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ABSTRACT

An exact theory regarding solitary internal gravity waves in stratified
fluids is presented. Two-dimensional, inviscid, incompressible flows confined
between plane horizontal rigid boundaries are considered. Variational
techniques are used to demonstrate that the Euler equations possess solutions
that represent progressing waves of permanent form. These are analogous to
the surface, solitary waves so easily generated in a flume. Periodic wave
trains of permanent form, the analogue of the classical cnoidal waves, are
also found. Moreover, internal solitary-wave solutions are shown to arise as
the limit of cnoidal wave trains as the period length grows unboundedly.
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SIGNIFICANCE AND EXPLANATION

The notion of a solitary wave arose in the last century and provoked some

controversy as to the existence of such a phenomenon. After more than half a

century of only sporadic interest in these waves, the last twenty years have

seen an upsurgence of scientific work on the subject. The interest stems from

the realization that these special wave forms play a significant role in the

evolution of general classes of disturbances. This property of solitary waves

is observed on a particularly grand scale in the earth's oceans. There,

disturbances that appear to be internal solitary waves with crests spanning

hundreds of kilometers have been recorded. Various approximate models have U

been used to analyze these motions. Nevertheless, we are far from a complete

mathematical treatment of the phenomena just described.

In this report a model physical problem is studied in a mathematically

exact formulation. We consider two-dimensional flows confined between rigid

horizontal boundaries and show that there are solutions of the Euler equations

representing internal solitary gravity waves. Our theory, which is not

restricted to small amplitudes predicts both waves of elevation and

depression, depending on the ambient density distribution and the velocity

distribution at infinity. Just as for the classical surface solitary waves,

these waves are single-crested, symmetric, and decay exponentially away from

the crest. They thus represent disturbances of essentially finite extent.

These qualitative features are established using variational techniques

combined with the theory of rearrangements. Moreover, it is shown that the

single-crested wave arises as a limit of periodic wave trains of increasing

wave lengths.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.



FINITE-AMPLITUDE STEADY WAVES
IN STRATIFIED FLUIDS

J. L. Bona , D. K. Boset '3 and R. E. L. Turner' 1 '4

1. INTRODUCTION

The mathematical problem to be analysed in this paper arises in the study

of steady, two-dimensional wave motion in heterogeneous, inviscid,

incompressible fluids confined between two rigid horizontal planes. The

existence and various properties of finite-amplitude periodic wave trains, and

single-crested waves, of permanent form will be established. These internal

waves are analogous, respectively, to cnoidal and solitary surface waves, and

will be given these names in what follows.

The first rigorous existence theory for internal waves appears to have

been presented by Kotschin (1928). He considered a system comprised of two

homogeneous layers of fluid of differing density, the lighter resting on the

heavier, and the whole contained between two fixed horizontal plane

boundaries. Kotschin used a majorant method to obtain small-amplitude

cnoidal-wave solutions of the Euler equations posed by this two-fluid

system. The first rigorous theory to include both cnoidal and solitary

t
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internal waves was given by Ter-Krikorov (1963). He considered continuously

stratified fluids with a rigid bottom boundary and either a fixed or a free

top boundary. Ter-Krikorov relied on Yih's (1960) version of Long's (1953) S

equation and on the approximate description of the waves in question that are

valid for small amplitudes and long wavelengths. Casting the equation

satisfied by the difference between the exact and approximate solutions into

operator form, he applied the contraction-mapping theorem to this operator,

considered as a mapping of a small ball centered at the zero function in an

appropriate function space. In this manner, he was able to deal with both 0

cnoidal and solitary internal waves, but only of very small amplitude. His

work thus compares with that of Lavrentief (1943, 1947), Friedrichs and Hyers

(1954) and Littman (1957) concerning surface waves of permanent form in liquid U

of finite depth. Zeidler (1971), using complex function theory, reduced the

steady internal-wave problem in the above-described two-fluid system to a

situation in which he could demonstrate that a bifurcation at a simple S

eigenvalue occurs. The bifurcating branch thus gave small-amplitude cnoidal

waves, the general result being closely allied in spirit to that of

Kotschin. Going beyond Kotschin's theory, Zeidler was able to take account of

capillarity in his theory. Benjamin (1973) gave an exact treatment of cnoidal

internal waves whose amplitudes need not be small. He made use of positive-

operator methods, as pioneered by Krasnosel'skii, together with the Leray-

Schauder degree theory. His method did not yield a theory for solitary waves,

though some mathematical evidence for their existence was presented.

The present treatment of the problem is very much influenced by •

Banjamin's (1973) wide-ranging article, though our methods are different.

Benjamin's analysis has the speed of propagation as a fixed parameter whilst

the energy possessed by the wave is left free. This problem is covered here,

-2-
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as well as the complimentary specification in which the energy is fixed and

the speed of propagation is left free. As explained in section 7, this latter e6

case is probably more relevant to typical situations in which such waves are

generated. Our variational methods, when combined with the use of

rearrangement inequalities, are effective for a broad range of non-
S

linearities. This combination of techniques has been fruitfully used in other

hydrodynamic problems (see e.g. Friedrichs 1934; Garabedian 1965; Fraenkel and

Berger 1973) and our treatment of constrained variational problems has several

points in common with the last article cited. The use of symmetrization in

the problem of fixed speed appears to be new.

In an outgrowth of the present paper, Turner (1982) has used an alternate

variational principle to establish the existence of cnoidal and solitary waves

in a fluid with a rapidly varying heterogeneity, the two-fluid system

mentioned earlier being a special case of his theory.

