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Summary 
A finite amplitude, numerical model of convective motions through a 
phase boundary is studied. The phase change is assumed to occur over 
a finite vertical transition zone in the fluid and thus a continuously strati- 
fied model is considered. The motions are driven by horizontal tempera- 
ture gradients on the boundaries or super-critical vertical stratification. 
In the case of Rayleigh instability, the numerical results reproduce the 
neutral curve previously obtained in the analytic solution of the linearized 
problem. When the parameters of the problem are chosen to simulate 
the olivine-spinel transition in the upper mantle, the following results 
are obtained: (1) the vertical scale of motion is the entire depth of the 
fluid; (2) the horizontal scale is not significantly changed from the case 
of a single phase fluid; (3) the amplitude of the motion is not significantly 
changed, due to buoyancy changes at the phase boundary being offset by 
corresponding sources and sinks of latent heat; and (4) the phase boundary 
vanes in depth by as much as 30 km when the vertical velocities are of the 
order of 10-1 cmyr-1. 

Introduction 
The concept of plate tectonics (Isacks, Oliver & Sykes 1968) implies a mass 

transport in the upper mantle which balances the mass flux of moving lithospheric 
plates. The nature of this return flow is not determined by surface geophysical obser- 
vations and present understanding relies on fluid dynamic models. In order to formu- 
late realistic models it is important to identify those properties of the upper mantle 
which have significant effect on mass transports within it. This study isolates a single 
property, mineralogical phase changes, and investigates their effect on the dynamics 
of finite-amplitude motions. 

The importance of mineralogical phase changes was recognized by Birch (1952) 
and recent work (Anderson 1970) relates seismic ‘ discontinuities ’ to specific phase 
transitions in the upper mantle. In a dynamic sense, these phase changes will act as 
local sources of buoyancy and heat and thus influence motions which penetrate the 
boundary between phases. The mathematical study of the dynamic role of a uni- 
variant phase transition was begun by Busse & Schubert (1971) by considering a 
linearized model problem which determines the stability of a stratified two-phase 
system. The results of the linear problem were applied to the mantle by Schubert & 
Turcotte (1971), who also discuss prior thinking regarding the role of phase changes. 

The principal result of the linear theory is summarized by the stability diagram for 
Rayleigh-Benard convection through a phase boundary shown in Fig. 1 taken from 
the article by Schubert & Turcotte (1971). The family of curves map the critical 
Rayleigh number, above which the two-phase system is unstable, as a function of the 
properties of the phase change. The non-dimensional parameters are defined : 
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FIG. 1. Stability fields for Rayleigh-Benard convection through a phase boundary 
after Schubert & Turcotte (1971). 

Rayleigh number based on vertical temperature scale AT; 

Rayleigh number based on energy released by material changing phase; 

s -  ~~~ 2AP - 
PaD(Pg/Y--13)’ 

a measure of the density change across the phase boundary; 

where g is the acceleration of gravity, a the coefficient of thermal expansion, K the 
thermometric conductivity, v the kinematic viscosity, p the density, D the total depth 
of the two-phase system, qL the energy released per unit mass of material changing 
phase, ,3 the vertical temperature gradient in the undisturbed state, C, the specific 
heat at constant pressure, and y is the slope of the Clapeyron curve. The Clapeyron 
curve describes the locus of pressure-temperature points at which phase transition 
occurs in a univariant system in thermodynamic equilibrium. The slope y is related to 
other parameters of the problem by: 

The effect of a given phase change on the stability of the entire system is deter- 
mined by comparing the critical Rayleigh number for the two-phase system to the 
point S = 0, RQ = 0, which is the critical Rayleigh number for the equivalent single- 
phase system (&). The phase boundary will appear a barrier to convection only if 
the critical Rayleigh number for the two-phase system is greater than the Rayleigh 
number required for either phase to convect separately. It must be recognized that 
the Rayleigh number (based on D )  for a phase of depth extent d (d < D) to convect 
must be greater than (D/d )4  Rc. 

The linear theory, by assumption, is valid only for infinitesimal amplitudes. A 
logical extension is to consider the non-linear problem and thus extend the validity 
of the analysis into the finite amplitude regime. The non-linear theory presented in 
this study will determine the effect of a univariant phase change on the amplitude of 
motions through the phase boundary and the effect of a finite amplitude motion field 
on the local depth to the phase boundary. 

