. Appropriately encoding these

progress properties is essential for achieving certain specifications (e.g., reachability).

3.3. Continuous implementations of discrete strategies

For the finite abstractions TS to be useful, we need to guarantee two things: (i) every discrete control

strategy for TS can be implemented to form a control strategy for the continuous system S ; and (ii) if the

discrete strategy solves the discrete synthesis problem for TS , then the corresponding continuous strategy

solves the continuous synthesis problem for S . Establishing these under various scenarios will be the main

results of this paper. The following definition and proposition are useful in mapping a discrete strategy to

a continuous one.

Given a discrete strategy µ for TS , we call a continuous strategy σ for S an implementation of µ if

σ(x0, · · · , xi) = µ(q0, · · · , qi) = ai ∈ A, ∀i = 0, 1, 2, · · · ,

where, for all i ≥ 0, qi ∈ α(xi), (qi, ai, qi+1) ∈→TS , and there exists ξ : [0, ∆i] → R
n such that ξ(0) = xi,

ξ(∆i) = xi+1, and ξ̇(s) = f (ξ(s), ai(s)) for all s ∈ [0, ∆i], where ai ∈ U[0,∆i] for some ∆i.

Proposition 3.2. If S �(η,γ1,γ2,δ) TS , then every control strategy for TS can be implemented on S .

Proof. For each control strategy µ for TS , we define a control strategy σ for S as follows: starting from an

initial state x0 ∈ X0, it follows from (i) of Definition 3.1 that there exists q0 ∈ Q0 such that q0 ∈ α(x0). We

can define σ(x0) = µ(q0) = a0 ∈ A. Note that a0 is indeed a control signal in U[0,∆0] for some ∆0 ≥ 0. Let

x1 be such that there exists ξ : [0, ∆0] → R
n such that ξ(0) = x0, ξ(∆i) = x1, and ξ̇(s) = f (ξ(s), a0(s))

for all s ∈ [0, ∆0]. Choose any q1 ∈ α(x1). Then (ii) of Definition 3.1 implies that |x0 − q0| ≤ η ≤ γ1 and

|x1 − q1| ≤ η ≤ γ2. It follows from (iii) of Definition 3.1 that (q0, a0, q1) ∈→TS . Repeating this procedure

for all i ≥ 0, an implementation can be defined.

2To be precise, we define a concatenated labeling function L′ as L′(q, u)
.
= L̂(q) ∪ q ∪ u and interpret the LTL formula ϕ ∧ ϕg over

state-action sequences, where ϕ is the original specification (see [27] for details).

8

Plant

Controller
ui

u(t)xi x(t)
Sensor

Δi

ZOH

Figure 2: Illustration of a digital implementation of a control strategy: a sensor takes (sampled) state measurements from a plant; as

a control strategy of the form (2.2), the controller outputs a new control input signal to the plant based on a sequence of sampled

states; state measurements are taken by the sensor at time instants (sampling times) decided by the current control inputs at run time;

a control input signal ui consists of a constant input value ui and a duration ∆i

.

The following proposition states that, if a specification is realizable on an abstract model, then it is also

realizable on its refinement.

Proposition 3.3. Given S � TS � T̂S and an LTL\© formula ϕ, ϕ being realizable for T̂S implies that ϕ is

realizable for TS .

Proof. The proof consists of two parts. The first part is to show that each control strategy µ̂ for T̂S can be

refined as a control strategy on TS . The second part is proving that controlled executions under the refined

strategy satisfy the given specification. For each control strategy µ̂ for T̂S , we define a control strategy µ for

TS as follows: starting from an initial state q0 ∈ Q, it follows from (iii) of Definition 3.2 that r(q0) ∈ Q̂0. We

can define µ(q0) = µ̂(r(q0)) = a0 ∈ Â = A. Let q1 be such that (q0, a0, q1) ∈→TS and q̂1 = r(q1). Then

(iv) of Definition 3.2 implies that (r(q0), a0, r(q1)) ∈→T̂S . Repeating this procedure for all i ≥ 0 proves

the first part. Now let µ̂ be a strategy for T̂S such that all µ̂-controlled executions of T̂S satisfy ϕ. Let µ

be a refined strategy for TS defined above. Then all µ-controlled executions of TS have corresponding µ̂-

controlled executions of T̂S under the map r : Q → Q̂. The correctness of these executions with respect to

ϕ follow from (ii) of Definition 3.2 and induction on LTL\© formulas in Negation Normal Form (similar to

the induction procedure in the proof of Theorem 4.1).

In practice, a continuous strategy σ for S is digitally implemented for system (2.1) in the sense that a

sampled sequence x(τ0), · · · , x(τi) taken at sampling times τ0 = 0, · · · , τi is regarded as a state sequence

x0, · · · , xi in X, where the control input signal required by (2.2) at τi is given by σ(x0, · · · , xi) for all i ≥ 0

and also takes some digital form, e.g., zero-order hold (ZOH). Figure 2 gives a schematic illustration of a

digital implementation of a control strategy that leads to closed-loop control for the continuous-time system

(2.1). Here we consider the case with perfect state measurements and assume that there are no delays in the

control loop. Implementations on systems with imperfect state measurements and delays will be discussed

in Section 4.2.

4. Main results—Implications of the robustness margins

The main objective of this section is to show that, with the notion of abstraction given in Definition 3.1,

we are able to reason about the qualitative properties of solutions of a continuous-time control system in

different practical scenarios.

9

4.1. Continuous correctness by discrete reasoning

When implementing a discrete strategy, perhaps obtained from solving a discrete synthesis problem, we

are effectively implementing a hybrid feedback controller such that solutions of a system S satisfy a given

specification.