The plan of the paper is as follows. Section 2 is devoted to a general

description of the mathematical problem that presents itself in considering

internal waves of permanent form. In section 3, existence of cnoidal internal

waves is established, both for the case where the speed of propagation is

given and for the situation in which the total energy is fixed. A priori

bounds satisfied by these periodic solutions are deduced in section 4. These

bounds are independent of the period length, and include a result of

exponential decay from crest to trough. In section 5 internal solitary waves

are shown to arise as the limiting forms of internal cnoidal waves as the

period length becomes indefinitely large. Also discussed is a proposition

implying the absence of closed streamlines. This technical point is important

for interpreting the solutions obtained in our analysis as realizable wave
S

motion. A broad class of concentration profiles is examined in section 6, and

-3-



shown to yield equations that fall within the confines of our theory. The

relationship of our theory to other studies is considered in section 7. Field

and laboratory evidence concerning internal waves of permanent form is briefly

reviewed. Various implications and drawbacks of the theory developed herein

are presented, along with suggestions of avenues for further investigation.
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2. THE GOVERNING EQUATIONS

To understand certain aspects of the theory to be developed presently,

the derivation and import of the equations that will hold our attention must

be kept in mind. It is therefore useful to review some points arising in the

formulation of the mathematical problem to be analysed. The description given

here follows closely Benjamin's (1973) account, but the gist of it goes back

much further (cf. Benjamin 1966, Dubreil-Jacotin 1935, Long 1963 and

especially Yih 1958, 1960).

The idealized physical situation to be modeled is a heterogeneous

incompressible fluid moving between horizontal plane boundaries. Interest

will be focused on two-dimensional flows, which will be assumed to be inviscid

and non-diffusive. These flows will be described in a two-dimensional

Cartesian coordinate frame, in which the x-axis lies along the bottom flow

boundary and height y above this boundary comprises the second coordinate.

The distance between the boundaries is taken as the unit of length, so the

lower and upper boundaries are represented by ((x,0) : x e R) and

{(x,1) : x e R), respectively.

There is postulated a primary or base flow in which the fluid motion is

everywhere horizontal with velocity U(y) at height y above the lower

boundary, 0 4 y 4 1. It is also assumed that, in the primary state, the

fluid density P is a decreasing function of y, for 0 4 y 4 1. In fact,

it will be assumed that P is a continuously differentiable function of y,

and that P'(y) < 0, for y in [0,1].

We search for waves of permanent form whose velocity of propagation

downstream (in the direction of increasing x) is c. It is convenient then

to presume that the coordinate system is also moving downstream at speed c,

thus rendering stationary the waveform in question. In the moving frame of

reference, the primary fluid velocity is W(y) U(y) - c.

-5- •



Let = (u,v) denote the velocity field of a steady flow of interest.

The flow is assumed to be incompressible and non-diffusive. The former

assumption means q is divergence free, whilst the latter amounts to the-

assertion that the derivative of the density following the flow is zero. Thus

V -B 0 and, since the flow is steady, q*Vp B 0. It follows that

V(p/2q) H 0, so there is a pseudo-stream-function * such that

1/2

y x 0 (2.1)

and it may be supposed, by way of normalization, that *(x,0) = 0. It follows

readily that P = p(*) is a function of * alone. Note that in the special 5

case of a parallel base flow = (W(y),0), the associated normalized pseudo-

stream-function is

y(y) fy pl/2(z)W(z)dz , (2.2) 0

with P being the specified function of height above the bottom boundary.

The Euler equations for steady flow are

p(2 eV)q = -Vp - gpk , (2.3)

where p is the pressure, g the gravity constant, and k the unit vector

(0,1). Keeping in mind (2.1) and the dependence of P solely on 4, and

introducing n = A4, we easily derive from (2.3) the relations, 0

I 2
fl~' = ax (p + p1212),

and (2.4)

I 2fly = 3y(p + PIqI2) + gP • S

Let H p + Pjq12  + gPy be the total head associated to our steady flow.

Now H is also a function of * alone, as follows immediately from (2.4) and

the fact that P = P(U). If H is differentiated with respect to 4 using -

the chain rule, and the result simplified by employing the relations (2.4),

* -

-6-
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there appears

-A* + H'() = gyP'(*) , (2.5)

where the I denotes differentiation with respect to P. This is Yih's

version of Long's equation (cf. Dubreil-Jacotin 1935, Long 1953 and Yih 1958).

The auxillary stipulations are the kinematical conditions,

*(x,O) = T(O) = 0 and *(x,1) = T(1) , (2.6)

for x e R, and the asymptotic conditions,

*(x,y) + f(y), as Ixi + , (2.7)

for 0 4 y 1 1. Thus * represents a flow that is connected to the primary

state at infinity, and for which P and H are constant along its pseudo-

streamlines. The situation envisaged is illustrated in figure 1.
S

in (2.5) neither P nor H is immediately known as a function of I.

Because of (2.7), they may be determined in principle from the primary flow.

For example, if U(y) S d, a constant, and c = d-c, then (2.2) yields
ry /2(z z S

fly) = c P (z)dz

Since P > 0, T is strictly increasing and so may be inverted. Let

Y = '-l. Then the density P is expressed as a function of the pseudo-

stream-function value Z by

P(Z) = P(Y(Z))

Since P is constant along pseudo-stream-lines, its value at a point

(x0,Y0 ), in the flow corresponding to *, is determined by tracing the

Audo-steamline with value *(x0 ,y0 ) to infinity, where, because of (2.7),

P is determined by the last displayed relation. Note that once P(*) is
S

known, H is determined from (2.1) and the hydrostatic pressure law dp/dy =

-gP for the primary flow.

Define the perturbed pseudo-stream-function * = *(x,y) by the formula,

f(x,y) = f(y) + j (x,y) , (2.8)

-8-



where j is a normalizing constant. The boundary-value problem expressed in

(2.5, 2.6, 2.7) reduces to the nonlinear eigenvalue problem,

-AO + h(y,f) = Xf(y,f) (2.9a)

with the supplementary conditions

(x,0) = o(x,1) = 0, for x e R ,9
and (2.9b)

*(xy) + 0, as lxi + ,

for all y in [0,1]. The eigenvalue X is proportional to gc-2 , where

c is a velocity scale for the primary flow in the travelling coordinates

introduced earlier (e.g. c = sup W(y)). Just as for P(*) and H(*),

04y1

the functions h(y,O) and f(y,O) are in general a little complicated to
S

determine from a given base state, and this aspect is ignored here. It is

dealt with in detail in section G, where a set of examples will be exhibited

and shown to fall within the class of equations to which our theory is
S

applicable.