Model and governing equations 
I will consider the idealized fluid dynamic problem of motions through a uni- 

variant phase change in a horizontal layer of very viscous fluid. The fluid motions 
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Finite amplitude convection 267 

can be forced by an imposed horizontal temperature variation ~ ( x )  or result from a 
supercritical vertical temperature gradient controlled by AT. The two-dimensional 
model is shown in Fig. 2. Each phase is assumed Newtonian, Boussinesq, non- 
rotating, incompressible and non-dissipative. The coefficient of expansion a, the 
kinematic viscosity v, and the thermometric diffusivity K are assumed uniform 
throughout the entire system. 

- -  .....- 
T = T,+ A T w = O  wxz=o 

FIG. 2. Model for convection in a two-phase fluid. 

The temperature is non-dimensionalized using the temperature scale AT. 

0 = (T-To)/AT 
The density is then written: 

where 
p = p l ( 1  -aAT0+ApI') 

AP = ( P 2 - P l ) I P l .  

The subscripts refer to the phase and I?, a function of x and z, is the fractional con- 
centration of phase 2. The equation of state (2) is valid throughout the entire fluid 
and includes the effects of thermal expansion and phase change but ignores the effect 
of pressure on the density. The neglect of any direct pressure dependence is consistent 
with the assumptions and further can be shown to have no significant dynamic 
consequence. 

If a < 1 and Ap < 1, the Boussinesq approximation (see, Spiegel & Veronis 1960) 
allows density variations to be ignored in all terms of the momentum equation except 
where multiplied by gravity (buoyancy terms). Under this approximation the dimen- 
sionless momentum equation is: 

where distances are non-dimensionalized using the total depth D, the velocity vector; 
using KID, time using D2/K, and pressure using pK2/D2. The operators are: 

DlDt = alat+;.v 
v = s alax+ft a/az  

v2 = a 2 / a x 2  + a 2 / a z 2  

1̂  and ft are unit vectors in x and z respectively. 

as V x if) by taking V x the momentum equation 

where 

Equation (4) is transformed into an equation governing the vorticity 7 (defined 

a,lat = J(+, 7) - u ~ a  aelax + u ~ p  arlax + uv2rl ( 5 )  

R, = gaATD3, RP = gApD3,  u = v/K, 
Kv Kv 
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268 F. M. Richter 

y5 is the stream function and J (  , ) is the Jacobian operator a( , ) /a(x,  z). In the 
limit of large Prandtl number u, equation (5 )  can be approximated by: 

The neglected terms are order l/u which is approximately 10-24 in the mantle. 
~2~ = Ra ae/ax-R, ariax. (6) 

The stream function is related to the vorticity by: 

v2* = 7. (7) 

= a+/az, = -a+/ax. (8) 

The velocity field can be obtained from the stream function by the relations: 

In steady state the streamlines map the trajectories of fluid parcels. 
The temperature equation appropriate to a two-phase system must take into 

account the energy absorbed or released by material changing phase. The rate of 
energy exchange is written: 

QL = pqL Dr/Dt (calcm-3s-1) (9) 
where q L  is the energy released per unit mass of material changing from phase 1 to 
phase 2. Including QL as a heat source (or sink) the temperature equation is: 

DT/Dt = KV2T+ Q~lpCp (10) 
Non-dimensionalizing as in the momentum equation (4), equation (10) can be written 
in terms of the stream function and the definition of QL. 

aep t  = J [ + ,  O-(RQ/Ra) ~ ] + ( R Q / & )  a r / a t + w  (1 1) 
where 

Up to this point we have three equations, (6), (7) and (11) for four unknowns, 
r ] ,  0, + and r. The final relation required to close the system is provided by the 
Clapeyron relation which specifies the phase boundary in pressure-temperature 
co-ordinates. If the dimensional temperature field T(x, z) is known, a function 
ZO(X) can be found such that T[x,Zo(x)] is always on the Clapeyron curve. Zo(x) 
is interpreted to represent the depth to the phase boundary as defined by the surface 
r = 0.5 (50 per cent concentration of each phase). The vertical structure of I' is 
formally arbitrary but is specified so as to provide a transition region of finite thick- 
ness. The exact vertical structure of r is not very important to the problem at hand, 
which can be seen by considering equation (6). The term RP X'/ax is a source term 
in a Poisson equation and thus one expects that as long as the transition region is 
small compared to the total depth of the fluid, the total change in I' is the important 
quantity rather than the details of its vertical structure. 