In general, the existence of a discrete control strategy for the discrete synthesis problem for TS with an

LTL\© formula ϕ does not guarantee the existence of a control strategy that solves the continuous synthesis

problem for the system S with the same specification ϕ. In fact, using discretization-based (or grid point-

based), rather than proposition-preserving partition-based, abstractions, we need extra conditions to ensure

correctness of continuous executions from discrete reasoning. This motivates condition (3.1) in defining

abstractions, which essentially captures the idea of contracting and expanding atomic propositions as used

in [10, 22]. This extra condition is needed to account for inter-sample behaviors as pointed out in [20,

Example 2].

Let M = (M1, · · · , Mn) be an n-vector defined by Mi = supx∈X,u∈U | fi(x, u)| (1 ≤ i ≤ n) and ∆ be the

maximum duration of actions in A.

Theorem 4.1. If S �(η,γ1,γ2,δ) TS and δ ≥ M∆/2 + η, then, given any LTL\© formula ϕ, ϕ being realizable for

TS implies that ϕ is realizable for S .

Proof. By Proposition 3.2, to every control strategy µ for TS , there corresponds a control strategy σ (which is

an implementation of µ) for S such that, to each σ-controlled solution of S , there corresponds a µ-controlled

execution in TS . We denote this correspondence by x to ρ, where x is a solution of S resulting from σ and

ρ = (q0, u0)(q1, u1)(q2, u2) · · · . Here each qi is an abstract state corresponding to xi = x(τi), for all i ≥ 0,

where τ0 = 0 and τi+1 = τi + ∆i, where ∆i is the duration of ui. We have |xi − qi| ≤ η for all i ≥ 0.

Furthermore, we have to show that ρ � ϕ implies x � ϕ. We prove this by proving a stronger statement:

ρ, i � ϕ for i ≥ 0 implies x, t � ϕ for all t ∈ Ji = [τi − ∆/2, τi + ∆/2] ∩R
+.

The proof is by induction on the structure of an LTL\© formula.

Case ϕ = π: To show x, t � π for all t ∈ Ji, we have to show that π ∈ L(x(t)). This follows from

xi = x(τi), π ∈ L̂(qi), and

|x(t)− qi| ≤ |x(t)− x(τi)|+ |xi − qi| ≤ M∆/2 + η ≤ δ. (4.1)

Case ϕ = ϕ1U ϕ2: To show x, t � ϕ for all t ∈ Ji, we need to show that, for each fixed t ∈ Ji, there exists

t′ ≥ 0 such that x, t + t′ � ϕ2 and for all t′′ ∈ [0, t′), x, t + t′′ � ϕ1. We have ρ, i � ϕ; that is, there exists j > i

such that ρ, j � ϕ2 and ρ, k � ϕ1 for all k ∈ [i, j). It follows from the inductive assumption that x, s � ϕ2

for all s ∈ Jj and x, s � ϕ1 for all s ∈ Jk and all k ∈ [i, j). Take t′ = max(τj − ∆/2, t)− t. Then t + t′ ∈ Jj

and hence x, t + t′ � ϕ2. In addition, for all t′′ ∈ [0, t′), we have t + t′′ ∈ Jk for some k ∈ [i, j) and hence

x, t + t′′ � ϕ1. In fact, ∪i≤k≤j−1 Jk = [τi − ∆/2, τj−1 + ∆/2] ∩R
+ ⊇ [t, τj − ∆/2) = [t, t + t′) ∋ t + t′′.

Case ϕ = ϕ1Rϕ2: To show x(t) � ϕ for all t ∈ Ji, we need to show that, for each fixed t ∈ Ji, we have,

for all t′ ≥ 0 either x, t + t′ � ϕ2 or that there exists t′′ ∈ [0, t′) such that x, t + t′′ � ϕ1. We have ρ, i � ϕ; that

is, for all j ≥ i, either ρ, j � ϕ2 or there exists k ∈ [i, j) such that ρ, k � ϕ1. Given t′ ≥ 0, let τj be such that

t + t′ ∈ Jj, where j ≥ i. For this j, we have either ρ, j � ϕ2 or that there exists k ∈ [i, j) such that ρ, k � ϕ1.

It follows from the inductive assumption that either x, s � ϕ2 for all s ∈ Jj or there exists k ∈ [i, j) such that

x, s � ϕ1 for all s ∈ Jk. If the former holds, since t + t′ ∈ Jj, we get x, t + t′ � ϕ2. If the latter holds, since

t + t′ ≥ τj − ∆/2 > τk − ∆/2 and τk + ∆/2 ≥ τi + ∆/2 ≥ t, we know [t, t + t′) ∩ Jk , ∅. Thus, there exists

t′′ ∈ [0, t′) such that x, t + t′′ � ϕ1.

The other cases are straightforward.

10

Plant

Controller
x̂ i ui

u(t)

Delay r
1

e +

Delay r
2

ZOH
ûixi x(t)

Sensor

Δi

Figure 3: Illustration of a controller that takes delayed (by r1) and imperfect measurement (subject to measurement errors

bounded by ε) from a plant and sends a control input that is received and actuated by the plant after another delay r2

(measured from when the controller receives the measurement and to when the control input has been actuated by the

plant). The total round-trip delay r1 + r2 is not assumed to be constant, but assumed to be bounded by some constant r.

Each computed control input ui is a pair consisting of a constant input value ui and a duration ∆i. State measurements

are taken at time instants decided by the current control inputs at run time. While the plant is waiting for the next

control input, it keeps on executing the previous one.

4.2. Imperfect state measurement: bounded errors or delays

In practice, state measurements are not perfect, often subject to measurement noise or quantization.

Furthermore, delays are ubiquitous in control systems, for instance, leading to jitter [7]. In this subsection,

we consider the robustness of a hybrid controller for the system (2.1) that realizes a temporal logic objective

with respect to imperfect state measurements.