The remainder of this section is devoted to various aspects of the

boundary-value problem (2.9) and its set of solutions. First, by the term

solitary wave we will understand a solution * of (2.9) which is even in

x, monotone for x > 0, and rapidly convergent to zero as lxi + -. The

associated pseudo-stream-function W = ' + j$ represents a steady flow, as
i

described previously, which is a single-crested wave of translation, symmetric

about its crest, and decaying rapidly to the base flow away from its crest,

thus being in essence a disturbance of finite extent. The description of such

flows as solitary waves is provisional, however. In order that such waves

fall within the presently accepted conception of solitary waves (cf. Scott

Russell 1844 and Miura 1976) their stability must be ascertained.

-9-
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Similarly, solutions * of (2.9a) which vanish at y 0 and y = 1,

and which are even periodic functions of x, say of period 2k, and which

are monotone on 10,k] will be referred to as internal cnoidal waves. The

name is chosen in analogy with the classical two-dimensional waves on the

surface of a liquid (cf. Kortweg and de Vries 1895). For it is imagined that

the flow corresponding to such a * is a periodic wavetrain, propagating 0

steadily and without change of form, and single-crested within its fundamental

period. The reader is cautioned that this interpretation cannot be strictly

justified. For, according to the derivation of Yih's equation (2.5), unless

the pseudo-streamlines connect asymptotically to those of the base flow (i.e.

f + 0 as 1xi + ), the functions p and H cannot be evaluated by passing

far upstream as suggested earlier (though we will see that for large periods,

the flow in the trough agrees essentially with the primary flow).

Consequently, whilst a periodic solution * of (2.9a) does indeed define a

solution of the Euler equations (2.3), it may not correspond to a perturbation U

of the given base flow. Its direct hydrodynamical interpretation thus becomes

clouded. A more subtle interpretation of the generation and role of such

periodic internal wavetrains has been proposed by Benjamin (1966), and this

possibility receives some attention in section 7.

The issue of whether or not the pseudo-streamlines each connect to a

definite value at infinity, as in figure 1, arises even for the solitary-wave

solutions of (2.9). For solutions of (2.9a) which satisfy the boundary

condition (2.9b) might conceivably take values strictly outside the range

[0,7(1)]. If this occurs, there would necessarily be closed streamlines in

the finite region of the flow domain, representing a motion with an eddy of

fluid not present in the base flow. Indeed, closed eddies, often called

"rotors' do appear in practice, associated with larger amplitude waves, as in

-10-



the experimental observations of Davis and Acrivos (1967). It is plausible

that the fluid encompassed within a rotor is nearly homogeneous, reflecting

the mixing that occurs in such a structure. One might therefore be tempted to

model this situation by extending the functions P and H outside the domain

[O,Y(1)] with the specification, P(x) - P(O), for * ( 0, and
e

P(x) = P(Y(1)), for T ) Y(1), and similarly for H (cf. Benjamin 1971).

In view of the serious limitations of perfect-fluid theory in describing this

sort of flow feature, some circumspection regarding such eddies zeems

warranted. Accordingly, in section 5 a theorem is proved which may be

interpreted as stating that closed eddies do not occur in a range of the flows

whose existence is established by our theory.

The final point respective of (2.9) concerns the possibility of trivial

solutions of (2.9a). The function * E 0 is a solution of (2.9) that

corresponds to the undisturbed base flow. As it happens, there is generally

another trivial solution called the conjugate flow (cf. Benjamin 1971). This

is the unique, non-zero, non-negative x-independent solution of (2.9a) that

respects the first boundary condition in (2.9b). The conjugate flow plays an

important role in the interpretation of various wave phenomena. However, as

the reader will readily appreciate, these two trivial solutions, the base flow

and its conjugate flow, potentially complicate a search for non-trivially x-

dependent solutions of (2.9) that are of especial interest here.

-11-
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3. EXISTENCE OF PERIODIC WAVES

In this section we prove the existence of solutions (A,O) of the

boundary value problem,

-Ao(x,y) + h(y,0(x,y)) Af(y,o(x,y)) in ( 3
(P) (3.1)

(x,O) = *(x,1) = 0 '

which are periodic in x, where 9 = ((x,y)l - - < x < -, 0 < y < 1}. In the

problem (3.1) we assume that f and h are defined for all values of 0. As

we ultimately show that solutions 0 of (3.1) determine pseudo-stream-

functions * whose values lie in the physical range (0, T(1)] (cf.

corollary 4.5) this embodies no essential restriction. The basic assumptions

on f and h are contained in

Condition A. The function f has the form,
•S

tf0 (y) + f(y,t), for 0 4 y 4 1, t ) 0

AI f(y,t) \
-ffy, -t), for 0 4 y 4 1, t < 0

where fo' f, are H81der continuous on bounded sets; fo > 0 on

0 < y < I; and f 1(y,t) = o(t), uniformly for 0 4 y 4 1, as t 0.

Further, there exist constants m > 1, n > 1, a > 0 and d > 0 such that for

tO

Qtm 4 f I(Y,t) 4 d(1 + tn ) .

The function h has the form,

Stho0(y) + h 1 (y,t), for 0 y • 1, t ) 0

AII h(y,t)

-h(y- t), for 0 ( y 4 1, t < 0 ,

-12-



ah
where h and h, are H8lder continuous on bounded sets, 3h is continuous

ah 2
and - ) e for some constant e > -V2. Further there arc constants

a 0 and a' such that for t ; 0,

Vctm 4 hI(yot) 4 at

and

Ih1(y,t)I 4 d(1 + tn),

where m, n, and d are the constants appearing in Al. Note that the first

inequality above implies h1(Y,t) - o(t), uniformly for 0 4 y 4 1, as

t + 0.