The boundary conditions are shown in Fig. 2. The temperature boundary condi- 
tion contains a horizontal variation T(X) and a vertical temperature change AT. The 
dynamic boundary conditions are no vertical velocity at horizontal boundaries (w = 0) 
and no stress (u, = 0 or w,, = 0). The no stress boundary condition replaces the no 
slip condition (u = 0) in order that results may be compared to the analytic results 
of the prior linear theory. 

The governing equations are solved numerically. The temperature equation is 
written in finite difference form using the scheme proposed by Dufort & Frankel 
(1953). The finite difference analogue to equation (11) is: 
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Finite amplitude convection 269 

where N measures the time step, i and j are the x and z grid points respectively, and 
JA(~,  /3) is the Jacobian operator using the Arakawa formulation (Arakawa 1966) which 
conserves a, a2, /3 and 82. 

In order to find @+I we need P. The phase boundary is assumed to be the 
r = 0.5 surface. The depth to the phase boundary, Zot" is found by determining the 
intersection at each i of the temperature-depth profile [@(j)] with the Clapeyron 
curve written in temperature-depth co-ordinates. The intersection can be found by 
any standard technique. Having found Zap, rt,p is written: 

rt,p = 3(1+ tanh ([ZOP - j (Az) ]  L)). (13) 
The vertical structure of I' is assumed to be a hyperbolic tangent centred at Zor and 
varying on a length scale L. If L < D the arbitrariness of the choice of r's vertical 
structure will not affect the solutions 6' and r ] .  Having l?t,p, 6't ,p+1 is found from 
equation (12). 

In solving equation (12), the advective stability criterion requires that the time step 
AT be limited such that 

(Urn At)/S < 1 

where Urn is the maximum velocity and S is the grid spacing. Even though the Dufort- 
Frankel scheme does not require it, it was found best to also satisfy a diffusive stability 
condition 

At < S2. 

Once the temperature field is updated, l? is updated and the ' source ' terms in 
the vorticity equation (6) determined. The no-stress boundary condition (wtZ  = 0) 
is equivalent to zero vorticity on the boundaries. Equation (6) is a Poisson equation 
which is solved very efficiently using the non-iterative scheme developed by Buneman 
(1969). Having the updated vorticity field, the stream function is found by solving 
(7) using the same method. The boundary conditions in terms of the stream function 
are that it be zero on horizontal boundaries. 

The numerical calculation is performed over a finite domain and thus boundary 
conditions must be specitied on two vertical boundaries. I impose the condition 
that all fields be periodic about the two ends of the fluid layer. This condition simu- 
lates an annulus in which sphericity has been ignored. 

Solutions 

Two classes of flows were considered : (1) horizontal convection driven primarily 
by temperature variations on the boundaries, and (2) Rayleigh-Benard convection. 
Horizontal convection is the more useful of the two in estimating the effect of the 
phase change on the structure of the resulting flow. Horizontal convection has more 
freedom in its horizontal structure than Rayleigh-Benard convection which is limited 
to a discrete wavenumber spectrum by the finite horizontal dimension of the domain 
of calculation. The Rayleigh-Benard model on the other hand has the important 
advantage that it will provide an estimate of numerical accuracy when compared to 
analytical results. 

Horizontal convection 
Fig. 3 is typical of horizontal convection through a phase boundary. The non- 

dimensional temperature and stream function fields are shown as well as the dimen- 
sional change in elevation of the I? = 0.5 surface (when the depth is dimensionalized 
using D = 1OOOkm). The temperature boundary conditions are 6' = 1 at z = 0 
and 8 ranging from 0 to 0-2 at z = 1 as indicated by the intersection of the isotherms 
with the boundary. The dynamic boundary conditions are 4 = 0 and r] = 0 (' free ') 
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at z = 0 and z = 1. Periodic boundary conditions are imposed at x = 0 and x = 25 
which are satisfied by considering the temperature to be symmetric and the stream 
function antisymmetric around x = 12-5. The concentration function F(x, z) is such 
that the transition from one phase to another occurs over a depth of 0.1 D. The 
constant TO is also specified because together with AT it determines the mean depth 
of the phase boundary. In the case shown in Fig. 3, TO is 1200°C and the remaining 

Temperature Stream function 

0.6 81; 

0.4  

0.3 

0 . 2  
0.1 
0.0 

? ? ? ? ? l ? ? U  
O O - - N N ~ C  

parameters RB, R, and RQ have values of 100, 1600 and 24, respectively. The slope 
of the Clapeyron curve (y = q~plp2JApT) is determined once RQ and R, are specified. 
A slope of 6°C km-1 is consistent with the above values of RQ and R,. This slope, 
which is considered constant, is approximately the estimated value for the Forsterite- 
Spinel transition (Anderson 1970). 