Given real constants r ≥ 0 and ε ≥ 0 and the system S = (X, X0, U, f , Π, L), let Sr,ε denote a system

whose state evolves according to
{

ẋ(t) = f (x, u(t− r2)),

x̂(t) = x(t− r1) + e(t),
(4.2)

where x̂(t) is the state measurement received at t, r1 is the delay for a measurement taken from the plant to

reach the controller, r2 is the delay a control input computed by the controller is received by the plant, and

|e(t)| ≤ ε is a time-varying measurement error bounded by ε. Let r1 + r2 be the round-trip delay, which is

assumed to be upper bounded by r. The objective is to design and implement a hybrid controller on system

(4.2) with correctness guarantees, based on abstractions with robustness margins of the nominal system

(2.1). The details of the problem are further illustrated in Figure 3.

Theorem 4.2. If S �(η,γ1,γ2,δ) TS with γ1 ≥ rM + ε + η, γ2 ≥ ε + η, and δ ≥ (r + ∆)M/2 + (ε + η), then,

given any LTL\© formula ϕ, ϕ being realizable for TS implies that ϕ is realizable for Sr,ε.

Proof. Let x0, x1, x2, · · · , be the measurements taken at the plant at times τ0, τ1, τ2, · · · ; that is xi = x(τi)

for all i ≥ 0. As shown in Figure 3, we assume it takes time delay r1,i for the hybrid controller to receive a

perhaps noisy measurement given by x̂i = x(τi) + ei at time τi + r1,i. The controller makes a decision and

passes on a suggested input ui (which includes the duration of ui denoted by ∆i). The plant will receive this

input subject to another delay r2,i. As r1,i and r2,i can be time varying, we use ri to indicate the round-trip

delay r1,i + r2,i experienced after the ith sample is taken. Note that ri is upper bounded by the constant r.

In other words, after a sample is taken at τi, the plant will receive an updated control input at time τi + ri.

From this point on, the control input is set to ui. Between τi and τi + ri, the plant will keep executing the

previous input ui−1; initially, between τ0 and τ0 + r0, assume this input is set to some initial value. We need

to be clear how τi’s are defined: we set τ0 = 0 and the rest of the sampling times τi (i ≥ 1) are defined by

τi = τi−1 + ∆i−1 + ri−1.

11

There are two things to prove: (i) every measured state (despite delays and noise) are accounted for in

the abstraction, so that the discrete control strategy can be implemented. Put more straightforwardly, every

measured state should be expected by the controller so that it can make a decision based on the strategy

automaton; (ii) the plant trajectory x(t), t ≥ 0, should satisfy the desired specification ϕ.

To show (i), we need to verify that there exists a trajectory ξ of (2.1) under inputs ui such that |ξ(0)− qi| ≤

γ1 and |ξ(∆i)− qi+1| ≤ γ2, where qi and qi+1 are such that |x̂i − qi| ≤ η and |x̂i+1 − qi+1| ≤ η. We

know that |x̂i − x(τi)| ≤ ε, τi+1 = τi + ∆i + ri for all i ≥ 0, and ui is activated on [τi + ri, τi + ri + ∆i].

Letting ξ(s) = x(τi + ri + s) for s ∈ [0, ∆i], then ξ(0) = x(τi + ri) and ξ(∆i) = x(τi + ∆i + ri). It

is easy to verify that |ξ(0)− q̂i| ≤ |x(τi + ri)− x(τi)| + |x(τi)− x̂i| + |x̂i − qi| ≤ rM + ε + η ≤ γ1 and

|ξ(∆i)− qi+1| ≤ |x(τi+1)− x̂i+1|+ |x̂i+1 − qi+1| ≤ ε + η ≤ γ2.

Let x(τi) = xi. We have |xi − qi| ≤ ε+ η and τi+1− τi = ∆i + ri for all i ≥ 0. Based on δ ≥ (r +∆)M/2+

(η + ε), we can prove x � ϕ following the proof of Theorem 4.1 with η replaced by η + ε and ∆i replaced by

∆i + ri.

4.3. Unmodeled dynamics: bounded disturbance or delays

We can also apply the same methodology to prove the effectiveness of the design in the situation where

systems (2.1) contain unmodeled dynamics that can be treated as bounded disturbance in the right-hand

side of (2.1).

A general time-delay system can be written as a functional differential equation:

ẋ = F(xt, u), t ≥ 0, (4.3)

where F : Cr ×U → R
n is a functional with control input u ∈ U, and xt(s) = x(t + s) for all s ∈ [−r, 0].

We assume that, given any initial condition x0 ∈ Cr, (4.3) has a unique solution (see, e.g., [14, Chapter 2] for

regularity conditions on F that guarantee this).

We can rewrite F such that it has an ordinary part and a functional part:

F(xt, u) = f (x, u) + g(xt, u), (4.4)

where f : R
+ × U → R

n and g : Cr × U → R
n. This form can be obtained, for example, from (4.3)

by letting g(xt, u) := F(xt, u) − f (x, u). The idea is to design controllers for system (4.3), based on the

delay-free model (2.1). The results rely on the following assumption:

Assumption (Boundedness). There exists a positive n-vector Dr > 0 such that |g(xt, u)| ≤ Dr for all u ∈ U

and all solutions xt of (4.3) that completely lies in X; that is, xt(s) ∈ X for all s ∈ [−r, 0].

In most delay models, Dr → 0 as r → 0 for compact sets X and U. We will treat g(xt, u) as additive

disturbances to the right-hand side of (2.1). Therefore, the results also work for general disturbances satis-

fying a similar boundedness assumption. Similar to that for previous results, we let M be an n-vector such

that |F(xt, u)| ≤ M for all u ∈ U and all solutions xt of (4.3) that completely lies in X.