The final assumption and the subsequent variational principles involve

the functions

F(y,t) - 2 ftf(y,s)ds, F (y,t) - 2 ft f (y,s)ds

(3.2)

H(y,t) - 2 ft h(y,s)ds, H (y,t) - 2 ft h (y,s)ds

The last hypothesis is,

AIII For each A > a- a (a and a the constants in AI and All)

there is a 8< I such that

AF1 (y,t) - H 1(Yt) 4 8(Af 1(yt)t - h 1(y,t)t

While the assumptions are rather technical, they are tailored with two

ends in view. First they are weak enough to be readily verified in a range of

applications. Further, they are strong enough to mitigate certain technical

difficulties associated with our proofs.

The problem before us is to find solutions of problem (P) which are

periodic in x with period 2k. We consider two formulations of the

problem. The first is a constrained problem (PC):

-13-



solve (P)

subject to f0 -k [IV2 + H(y,o)Idxdy = R2, (PC)(3.3)

where R is a given positive constant.

The second is a free problem (PF):

solve (P)

where X is a given constant.

The problem (PC) corresponds to specifying the "energy" of a wave, while 0

(PF) corresponds to specifying its velocity.

The analysis of both problems (PC) and (PF) is based on variational

methods and the theory of rearrangements of functions. For each problem it

will be shown that there is a critical point * of a suitable functional and

that the function * is a solution of a weak formulation of the problem.

Moreover, 0 can be taken to be even in x, nonnegative, and nonincreasing 0

on 0 4 x 4 k for each y. That is, * is symmetrized, according to the

following definition.

Definition 3.1. Let * = O(xy) be continuous on [-k,k] x [0,1] and for

each y let p(o,a,y) denote the Lebesgue measure of the set

{x I *(x,y) > a). A function * which is even in x, nonnegative, 5

nonincreasing on 0 4 x 4 k for each y and satisfies
A

p(f,a,y) 
= 

W(I01,a,y)

is called the symmetrization of *. If * * we call it symmetrized. 0

-14-
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The construction of * and the properties of * that we use are given

in an appendix. While the use of symmetrized functions is not needed for the

existence of periodic solutions, it plays a central role in the estimates in

section 4 which we use to show that a solitary wave is obtainable as the limit

of periodic waves with increasing period. A symmetrized function, moreover,

has an obvious appeal in that observed permanent waves exhibit such a form.

We note that there are solutions of (P) of any period, namely the zero

solution and a countably infinite collection of non-zero x-independent
- •

solutions obtainable from bifurcation theory (Crandall and Rabinowitz 1970,

Turner 1973). One of this latter class of solutions, a positive one, is the

conjugate flow studied by Benjamin (1971). We shall show in section 4 that

the solutions we obtain here are x-dependent provided k is sufficiently

large.

The analysis will be carried out principally in the Hilbert space

H - Hk(R x (0,1)) defined as follows: let be the space of C

functions which have support whore 0 < y < I and which are periodic in x

with period 2k. Define

IuIl 2 Vf (1Vul 2 + h(y)u2 )dxdy , (3.5)

k

where

1k {(xy) : lxI < k, 0 < y < 1} . (3.6)

The Poincare inequality,

ff IVul Axdy ) ,2 ff u2dxdy ( (3.7)
k  k

2
together with the inequality ho(Y) ) e > -W , a consequence of hypothesis

AII, show that I Ik  is, in fact, a norm. We let Hk be the completion of

in the norm (3.5). Then Hk is a Hilbert space and the corresponding

-15-



inner product is

(uv)k ff {Vu.Vv + h0 (y)uv}dxdy . (3.8)
k 0

If £ is a continuous linear functional on Hk, its value at u is denoted

by <Z,u>.

We will also have occasion to use the spaces Cj , Cj 'W , LP , and Wj'p  for 5

various domains (cf. Adams 1975, Gilbarg and Trudinger 1977). A further

consequence of the Poincare inequality (3.7) is that for u e H k,

Kulk 4 C ff IVul2dxdy e C2lUl,2 4 C 3ui , (3.9)
k 1 2a k,kk

with C1 , C2, and C3 independent of k.

S
In what follows we use the letter C, with or without subscripts or

superscripts, to denote a positive constant which may be different in

different inequalities and which may depend upon pertinent parameters, but

which is independent of k. Moreover, we will often use the convention 
1

fg -If g(x,y)dxdy . (3.10)

k

Combining (Adams 1975, lemma 5.14) with (3.9) one finds that Hk  is

compactly embedded in LP(k ), 2 4 p < - and that

lul ( ClUlk, 2 ( p < * (3.11)
k )

If u e Hk n W
2'(0 k ) and v e Hk, then

(uv)k = f (-Au + h0 (y)u)v (3.12)

the boundary terms on x - ±k cancelling because of periodicity. We are thus

led to define a weak periodic solution of (P) as a pair (X, ), * e Hk'

satisfying

(,,v)k + f h1 (Y,$)v = f /f(y,O)v (3.13)

-16-
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for all v e Hk. The integrals in (3.13) exist by virture of (3.11) and

assumptions AI and AIl. Weak solutions of problem (P) will be obtained from

variational principles suited to the separate cases (PC) and (PF).

Consider first the problem (PC) and adopt the notation (cf. 3.2), that

for a function u defined on 9k'

Vu) - f({VuI2 + Hly,u)},

J(u) - fF(y,u),( (3.14)

and for R > 0,

S(R) 
- (U e Hk : (u) - R 2}

The assumptions on f and h guarantee that the functionals I and J are

defined on Hk. One calls # a critical point of J on S(R) if the

derivative of J in directions tangent to S(R) is zero; that is, the

derivative J'(f) is parallel to I(). A consequence of this is equation

(3.13).