In order to get an idea of the effect of the phase change in this parameter range, 
we can compare Fig. 3 to Fig. 4 which is the same calculation with RP and RQ set to 
zero. The phase change increases the amplitude by a factor of three but the structure 
of the solution is unchanged. The increased amplitude when the phase change is 
present is not surprising. The family of neutral curves in Fig. 1 suggest that the case 
RQ = 24, R, = 1600 (S = 2) is more unstable than RQ = 0, R, = 0. The depth to 
the phase boundary as measured by the I' = 0.5 surface is greater in warmer regions 
of the fluid which one would expect for all cases with positive Clapeyron slope. 

Depth of phase change 

FIG. 3. Non-dimensional temperature and stream function, and dimensional 
depth to phase boundary when Rs = 100, RP = 1600, RQ = 24, AT = 500"C, 
TO = 1200°C and D = lo00 km. Stream function contours from 0 to 0.24, 

temperature contours from 0 to 1.0. 
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Non-dimensional temperature at Z= 1 
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FIG. 4. Same case as Fig. 3 except that phase change is suppressed by setting 
RP = 0, RQ = 0. Stream function contours from 0 to 0.072, temperature contours 

from 0 to 1.0. 

Rayleigh-Benard convection 
Two groups of numerical experiments were considered. The first group was 

designed to determine the critical Rayleigh number for Rayleigh-Benard convection 
through a phase boundary. The numerically determined critical Rayleigh number 
can then be compared to the appropriate point on the family of neutral curves in 
Fig. 1. The second group of experiments explore the finite amplitude regime. 

The critical Rayleigh number for the two-phase system was estimated by varying 
the Rayleigh number until two values sufficiently close together were found such that 
perturbations grew for one value and decayed for the other. The growth or decay 
of the perturbations was determined by observing the temperature and vorticity field 
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272 F. M. Richter 

over long periods of time. Such a method of estimating the critical Rayleigh number 
is very costly in terms of computer time due to the small growth or decay rates near the 
neutral curve. For this reason, only three cases were considered: 

(1) RQ = 0, S = 2, 
(2) RQ = 240, S = 0, 
(3) RQ = 100, S = 2. 

In all three cases, the phase change occurs at a mean depth of D/2 (specified by To) 
and the boundaries are ' free ' in order that the numerical model reproduce the same 
problem considered in the linear theory. 

1600 1 
'/ 

I 

-A- R, for S=P, 
IN 

I I 
0 6  8 80 800 

RQ 

FIG. 5. Numerically determined critical Rayleigh numbers and analytical neutral 
CUNes. 

The numerical critical Rayleigh numbers can be compared to their analytically 
predicted value by plotting them on a graph of the relevant analytical neutral curves 
as shown in Fig. 5. The dashed curve shows the critical Rayleigh number versus RQ 
for constant Clapeyron slope of 6°C km-1. The excellent agreement between the 
numerical results and the linear theory can be taken as a measure of the accuracy 
of the numerical techniques used. The choice of a finite phase transition zone of 
thickness O-lD, instead of a discontinuity as assumed in the linear theory, has no 
observable effect on the stability of the fluid. 

We now consider the finite amplitude regime. Fig. 6 shows a typical case of steady 
Rayleigh-Benard convection through a phase boundary. The boundary conditions 
are : 

e = o ,  7 7 = + o ,  z = i ,  

e = i ,  . I=+=o, z = o .  
Periodic boundary conditions are imposed at x = 0 and x = 25, which are 

satisfied if the temperature field is symmetric and the stream function antisymmetric 
about x = 12.5. The non-dimensional parameters are: Ra = 500, RP = SOOO, and 
RQ = 120, and this choice implies a Clapeyron slope of 6 "C km-1. These parameters 
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Finite amplitude convection 273 
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FIG. 6. Steady Rayleigh-Benard convection through a phase boundary having the 
properties of the Olivinc4pinel transition. RS = 500, Rp = 8000, RQ = 120, 
AT = 500"C, TO = 1200°C. and D = lo00 km. Non-dimensional stream 
function contours from -2.2 to 2-2, non-dimensional temperature contours from 

0 to 1.0. 