Given the system S = (X, X0, U, f , Π, L) and F defined above satisfying (4.4) and the boundedness

assumption, let SF denote the system whose state evolves according to (4.3).

Theorem 4.3. If S �(η,γ1,γ2,δ) TS with γ1 ≥ η, γ2 ≥ E + η, where E = (E1, · · · , En) is a n-vector given by

Ei = (eKi∆ − 1)(Dr)i/Ki and Ki > 0 is the uniform Lipschitz constant of fi(·, u) on X for all u ∈ U, (Dr)i is the

ith component of Dr, and δ ≥ ∆M/2 + η, then, given any LTL\© formula ϕ, ϕ being realizable for TS implies that

ϕ is realizable for SF.

Proof. Let x0, x1, · · · , be the measurements taken for the system (4.3) at times τ0, τ1, · · · ; that is xk = x(τk)

for all k ≥ 0, where τ0 = 0 and τk+1 = τk + ∆k for all k ≥ 0 and uk is activated on [τk, τk + ∆k] for

each k ≥ 0. We need to ensure that the abstraction computed for S based on (2.1) actually accounts for

12

all possible behaviors of solutions of (4.3). To do so, we need to verify that there exists a trajectory ξ of

(2.1) under inputs uk such that |ξ(0)− qk| ≤ γ1 and |ξ(∆k)− qk+1| ≤ γ2, where qk and qk+1 are such that

|xk − qk| ≤ η and |xk+1 − qk+1| ≤ η. Let ξ be a solution of (2.1) starting from xk. We have ξ(0) = ξ(τk)

and ξ̇(s) = f (ξ(s), uk(s)) for s ∈ [0, ∆k]. Define y(s) = x(τk + s) for s ∈ [−r, ∆k]. Then y(0) = x(τk) and

ẏ(s) = F(ys, uk(s)) = f (y(s), uk(s)) + g(ys, uk(s)) for s ∈ [0, ∆k]. Let z(s) = y(s)− ξ(s) for s ∈ [−r, ∆k].

It follows that |ż| ≤ K |z| + Dr, where K = (K1, · · · , Kn), and z(0) = 0. It follows that |zi(s)| ≤ (eKis −

1)(Dr)i/Ki for s ∈ [0, ∆k] and 1 ≤ i ≤ n. Therefore, |ξ(0)− qk| ≤ |z(0)| + |x(τk)− qk| ≤ η ≤ γ1 and

|ξ(∆k)− qk+1| ≤ |z(∆k)|+ |x(τk + ∆k)− qk+1| ≤ E + η ≤ γ2.

4.4. Discussions

The main results presented earlier in this section provide sufficient conditions on the soundness of

abstractions for robust control design from temporal logic specifications, in terms of the abstraction param-

eters used, system dynamics, and the size and source of uncertainties. We give below a brief account of the

advantages, limitations, and trade-offs of the proposed results.

One of the key features of the approach is that we compute abstractions based on a nominal control

system model and equip them with robustness margins to account for uncertainties that we may not have

specific a priori knowledge of at the design time. With the results discussed earlier, we can guarantee that the

synthesized controllers are robust against various uncertainties within certain bounds, if such controllers

can be founded via discrete synthesis using robust abstractions proposed in this paper. The quantitative

nature of the robustness margins also allows us to study potential trade-offs between performance and

robustness (see the example in Section 6).

We would like to point out that, due to the conservative nature of the abstractions we have considered

in this paper, the unrealizability of a discrete synthesis problem for a given specification does not preclude

the possibility of the existence of concrete controllers that realize this specification. In fact, one of the mo-

tivations of defining quantitative robustness margins is to be able to discuss trade-offs between robustness

and performance, as discussed above and to be illustrated with the example in Section 6 (Figure 4). While

adding more transitions in the abstraction will certainly make a synthesized controller (if one can be found)

more robust, but it may also render the discrete synthesis unrealizable.

It is worth emphasizing some improvements with respect to our preliminary results on abstractions

with robustness margins presented in [20], where scalar parameters were used in the definition of the ab-

straction. For instance, when non-uniform grids are used for selecting the discrete states of the abstraction,

using vector-valued parameters leads to significantly less transitions. Moreover, if the dynamics are faster

in one dimension compared to the others, a scalar-valued β function potentially leads to a lot of spurious

transition, whereas a vector-valued β function leads to less conservatism. Finally, as opposed to [20], the

vector-valued parameters in the abstractions proposed in this paper allow the uncertainties like measure-

ment noise to have a different bound for different state variables. This is important in realistic scenarios

where sensors measuring different states might have different accuracies and trying to bound the measure-

ment error with a scalar would lead to unnecessary conservatism.

Future work will investigate how to further reduce the number of spurious transitions in computing

robust abstractions. One way to do so is to replace the various global inequalities in Theorems 4.1–4.3 with

local versions; that is, the inequalities hold for every single transition. This will potentially require using

state-dependent abstraction parameters, considering bounds on dynamics and uncertainties locally, taking

into account the size of each individual control actions rather than using a uniform upper bound.

We also plan to study refinement procedures to find a discrete controller if one exists. In particular, we

would like to investigate under what assumptions on the system dynamics (e.g., incremental stability) and

the type and size of uncertainties we would be able to prove certain completeness of the notion of robust

abstractions proposed in this paper.

13

5. Abstractions with robustness margins for discrete-time control systems

In this section, we show that abstractions with robustness margins can be similarly defined for discrete-

time control systems. We start with a few definitions that are parallel to those introduced for continuous-

time systems.

A discrete-time control system is a tuple Sd = (X, X0, U, g, Π, L) where X ⊆ R
n is a set of states, X0 ⊆ X

is a set of initial states, U ⊆ R
m is a set of inputs, g is a function from R

n ×R
m to R

n, Π is a set of atomic

propositions and L : X → 2Π is a labeling function. The state evolves according to:

x+ = g(x, u), (5.1)

where x+ denotes the next state of x under the above difference equation.