Theorem 3.2. Suppose f and h satisfy condition A. Then for each

k > 0 the problem (PC)(3.3) has a solution (X ,e ), H n C2( k) ,
k k k k which

satisfies •

1) J(0 ) = sup J(u),
kueS(R)

2) Xk > 0 and k > 0 in 9k'

3) k (cf. definition 3.1).

Proof. We fix k and suppress it in writing X and *. One readily

verifies that I and J are continuously differentiable and that, for u,

v e Hk,

I-17- U
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<I'(u),v> = 2J(VueVv + h(y,u)v),

<J'(u),v> - 2ff(y,u)v. 0

Moreover, I' is strongly monotone. For, using the Poincar6 inequality

(3.7), we see that

<I'(u) - II(w),u-w> = 2ffIV(u-w)1 2 + (h(y,u) - h(y,w))(u-w)}

2ffIV(u-w)l
2 + e(u-w)

2 }

) 2(1 + -) fIV u-w1)2, 

where e = min(e,O). Since 1 + -e2 > 0, according to hypothesis AII, it

follows from (3.9) that

<I'(u) - I'(w), u-w> ) Clu-w (3.15)

Then from the standard relationship

i(u) = <I'(Tu),u>dT

and (3.15) one has

I (u) ;0 cfI r I uI 2d-r

(3.16)
C lul 2

2 k'

Thus all functions in a level set S(R) of I are uniformly bounded in Hk.

Then because of (3.11) and the growth conditions required of f in hypothesis

AI, for each R > 0, J, in turn, is uniformly bounded on S(R). For a

fixed R > 0, let

sup J(u) - b
ueS(R)

Assumption AI implies further that J(u) = 0 if and only if u 0, so

b > 0.

-18-
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The continuous functions which are piecewise linear in x and y and

have nonzero partial derivatives with respect to x a.e., form a dense linear

subspace of Hk (cf. the appendix), so there is a sequence of such piecewise-

linear functions uj e S(R), J - 1,2,..., for which J(u ) + b as j +.

Letting uj be the symmetrization of uj, we see from relation (Ap2) of theij

appendix that J(uj) J(uj) for J - 1,2,..., while from (Ap2) and (Ap3)

2A
I(.) ( I(u ) - R Since E Iuk is uniformly bounded, according to

(3.16), u has a subsequence converging weakly to a function * e Hk. We

will show * is a solution of (PC).

As was noted in conjuction with inequality (3.11), Hk is compactly

embedded in L n+(ak), where n occurs in hypothesis AII, so that the

subsequence converges strongly to * in L n+(0k ). Moreover, a further

subsequence of { } may be assumed to converge pointwise a.e. to + on

ak According to (Krasnoselskii 1963, p. 30) the map u + F(y,u) is

continuous from Ln+1(0 ) into L1(a ). Thus J(#) = b, and as b > 0,

* 0. The functional I is the sum of the norm in Hk, which is lower

semi-continuous, and the term fH1 (y,u) which, like J(u), is continuous.

2 2
Hence I(W) I R2 . Suppose that I(f) < R . Since V' is strongly monotone,

the function I(tf) is increasing in t and approaches + - as t + + .

Since I(to) is also continuous in t, there is a t > 1 for which

I(t) - R . Hypothesis AI implies that F(y,u) is strictly increasing in the

variable u, so J(t#) > b. This contradicts the characterization of b and

hence I(*) - R2. Since <I'(*),*> > 0 we can use a lemma of Lyusternik

(Vainberg 1964, p. 96) to conclude that J'(#) is a multiple of I'(f).

Since J'(O) # 0 we can write this as

1C(*) - XJ'(*), • i

and this is tantamount to (3.13).
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It follows from hypothesis AI that <J'(O),> > 0 and hence ) > 0. As

regards *, since it is a weak solution of an elliptic equation, it follows

from the LP elliptic theory (Agmon, Douglis and Nirenberg 1959) and

inequality (3.11) that f is in W2'p(Ak ) for any p < *. The Sobolev

embedding theorem shows that o e cl'ak ) and the Schauder theory (GilbargkO

and Trudinger 1977) yields * e C2 ,a(ak). Being the pointwise limit of

symmetrized functions, the continuous function * inherits the property of

being symmetrized; i.e. * = *. To see that * is strictly positive on ak

we use hypothesis All to write h(y,f(x,y)) =(y,f(x,y))O(x,y), and then

+decompose h as h (x,y) - h-(x,y) with h± being nonnegative functions

of x and y. Since * 0, -AO + h + = h-0 + Xf(y,#), a nonnegative

function which is not identically zero. The strong maximum principle (Gilbarg

and Trudinger 1977) implies that * > 0 in Qk' completing the proof.

We next turn to the problem (PF). For use here and in the sequel,

denote the smallest eigenvalue of the linear problem,

-Au + h0(y)u = Xf0(Y)u,

(3.17)
u e Hk,

by U. One obtains the eigenfunctions of (3.17) by separation of variables

and it is easily seen that p has an associated eigenfunction &(y),

independent of x. It is the eigenfunction associated with the lowest

eigenvalue of

yy + h0(y)& = Af0 (Y)

U(0) = &M = 0

and is known to be positive (Ince 1927, p. 235). The existence and positivity

of 4 also follow easily from the type of arguments just completed for the

problem (PC).

-20-
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It will be convenient to normalize 4 so that

fl (C2 + h C 2} 1. (3.19)6

For fixed A defiie a functional M on Hk by

M(U) - lugk + a [HI (y,u) - XF(y,u)}. (3.20)
k

We use IM'(u)I to denote the norm of the derivative M'(u) as a functional -•

on Hk. One readily verifies that a critical point of M, i.e. a point

for which <M'(O),v> - 0 for all v e Hk, is a weak solution of problem (PF)

(cf. 3.13). To show there is a critical point we use a slight modification of "

a result of Ambrosetti and Rabinowitz (1973, theorem 2.1).