__-___  

will result from a vertical temperature change of 5OO0C, Ap = 0.08 and q L  = 40 c a l g l  
when garD3/Kv is one. These values for Ap and q L  are those considered by Schubert & 
Turcotte (1971) to be typical of the Olivine-Spinel transition in the upper mantle. 
The effect of the phase change is clearly destabilizing since Ra = 500 is subcritical in 
the absence of a phase change. The phase boundary (I' = 0.5 surface) has periodic 
changes in elevation which result from the horizontal variations of the temperature 
field. The phase boundary is at shallower depth in regions of downwelling since the 
downwelling promotes locally cooler temperatures. 

It is interesting to compare the amplitude of Rayleigh-Benard convection through 
a phase boundary to the amplitude of single-phase convection. Fig. 7 shows the steady 
state amplitude of both cases as a function of the Rayleigh number. The parameter 
range was chosen to include a phase change having the properties of the Olivine- 
Spinel transition in the upper mantle. The effect of the phase change is to increase the 
amplitude of Rayleigh-Benard convection for all values of Ra. 

The amplitude of steady Rayleigh-Benard convection in a single-phase system 
can be wiitten in terms of the Rayleigh number as: 

R ~ -  R, lI3 
A = c1(+ 

where 
Rc = critical Rayleigh number = 6573 

C1 = constant = 10.88. 
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274 F. M. Richter 

The amplitude data for convection through a phase boundary can be fitted by a 
similar relation if C1 = 23 and Rc = 450. This suggests that for Rayleigh numbers 
greater than 1000 the effect of the phase change will be to increase the amplitude by 
a factor of approximately two. 

Fig. 7 also shows the effect of finite amplitude convection on the elevation of the 
phase boundary for the same three cases shown in the upper graph. By using the 
graphs, vertical velocities can be related to changes in phase boundary elevation. If 
the velocity is dimensionalized using D = 1000 km and K = 10-2cm2s-1, then a 
vertical velocity of 0.1 c m y r l  results in approximately a 15-km change in the phase 
boundary elevation from its mean value (peak to peak change of 30 km). 

1000 

a 
iT 

500 

- 

- x  

- 

- 

I I I 

0 5 10 15 20 25 
Change in elevotion of phase boundary from mean volue 

0 3 . 0 2 4  RA ' E . 6 . 6 7  RP X RQ=O, RP=O 

FIG. 7. Effect of phase change on the amplitude of Rayleigh-Benard convection 
and change in phase boundary depth due to convection. Depth dimensionalized 

using D = loo0 km. 

Up to this point, we have restricted our attention to phase changes with positive 
Clapeyron slopes. Ahrens & Syono (1967) suggest that the transformation of 
MgzSi04 in the spinel structure to periclase and Si02 in the stishovite structure, which 
occurs at an average depth of 800 km, has a negative Clapeyron slope. A numerical 
calculation was performed using their parameters for this reaction in the hope that a 
phase change with negative slope would prove a barrier to vertical motions and thus 
provide a determinable lower boundary to the asthenosphere. The calculations 
showed that a phase change having the properties of the Spinel-Stishovite transition 
is mildly stabilizing (compared to no phase change) but it is not a barrier to vertical 
motions. The principal effect of the negative slope of the Clapeyron curve is that 
now the phase boundary is at shallower depth in regions of upwelling. 
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Finite amplitude convection 275 

It is at first surprising to find that changing the slope of the Clapeyron curve from 
positive to negative has so little effect on flows through the phase boundary. This 
lack of dramatic effect can best be understood by considering the equations governing 
the system. The vorticity equation is: 

V2q = Ra aT/ax- RP al?/ax. 
If the Clapeyron curve has positive slope, then aT/ax and al?/ax have everywhere 
opposite sign as can be seen in Fig. 6. Therefore, both these sources generate vorticity 
of the same sign. This implies that the term Rp aI'/ax is destabilizing. On the other 
hand, cellular motions will cause heat to be released in regions of downwelling and 
absorbed in regions of upwelling. This has the effect of decreasing horizontal tempera- 
ture gradients and thus degrades a source of vorticity. If the Clapeyron curve has 
negative slope, a similar line of reasoning leads one to conclude that the term RP ar/ax 
is now a sink for vorticity generated by aT/ax, while the energy of phase change 
enhances the source aT/ax. The difference between the positive and negative Clapeyron 
slope cases is that the role of the two opposing dynamical properties of the phase 
change are reversed. 