A control strategy for Sd is defined to be a partial function of the form:

σ(x0, · · · , xi) = ui ∈ U, ∀i = 0, 1, 2, · · · . (5.2)

A synthesis problem for Sd can be formulated as follows: Given Sd and an LTL\© specification ϕ over

Π, find a control strategy for Sd such that all of its solutions satisfy ϕ for all initial conditions in X0. If there

exists such a control strategy, we say that ϕ is realizable for Sd.

Definition 5.1. Given the discrete-time control system Sd = (X, X0, U, g, Π, L) and a tuple of positive n-

vectors (η, γ1, γ2, δ) satisfying γi ≥ η (i = 1, 2) and δ ≥ η, a finite transition system

TSd
= (Q, Q0,A,→TS , Π, L̂)

is called an (η, γ1, γ2, δ)-abstraction of Sd if there exists an abstraction map α : X → 2Q such that

(i) Q and A are finite subsets of X and U, respectively, and
⋃

x∈X0
α(x) ⊆ Q0;

(ii) |x− q| ≤ η for all (x, q) ∈ X×Q such that q ∈ α(x);

(iii) (q, u, q′) ∈→TSd
if there exists ξ and ξ ′ such that |ξ − q| ≤ γ1, |ξ ′ − q′| ≤ γ2, and ξ ′ = g(ξ, u),

(iv) L̂ : Q→ 2Π is defined by

π ∈ L̂(q), q ∈ Q⇐⇒ π ∈ L(x), ∀x ∈ Bδ(q). (5.3)

We write Sd �(η,γ1,γ2,δ) TSd
.

Given two abstractions with robustness margins for Sd, a refinement relation between them can be

defined following exactly Definition 3.2.

Similar to Proposition 3.1, we have the following result for computing transitions of TSd
. To state it, we

replace (3.2) with the following condition:

|g(u, ξ)− g(u, ζ)| ≤ β(|ξ − ζ|), (5.4)

where u ∈ U and β : R
n → R

n is a continuous function.

Proposition 5.1. Suppose (5.4) holds. If (q, u, q′) ∈→Td
whenever (q, u, q′) ∈ Q×A× Q and |q′ − g(u, q)| ≤

β(γ1) + γ2, then Sd �(η,γ1,γ2,δ) TSd
.

For discrete-time systems, we do not consider delays in this paper, but the following results give robust-

ness with respect to measurement errors and bounded additive disturbances, respectively.

14

Theorem 5.1. Suppose that Sd is to be controlled subject to measurement errors bounded by ε. If Sd �(η,γ1,γ2,δ) TSd

with γi ≥ ε + η (i = 1, 2), and δ ≥ ε + η, then, given any LTL\© formula ϕ, ϕ being realizable for TSd
implies that

ϕ is realizable for Sd.

Theorem 5.2. Suppose that Sd is subject to additive disturbances bounded by D. If Sd �(η,γ1,γ2,δ) TSd
with γ1 ≥ η,

γ2 ≥ D + η, and δ ≥ η, then, given any LTL\© formula ϕ, ϕ being realizable for TSd
implies that ϕ is realizable for

Sd.

The proofs for the above results are similar to that for Theorems 4.3 and 4.2. The only difference is that

we do not need to account for inter-sample behaviors. Hence, the conditions are weakened accordingly.

5.1. Justification of time-discretization-based design

There are situations one would like to use a time-discretized model to design controllers for a continuous-

time system, for example, when there is already a design methodology proved to be effective for discretized

systems. What are the issues that need to be considered to ensure the performance of the resulted con-

troller? This is a standard question in the design of stabilizing controllers (e.g., [12]). Here we consider it in

the context of hybrid control for temporal logic objectives.

Let Sd = (X, X0, U, g, Π, L) be a time-discretized model for S = (X, X0, U, f , Π, L), which could be

an exact model (e.g., available in the case where f is linear) or an approximate model (such as obtained

from applying a numerical scheme). For example, g(x, u) can be defined by g(x, u) = x + ∆ f (x, u) as in a

forward Euler scheme with a constant step size ∆. We only consider the case of constant step size and write

the time-discretized control system as

x+ = g∆(x, u), (5.5)

where x ∈ X ⊆ R
n and u ∈ U ⊆ R

m and g∆ is a suitable one-step numerical scheme with a constant step

size ∆.

Assumption (Consistency). The numerical scheme g∆ satisfies

|x(∆; u, x0)− g∆(x0, u)| ≤ ∆C(∆),

for all x0 ∈ X and u ∈ U, where C(∆) → 0 as ∆ → 0 and x(·; u, x0) is the solution of ẋ = f (x, u) starting

from x0 with a constant control input u.

For example, for the forward Euler scheme with a fixed step size ∆, the above assumption holds with

C(∆) = (eK∆ − 1)/K, where K is the uniform Lipschitz constant of f (·, u) on X for all u ∈ U.

Theorem 5.3. Suppose the consistency assumption holds and that S is to be controlled with a hybrid controller

synthesized using the time-discretized model Sd. If Sd �(η,γ1,γ2,δ) TSd
with γ1 ≥ η, γ2 ≥ ∆C(∆) + η, and

δ ≥ ∆M/2 + η, then, given any LTL\© formula ϕ, ϕ being realizable for TSd
implies that ϕ is realizable for S .