Proposition 3.3. Let k > 0 be fixed and let M be a continuously

differentiable functional on Hk satisfying the following conditions.

1) There are constants a > 0 and r > 0 such that M(u) > a for

lul k M r. 4

2) M(0) = 0 and there is a function w with lwl > r such thatk

M(w) 4 0.

3) For each 0 > 0 if fui is a sequence satisfying U

B < M(u ) < B-, for all i, and UMI(ui)I + 0, as i + , then a

subsequence {u } of {u converges strongly in H as
m

3+ a. U

Let

r = (y e C([0,1],Hk) I Y(O) = 0, Y(1) = w}

and define

b = b y(M) max M(u)
uem( 0,]

( (3.21)

b = inf by

yer •

Suppose Y n' n 1,2,3,..., is a sequence of paths in r such that
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1
b (b+-.
Yn n
n

Then there is a subsequence {njI of the positive integers and elements

u e yn ([0,1]) such that unj converges strongly to u as j +
) )

M(u) = b, and M'(u) = 0.

Proof. For a real number z introduce

A= (u e Uk I M(u) 4 Z)

and 0

Kz = fu e Hk I M(u) - z and M'(u) -0).

For j = 1,2,3,... let

N. = {u e A I \A b IM(u)I < .}.

Then for each J, Nj contains a neighborhood of Kb. From (Ambrosetti and

Rabinowitz 1973, lemma 1.3) it follows that for each j there is a

deformation map (x), taking (t,x) e 0,1] x H continuously into Hk
tk

and constants C > C > 0 such that

1) ri3(u) u for u e Hk,0

2) ?V1(u) _ u for u e A ,
t b-C

3) 1](A \ N ) c A
b+C j b-C

For each j choose a positive integer m. so that < C.. If
J j

Y ([0,1]) n Nj = 0, then since the composition n Oj is a member of F

and M(u) < b-C on the image of this composition, we have a contradiction to

the characterization (3.21). Hence there is a function

u me Ym ([0,1]) n N for each j. The compactness property (3) guarantees
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that a subsequence tu I of {u I converges strongly as j + to a

function u, from which it follows that M(u) b, and M'l(u) = 0. Note

that the hypotheses of the proposition imply that b 0 a > 0 and thus u 0.

We can now show that problem (PF) has a symmetrized solution.

Theorem 3.4. Let f and h satisfy condition A with a and 0 as

defined therein. Let P be the lowest eigenvalue of problem (3.17). If

a1 a < X < p then for each k > 0 the problem (PF)(3.4) has a solution

2k e Hk n C (A) with the following properties.

1) M(Ok) = inf b y(M (cf. 3.20 - 3.21),
Yer

2) *k > 0 in 0,
k

3) 0k = *k (c.f. definition 3.1).

Proof. Fix k > 0. Since v is the smallest eigenvalue of (3.17) it

follows that

RuN2 ) Pff(y)u2  (3.22) •

for any u e Hk. Hypothesis AI implies that for any > 0 there is a

constant C > 0 so that

ifl(y,t)l 4 61tl + c ,tnl, ,

from which it follows that

fl(y,u) 4 f[6u2 + cOIu I].

Upon invoking the embedding inequality (3.11) we find that

fFl(y,u) 4 (C6 + Cg luln-
1)lRuN 2

so that the functional fF1  is o(Iul2) as lulk + 0. One obtains a

corresponding estimate with F1  replaced by H1. These estimates, with the

inequality (3.22), lead to
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M(U) > (1 - -)IuU + o(IU k )Ui k k

as Jul k 0. So for each A < p, m satisfies hypothesis (1) of proposition

3.3 for any sufficiently small positive r.

Plainly M(0) = 0. To find a function w such as occurs in hypothesis

(2) of proposition 3.3, first observe that from AI and AII,

AF (y,t) - H 1(Yt) > (Xa-a)tm+l/(M+l)o

Now if u is any positive, symmetrized function in Hk and s > 0, then

f(XF (ysu) - H(Y'su)} > (AOaO)sm+ fum + '

and so from (3.20),

2 ( 2 _ Xff ()u 2  (AI-o)s m + fum+1.
14(SU) s sEulk - 0 y m+1

Then, since m > 1, for s sufficiently large, say s = so , M(s 0u) 4 0 and lA0

Is0ulk > r. We take w = sou and have w = w. That M is C1  and

satisfies hypothesis (3), often called the Palais-Smale condition, is shown as

in (Ambrosetti and Rabinowitz 1973, lemma 3.6). Proposition 3.3 is now

applicable and the existence of a solution of problem (PF) satisfying (1) can

be concluded. However, establishing a solution satisfying (1), (2), and (3)

requires further argument. To that end it will be verified that there is a

sequence of paths y e r, n = 1,2,3,* -*, with images consisting solely ofn

symmetrized functions for which b converges to the critical value b.
n

Proposition 3.3 will then yield a critical point satisfying properties (1), 0

(2), and (3).

We begin by showing that the functional M is Lipschitz continuous on

bounded subsets of Hk. Let -

G 1 (y,t) = XF(y,t) - H 1(Yt) (3.23)

and

N(u) = fG 1(y,u).