Conclusions 

One of the motivating factors in seeking to understand the dynamic role of 
mineralogical phase changes was to determine if their effect was sufficiently great to 
warrant their inclusion in present dynamic models of the upper mantle. The principal 
dynamic effects found were : 

(1) Phase changes may change the critical Rayleigh number for the onset of 
Rayleigh-Benard convection (already known from prior linear theory). 

(2) Phase changes may change the steady amplitude of motions through a phase 
boundary by a numerical factor. 

(3) The structure of the motion field is not significantly changed by the presence 
of the phase change. 

In estimating the importance of these effects one must keep in mind the un- 
certainties which exist regarding other dynamically important quantities in the upper 
mantle. For example, the dynamically significant quantity for Rayleigh-Benard 
convection is the difference between the actual and the critical Rayleigh number. 
If the actual Rayleigh number is not known to within an order of magnitude, then the 
neglect of the shift in critical Rayleigh number due to phase changes is of little 
importance. A similar argument can be made in connection with forced flows by 
comparing the change in amplitude due to phase changes to present uncertainty 
of the magnitude of the forcing and other mantle parameters which affect the ampli- 
tude. It appears that phase changes provide a correction term to the system's ampli- 
tude which is small compared to present capability to predict that amplitude. 

In hindsight, the more important consideration is the effect of the motion field on 
the depth to the phase boundary. Since there is little hope of directly measuring 
velocities in the upper mantle, it is important to establish the relationship between 
mass transport and some measurable property of the mantle. If changes in phase 
boundary elevation of the order of tens of kilometres are measurable by geophysical 
observations, then the techniques used in this study provide an indirect method of 
estimating the velocity field in the upper mantle. 

Acknowledgments 

This work was supported under NSF grants GA-11951 and GA-28427 while the 
author was at the University of Chicago. Acknowledgment is made to the National 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/35/1-3/265/615452 by U

.S. D
epartm

ent of Justice user on 17 August 2022



276 F. M. Richter 

Center for Atmospheric Research, which is sponsored by the National Science 
Foundation, for computer time used in this research. 

Department of Earth and Planetary Science, 
Massachusetts Institute of Technology, 

Cambridge, Massachusetts 021 39 

References 
Ahrens, T. J. & Syono, Y., 1967. Calculated mineral reactions in the Earth's mantle, 

J. geophys. Res., 72,4181. 
Anderson, D. L., 1970. Petrology of the mantle, Mineral. SOC. Amer. Spec. Pap., 3, 

85. 
Arakawa, A., 1966. Computational design of long-term numerical integration of 

equations of fluid motions : two-dimensional incompressible flow, part 1, J. 
Computational Physics, 1, 119. 

Birch, F., 1952. Elasticity and constitution of the Earth's interior, J. geophys. Res., 
57, 227. 

Buneman, O., 1969. A Compact Non-Iterative Poisson Solver, SUIPR Report, 
Institute for Plasma Research, Stanford University, Stanford, California. 

Busse, F. H. & Schubert, G., 1971. Convection in a fluid with two phases, J. fluid 
Mech., 46, 801. 

Dufort, E. C. & Frankel, S. P., 1953. Stability conditions in the numerical treatment 
of parabolic differential equations, Mathematical Tables and Other Aids to 
Computation, 7, 135. 

Isacks, B., Oliver, J. & Sykes, L., 1968. Seismology and the new global tectonics, 
J. geophys. Res., 73, 5855. 

Schubert, G. & Turcotte, D. L., 1971. Phase changes and mantle convection, J. 
geophys. Res., 76, 1424. 

Spiegel, E. A. & Veronis, G., 1960. On the Boussinesq approximation for a com- 
pressible fluid, Astrophys. J., 131,443. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/35/1-3/265/615452 by U

.S. D
epartm

ent of Justice user on 17 August 2022