Proof. Let x0, x1, x2, · · · , be the measurements taken for the system (2.1) at times τ0, τ1, τ2, · · · ; that is

xi = x(τi) for all i ≥ 0, where τ0 = 0 and τi+1 = τi + ∆i for all i ≥ 0, ui ≡ ui on [τi, τi + ∆i] for each i ≥ 0,

and ui is a control input given by the discrete strategy. We need to show that: (1) every measured state is

accounted for in the abstraction (computed from the discretized model), so that the discrete control strategy

can be implemented; (2) the plant trajectory x(t), t ≥ 0, should satisfy the desired specification ϕ. Let {q̂i}

denote a sequence of abstract states corresponding to {xi}.

To prove (1): for each i, we need to show that there exists ξ and ξ ′ such that |ξ − qi| ≤ γ1, |ξ ′ − qi+1| ≤

γ2, and ξ ′ = g∆(ξ, ui). We let ξ = xi and ξ ′ = g∆(xi, ui). Then |ξ − qi| ≤ η ≤ γ1. Moreover, it follows from

the one-step consistency assumption that |xi+1 − g∆(xi, ui)| ≤ ∆C(∆) and |ξ ′ − qi+1| ≤ |xi+1 − g∆(xi, ui)|+

|xi+1 − qi+1| ≤ ∆C(∆) + η ≤ γ2.

To prove (2): We can prove x � ϕ following the proof of Theorem 4.1.

15

6. Example

We consider a simple adaptive cruise control example adapted from [26]. The longitudinal dynamics is

given by

v̇ = u− c0 − c1v2

ḣ = vL − v
(6.1)

where v ∈ [vmin, vmax] is the velocity of the controlled car, u ∈ [−3a, 2a] is the scaled input acceleration, ci

for i = 1, 2 are proper constants to account for rolling resistance, air drag and headwind, which are chosen

as c0 = 0.1, c1 = 0.00016, a = 1, h is the headway (i.e., distance to a lead car) and vL is the velocity of the

lead car, which is taken to be 12m/s. The set X of states is set to be X = {(v, h) | 0 ≤ v ≤ 35, 0 ≤ h ≤ 300}.

We consider a specification of the form

ϕ ≡ �(h/v ≥ 1) ∧♦�((v ≤ 35) ∧ (h/v ≥ 1.2)),

which enforces a safe time-headway (h/v) of 1s and requires eventually reaching and staying within a

desired time-headway h/v ≥ 1.2s and below a desired speed limit v ≤ 35m/s. The states of the abstraction

are obtained by discretizing the set X with a grid size of 0.5 in v direction and 5 in h direction (i.e., η =

(0.5, 5)); and by discretizing the time with τ = 0.5s. The other parameters (γ1, γ2, δ) of the abstraction are

varied according to the type and level of the uncertainty. These parameters lead to an abstraction with 4332

discrete states (including a state to account for the trajectories leaving the domain X). The computation

of an abstraction for this problem with the above mentioned parameters takes about 6 minutes, whereas

discrete synthesis takes about 65 seconds on a Macbook Pro with 3GHz Intel Core i7 and 8GB RAM. The

computation times are relatively constant with respect to the parameters other than η, which affects the

number of discrete states.

To demonstrate the results in Section 4, we assume that the measurements of v and h involve a bounded

error in the range [−ε, ε] or arrive at the controller with some uncertain delay less than r. We compute all

initial conditions in the set X from which it is possible to satisfy the specification for error levels from ε = 0

to ε = 0.2, with increments of 0.04. Similarly, we compute all initial conditions from which it is possible to

satisfy the specification for delay levels r = 0 to r = 0.15, with increments of 0.03. Figure 4 shows some

robustness-performance trade-offs. Figure 5 shows a simulation of the system with a controller synthesized

using an abstraction that is robust to measurement delays up to r = 0.12. This amount of delay corresponds

to up to 24% jitter. For a delay level of r ≥ 0.2 or a measurement error level of ε ≥ 0.25, the discrete synthesis

problem becomes unrealizable.

As a comparison, we tried to solve the same problem using the approach in [20], where only scalar

abstraction parameters were considered. A grid size of 1.5570 in both v and h directions (i.e., η = 0.7785)

leads to an abstraction with 4440 discrete states; roughly the same number of states as before. For this

abstraction, even in the nominal case with no uncertainty, the problem was unrealizable. We also tried a grid

size of 1 in both v and h directions (i.e., η = 0.5) leading to an abstraction with 11175 discrete states, however

the problem was still unrealizable. These results demonstrate the reduction in conservatism compared to

our earlier work in [20] by allowing vector-valued parameters along different continuous state variables.

7. Related work

There are two common ways to construct finite abstractions. One is to partition the state space into a

finite number of “proposition-preserving” regions (see, e.g., [27, 40]). This approach has the advantage of

resulting in a small number of abstract states (given by elements in the partition) and also do not require any

stability assumptions on the system dynamics. However, the fact that the computation of transitions in this

type of abstraction relies heavily on the geometry of the vector fields with respect to the partition makes it

16

 5 10 15 20 25 30 35

300

250

200

150

100

50

0

6

5

4

3

2

1

0

v [m/sec]

h
 [

m
]

 5 10 15 20 25 30 35

300

250

200

150

100

50

0

6

5

4

3

2

1

0

v [m/sec]

h
 [

m
]

Figure 4: Robustness-performace trade-offs. Abstractions that are robust against sensing delays (left) or measurement

errors (right) are computed for six different delay/error levels. The color scale indicates the number of delay/error

levels for which it is possible to satisfy the specification from a given initial condition. As can be seen from the plots,

as the measurement uncertainty or sensing delay increases, a larger distance h to the lead car is required at initial

conditions with high speeds to be able to safely slow down.

0 20 40 60 80 100 120 140
10

15

20

25

30

v
 [

m
/s

ec
]

0 20 40 60 80 100 120 140
4

2

0

2

time [sec]

u

Figure 5: Simulation of the closed-loop system with the synthesized controller, where the initial conditions were h = 200

m and v = 28 m/sec and the maximum measurement delay was set to be 0.12 s. The simulation was run for 250 control

cycles. The upper plot shows the velocity and the lower plot shows the input. Note that due to time-varying delays,

the control input is not updated periodically.

difficult to incorporate robustness margins, especially those to deal with imperfect state information except

for some special cases [24].