Then from (3.20),
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k k
0'

(Iu) - Mkv) Ak k)

+ if <,'(T(u-v) + v, u-v> dTI

0 k k
+f f g(Tu-)+v] (u-vldTI "

I(0uJ +IA + lC f 1g (Y,T(u-v) + v)i 2 dT)Iu-Vlk'
k k 0 C L (a k)

where gl(y,t) a G I(y,t). The growth conditions in AI and AII imply that

the expression in parentheses is bounded on any bounded subset of Hk-

Let Y be a path in r and suppose Iy(t)l k s for 0 4 t 4 1. Leta k

B denote the ball of radius s centered at 0 in Hk and let C denote

the Lipschitz constant for M, associated with the ball B2s. Given C > 0

( 4Cs) choose a partition 0= t0 < t i <0o*< tn = I so that

IY(ti+I } - Y(ti)lk < C/4C for i 0, 1,...n-1. Let u0 - 0, un = w, and for

i = 1,2,°**,n let ui be a piecewise linear function of x and y having

3 u. # 0 a.e., such that Eui - Y(ti)|k < C/4C (cf. the appendix). Define

a path Y by linearly interpolating the functions ui:

Y(t) - (I - (nt-i))u i + (nt-i)u i+1, nn

i
n n (3.24)

i = 0,1,2,*o0,n-1.

Since C < 4Cs each ui is in B2 and hence the path y lies in B2s.

Using the Lipschitz property of M one checks that b < bY + C/2. Suppose

lul I ' Q for i = 0,1,o-o,n. Then for each t e [0,1], y(t) is a

L (0k )

convex combination of some pair ui, ui+l and 4ence ly(t)l * ( Q"
L

It will now be convenient to let

G(y,t) 
= AF(y,t) - H(y,t)

and express 
M as

-25-
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I 0

1(u) - (Ivul 2 _ G(y,u)).

Since G(y,t) is uniformly continuous for 0 C t 4 Q, there is an n > 0 so

that if It- t < T, then IG(yt) - G(yt)I < C/4k, where 2k is the S

period. We suppose that Eui - ui+1IL1 < n for i = 0,1,...n-1. If this is

not the case, the t interval may be partitioned more finely so that at

adjacent points of the partition the values of T(t) differ in L by at S

most n. Assuming that y is defined by (3.24) for a possibly finer

partition, let y be the path obtained by replacing each function u. in
A A

(3.24) by its symmetrization ui. A convex combination of ui  and ui+1

will be symmetrized and so Y consists entirely of symmetrized functions.

Note that w, the end of the original path, satisfies w - v. The path Y

is a substitute for the set one would get by symmetrizing each point Y1t) on S

the path. Symmetrizing each point on a path does not obviously produce a path.

Now consider M on the path Y. On the ith interval of the partition
* A A

used in (3.24), '(t) may be expressed as (I - T)ui + TUi+1 where 6

T = nt - i. By convexity,
S A2 2

IlV((1-T)u + Tu )1 (1-')fjIVU I + IU+1 I -

i i+1 i+

*Next, using inequality (Apt) of the appendix it is concluded that 0

Eu-u I <lu-u'ui - ui+117 ui - ui+1 17m<

L L

and so

fIG(y,(1-T)u i + Tui+) - (1-T)G(y,ui) - TG(y,ui+1)j S

4 (1-C)f IG(y,(l-T)u + Tu+ 1 - G(y,u )I
i i+1

+ rfIGly,(-T)ui + T u 1 ) - G(y,u +1 )l

because of the uniform continuity of G. Finally, using relations (Ap2) and

(Ap3) of the appendix we estimate M on the ith segment of ; by
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2 2
M((1-r)U + Tu ) 14 (1-T)JIVu iI + TfIu i+11i

i i+1- (1-1ifG(Yiu)- TfG(y,u,) +

i+ 1 2
- (1-T)(u i ) + TM(u )+1 +

4(1-TIM(u ) + TM(ui ) +.

i i+1 2

C b +-
7 

2

4 by + C.
TA

As the inequality holds on each segment of Y,

b^ C by + .

Y

1
If, for any positive integer n, Y is a path for which b < b +

nY n n

according to what we have just shown, there is a path 
Tn consisting of

symmetrized functions for which b < b + 1. Then from proposition 3.3 there
nY

n

is a sequence {v } with v - Vji for all J, converging in Hk to ai j

nonzero critical point *k of M. It now follows exactly as in the proof of 0

theorem 3.2 that *k is in C2,0l(5 1, that *k = *k and that *k > 0 in

k

Remark. The restriction ) < P in theorem 3.4 stems from our ultimate

interest in waves of supercritical speed which, as will be seen, persist in

the limit of increasing periods. While one can show the existence of 0

nontrivial periodic solutions of problem (P) having A > P, using

bifurcation theory, they are not useful for our present study. Assuming

A < P, the further restriction -1a < A is essential as one can see from w

the example -A# + 003 . A(# + O3 ) in which P - w2 . Suppose there were a

nontrivial solution (A,O) with A 4 C 17. Taking the inner product of each

side of the equation with * one finds that fiV#12 < Xf02 and hence from

(3.7), 2 which is excluded by the restriction A P.
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One can see from the proof of theorem 3.4 that it is the behavior of the

whole term Af - hI that is important in problem (PF). Thus, conditions AI

and AIX could, in this problem, be replaced by an analogous condition on

f- h, so allowing for wider applicability of the theory.

-
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4. BOUNDS FOR PERIODIC SOLUTIONS

The subsequent analysis depends on bounds on the solutions (X ,k ) of

(3.1) whose existence was established in section 3. In the problem (PC)(3.3)

the size of |Ifk was specified while in the problem (PF)(3.4) Ak was

specified in the range x-Ia < Ak < p. It will be important to have estimates

independent of k for both A and in the two problems. Such bounds
kk

will be obtained in the present section, using some additional hypotheses

which are not unduly restrictive for the physical applications.

It will first be shown that Xk < M in the problem (PC). When it is

convenient the subscript k will be suppressed.

Lemma 4.1. Suppose that f and h satisfy condition A of section 3,

with the additional restrictions m < 5 and 2a 0 < M on the parameters.

It follows that there are constants q - n(R) > 0 and k0 - k0 (R) such that

if (k,* k ) is the solution of (PC) obtained in theorem 3.2, with

2
I(k) -R, then

Ak  (1-n)M, (4.1)

for k > k0 (R).