17

Another approach is to discretize the state space. This has been extensively used for constructing ap-

proximate symbolic models for control systems (see, e.g., [25, 29, 30, 33, 43]) based on the notion of ap-

proximate (bi)simulation [13]. In these approaches, a finite transition system model is constructed by dis-

cretizing the time, the input space, and the continuous state space. Under certain incremental stability

assumptions, the resulting finite system can be shown to be approximately bisimilar to the time-discretized

model of a continuous-time control system. The stability assumption can be relaxed [43] if one is interested

in constructing simulations instead of bisimulations. The advantage of this approach is that it provides

a quantitative measure of the fidelity of abstractions using metric transition systems. However in above

mentioned papers, the approximation is between the finite abstraction and the time-discretized model of a

continuous-time control system and it is unclear how to handle imperfect state information. In this paper

we considered a discretization-based approach and addressed these shortcomings. In particular, we intro-

duced abstractions with robustness margins to rigorously reason about the inter-sample behaviors and to

account for imperfections in measurements and models.

The type of robustness considered in this paper is related to but distinct from that of [38] and [23].

The focus of [38] and [23] is on the design of discrete controllers for finite transition systems (namely, dis-

crete synthesis) against unmodeled disturbances or transitions, whereas the current paper aims to establish

robustness of discrete controllers against imperfect measurements and unmodeled dynamics in the contin-

uous plants. A different quantitative robustness notion for finite transition systems similar to input-output

gain has been proposed in [35]. Abstractions that preserve such input-output dynamical stability like ro-

bustness notions have recently been introduced in [32, 36]. Our work is complementary to these results

as we consider how to preserve satisfaction of temporal logic specifications instead of quantitative input-

output gains.

One particular application of our results is the design of delay-robust control protocols from temporal

logic specifications (Theorem 4.2). Networked control systems are often considered as a prominent example

of control systems where delays are inevitable. The papers [6] and [42] constructed symbolic models to

design symbolic controllers for networked control systems. The main difference of our approach lies in

that we design robust controllers based on abstractions of a nominal model with additional robustness

margins, whereas [6] and [42] constructed symbolic models taking into account specific non-idealities of

a networked control system. As a result, the abstractions in [6] and [42] have significantly more discrete

states but less conservative, whereas we use more discrete transitions to cope with bounded but possibly

unknown delays.

Our work is also related to control of hybrid systems with imperfect state information. The work[19]

considered stability of switched systems with limited information under slow switching. Limited informa-

tion refers to the situation where the state measurements are taken only at sampling times and quantized

using a finite alphabet. This is exactly how the hybrid controller is implemented in this paper: it takes mea-

surements at sampling times, maps it to discrete states in the finite abstractions, and looks for appropriate

control actions, based on an automaton that represents a discrete control strategy.

8. Conclusions

In this paper we presented a notion of abstractions with robustness margins and showed that, based on

these abstractions, it is possible to synthesize provably-correct robust feedback controllers. This allows us to

handle various types of imperfections in the models or measurements and to reason about implementation

artifacts in a unified fashion. The main insight is to propagate the uncertainty to the discrete level so that

the obtained discrete model provides a sound abstraction for a family of uncertain models of a nominal

system. Therefore a control strategy for the abstraction can be implemented at the continuous level with

correctness guarantees for any member of this family. The idea can be naturally generalized to multi-scale

18

abstractions, where the abstract states are non-uniformly distributed around the continuous state space.

Future work will include investigating such abstractions and combining them with automated refinement

procedures to mitigate potential state explosion problem.

References

[1] Alur, R., Henzinger, T. A., Kupferman, O., Vardi, M. Y., 1998. Alternating refinement relations. In: Proc.

of CONCUR. pp. 163–178.

[2] Angeli, D., 2002. A Lyapunov approach to incremental stability properties. IEEE Trans. on Automatic

Control 47 (3), 410–421.

[3] Angeli, D., Sontag, E. D., 1999. Forward completeness, unboundedness observability, and their lya-

punov characterizations. Systems & Control Letters 38 (4), 209–217.

[4] Baier, C., Katoen, J.-P., 2008. Principles of Model Checking. MIT Press.

[5] Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y., 2012. Synthesis of reactive (1) designs. J.

Comput. System Sci. 78, 911–938.

[6] Borri, A., Pola, G., Di Benedetto, M. D., 2012. A symbolic approach to the design of nonlinear net-

worked control systems. In: Proc. of HSCC. pp. 255–264.

[7] Cervin, A., Lincoln, B., Eker, J., Arzén, K.-E., Buttazzo, G., 2004. The jitter margin and its application

in the design of real-time control systems. In: Proceedings of the 10th International Conference on

Real-Time and Embedded Computing Systems and Applications. Gothenburg, Sweden, pp. 1–9.

[8] Clarke, E. M., Grumberg, O., Peled, D., 1999. Model Checking. MIT press.

[9] Ehlers, R., 2011. Generalized rabin (1) synthesis with applications to robust system synthesis. In:

NASA Formal Methods. Springer, pp. 101–115.

[10] Fainekos, G. E., Girard, A., Kress-Gazit, H., Pappas, G. J., 2009. Temporal logic motion planning for

dynamic robots. Automatica 45, 343–352.

[11] Fainekos, G. E., Pappas, G. J., 2009. Robustness of temporal logic specifications for continuous-time

signals. Theoretical Computer Science 410 (42), 4262–4291.

[12] Franklin, G. F., Workman, M. L., Powell, D., 1997. Digital Control of Dynamic Systems. Addison-

Wesley Longman Publishing Co., Inc.

[13] Girard, A., Pappas, G., 2007. Approximation metrics for discrete and continuous systems. IEEE Trans.

on Automatic Control 52, 782–798.

[14] Hale, J. K., 1993. Introduction to Functional Differential Equations. Vol. 99. Springer.

[15] Karaman, S., Frazzoli, E., 2012. Sampling-based algorithms for optimal motion planning with deter-

ministic µ-calculus specifications. In: Proc. of ACC. pp. 735–742.

[16] Kloetzer, M., Belta, C., 2008. A fully automated framework for control of linear systems from temporal

logic specifications. IEEE Trans. Automatic Control 53, 287–297.

[17] Kress-Gazit, H., Fainekos, G. E., Pappas, G. J., 2009. Temporal-logic-based reactive mission and motion

planning. IEEE Trans. Robotics 25, 1370–1381.

19

[18] Li, Y., Liu, J., Ozay, N., 2015. Computing finite abstractions with robustness margins via local reachable

set over-approximation. In: IFAC Conference on Analysis and Design of Hybrid Systems (ADHS), to

appear.

[19] Liberzon, D., 2013. Limited-information control of hybrid systems via reachable set propagation. In:

Proc. of HSCC. pp. 11–20.

[20] Liu, J., Ozay, N., 2014. Abstraction, discretization, and robustness in temporal logic control of dynam-

ical systems. In: Proc. of HSCC. pp. 293–302.

[21] Liu, J., Ozay, N., Topcu, U., Murray, R., 2013. Synthesis of reactive switching protocols from temporal

logic specifications. IEEE Trans. on Automatic Control 58 (7), 1771–1785.

[22] Liu, J., Topcu, U., Ozay, N., Murray, R. M., 2012. Reactive controllers for differentially flat systems with

temporal logic constraints. In: Proc. of CDC. pp. 7664–7670.

[23] Majumdar, R., Render, E., Tabuada, P., 2011. Robust discrete synthesis against unspecified distur-

bances. In: Proc. of HSCC. pp. 211–220.

[24] Mickelin, O., Ozay, N., Murray, R. M., 2014. Synthesis of correct-by-construction control protocols for

hybrid systems using partial state information. In: Proc. of ACC. pp. 2305–2311.

[25] Mouelhi, S., Girard, A., Gössler, G., 2013. Cosyma: a tool for controller synthesis using multi-scale

abstractions. In: Proc. of HSCC. pp. 83–88.

[26] Nilsson, P., Hussien, O., Chen, Y., Balkan, A., Rungger, M., Ames, A., Grizzle, J., Ozay, N., Peng,

H., Tabuada, P., 2014. Preliminary results on correct-by-construction control software synthesis for

adaptive cruise control. In: Proc. of CDC. pp. 816–823.

[27] Ozay, N., Liu, J., Prabhakar, P., Murray, R. M., 2013. Computing augmented finite transition systems to

synthesize switching protocols for polynomial switched systems. In: Proc. of ACC. pp. 6237–6244.

[28] Pola, G., Girard, A., Tabuada, P., 2008. Approximately bisimilar symbolic models for nonlinear control

systems. Automatica 44 (10), 2508–2516.

[29] Pola, G., Pepe, P., Di Benedetto, M. D., Tabuada, P., 2010. Symbolic models for nonlinear time-delay

systems using approximate bisimulations. Systems & Control Letters 59 (6), 365–373.

[30] Pola, G., Tabuada, P., 2009. Symbolic models for nonlinear control systems: Alternating approximate

bisimulations. SIAM J. Control Optim. 48, 719–733.

[31] Reiszig, G., 2011. Computing abstractions of nonlinear systems. IEEE Trans. Automatic Control 56,

2583–2598.

[32] Rungger, M., Tabuada, P., 2014. Abstracting and refining robustness for cyber-physical systems. In:

Proc. of HSCC. pp. 223–232.

[33] Tabuada, P., 2009. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer.

[34] Tabuada, P., Pappas, G. J., 2006. Linear time logic control of discrete-time linear systems. IEEE Trans.

Automatic Control 51, 1862–1877.

[35] Tarraf, D., Megretski, A., Dahleh, M. A., 2008. A framework for robust stability of systems over finite

alphabets. IEEE Transactions on Automatic Control 53 (5), 1133–1146.

20

[36] Tarraf, D. C., 2012. A control-oriented notion of finite state approximation. IEEE transactions on auto-

matic control 57 (12), 3197–3202.

[37] Tazaki, Y., Imura, J., 2012. Discrete abstractions of nonlinear systems based on error propagation anal-

ysis. IEEE Trans. Automatic Control 57, 550–564.

[38] Topcu, U., Ozay, N., Liu, J., Murray, R. M., 2012. On synthesizing robust discrete controllers under

modeling uncertainty. In: Proc. of HSCC. pp. 85–94.

[39] Wolff, E. M., Murray, R. M., 2013. Optimal control of nonlinear systems with temporal logic specifica-

tions. In: Proc. of ISRR.

[40] Wongpiromsarn, T., Topcu, U., Murray, R. M., 2012. Receding horizon temporal logic planning. IEEE

Trans. Automatic Control 57, 2817–2830.

[41] Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R. M., 2011. TuLiP: a software toolbox for

receding horizon temporal logic planning. In: Proc. of HSCC.

[42] Zamani, M., Mazo Jr, M., Abate, A., 2014. Finite abstractions of networked control systems. In: Proc.

of CDC. pp. 95–100.

[43] Zamani, M., Pola, G., Mazo Jr, M., Tabuada, P., 2012. Symbolic models for nonlinear control systems

without stability assumptions. IEEE Trans. Automatic Control 57, 1804–1809.

21