Proof. We suppress the variable y, writing f1*) for f1(y,*), and

so on. In the weak form (3.13) of the problem (3.1), let v = and use

the notation (3.14) to express A - A as
k S

J{v1, 2 + ho0 2 + h

f{fo* 2 + f1(OW

R2 + f{hl( )l - H1 (0)0

i(o) + J{f1 (0) F1- (
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20
Since J(u) 4 J(*) for an arbitrary u e Hk with I(u) - R2, then

R2 + f{h(,) - H()) 
(4.2)

J(u) + Jff1 (O)$ - (}4

Take u(x,y) to be the element of Hk defined on -k 4 x 4 k by

u(x,y) - A(x)4(y), where 4 is the eigenfunction defined in (3.18). We show 0

that A can be chosen so that I(u) - R2 and so that, for k ) k0, the

right-hand member of (4.2) is at most (1 - T), where k0  and n are

positive numbers depending on R.

The normalization 1(u) - R2 entails having

f-k A+ -k +2 f+ k H,(u), (4.3)

where, for 0 4 p <,

n- f& Pd. (4.4)

Here we have used the normalization f0{  + h 0E} - 1 given earlier (cf.
y 0

3.19). The normalization also implies f0 [ & 2 and thus

J(u) - i I{fk 2 + ufa F (u)}" (4.5)

Combining (4.2), (4.3), and (4.5) one sees that the inequality (4.1) will hold S

provided

n2 f'k A
2 + 11 f-k A2  f (1-nT)IF,(u) - H1 (u))

(4.6) 6

+ f(l-nwfI - F-(*)) - (hl() - H

From condition AIII (in this instance 8 ( 1 suffices) it can be seen that

4 (1-rluf 1()f - F1 (0)) - (h1(0)0 - M)

) (1-rlluf1(*)* -h() 4

- e((1-n)fl() -W

e (1-1)-lifh(0)0 -h

-30-
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M+1

-- a *

Hence it suffices to find an n with 0 < n ( 1/2 so that,

n 2fk A + -k A2  [(1-,, F,1 (u) - Hj(u)] (4.7) -

for some u satisfying (4.3).

To continue, let A(x) - P~g(Vx) where g(t) - e-21t l and where B and

V are constants to be determined. A short computation brings (4.3) to the

form,
2 

2  6 m.11m+1

I - 4n 2"2 c (Vk) + -" c (Vk) + 6R M+ llVk), (4.8)
2 2 V 2 V m+I(k) (48

where cm(s) fS gmlt)dt and where 6 - 6(k) is a constant satisfying

-:1'nM+ I e (m+1)6 4 27nm+ I  (cf. condition All in section 3). Using

conditions Al and AII one sees that (4.7) will hold provided

2 2 fm-0m+

4n2VB c2 (Vk) + n - c 2 (Vk) 2m+1  Mvk), (4.9)
2 2V 2(M+1)V 3m+1

where Y - (1-T)pd -0 > 0. If we now let V - B2+ and require n to

satisfy the further condition n C n 2 4+ then (4.8) and (4.9) will follow

from

1 - 4n 2 4+Cc 2 + 0 -6c 2 + 6Rl3B
1 Cc3 + 1, (4.10)

and in-i 1in- I- C+1
5n 04 y2e -1 ml + 

(4.11)

respectively. Note that c(p - 2,m+1) now has B 2+Ck as its argument and

further, that as the argument increases to infinity, cp increases

monotonically to I/p. We will henceforth assume that k > k() =

(-I 1n2)0- 2wr so that 1/2p < c < I/p.
4

To satisfy (4.11) it will suffice to have 0 4 B (R) where

2rm+ 1 YRi-1 1

0 1(R) ( 2 " (4.12)
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Here we've used the bound cm+l/c2 ; 1/(m+1). To satisfy (4.10), begin by
-I/C 0

choosing an C0 with 0 < C0 < m-1 and letting 80  4 , so that

00
C > 1. Our choice for 8 is

0 2

2

8(R)= inf min ( L ( 1)m 00 101(R
04F4£0 m+1

We further choose

k0(R) = 1 n2(R)

0 4~12(()

and :

1 4+ 2E0
n(R) = min{1 , n 2(8(R))4 .

Since 80 = 4 < 1, 8 8 < I and so for all z in [0,%0]
0 00

TI < n 
4 + 2, as required. Assume k > k 0. Then for E in [0,E0],

k > k 0 > k(8), from above, so 1/2p < cp < i/p.

Since 8(R) 4 8 (R), (4.11) is satisfied. By the choice of 8(R) we

also guarantee that the first and third terms in the right-hand side of

-c
" (4.10) are at most 1/4 for any E in [0,E 0 ] . The remaining term, 8 (R)c2

approaches c2 < 1/2 as E + 0 and, since 8(R) 4 0 , exceeds I for

£ - C0 . By continuity there is an C in (0,e0 ] for which (4.10) is

satisfied and we make it our choice. The trial function u is now fixed and

the inequality (4.1) follows accordingly.

Remark. As R approaches 0, one has

(m-l1) (4+ 2E 0

n(R) -0(Ro), where ,) =-
5-m

Lemma 4.2. Suppose that f and h satisfy condition A of section 1. Then

there are constants C1  and C 2 such that for any solution (X,O) of (PC)
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with e e Hk  and I(f) R2 > 0 one has ) > 0 and, moreover,

1 - O'C1Rm 1

I 1
1 U (- RM-1 (4.14)I + 01c 2 --

Proof. As in the proof of lemma 4.1
0

Au 1 2* + f2+
A f{f0@1 + flMO }

Since I I 2 11f f 2 by (3.22),

1 + 4k 2fh(*)

1 + 1*1kff 1 )*

and the desired estimate follows from the growth assumptions on f, and hI

together with inequality (3.11).

S

We now have upper and lower bounds for A occurring in the solution

C',*) of problem (PC) given in theorem 3.2. In the proof of that theorem the

estimate I#Ik 4 CR (cf. 3.16) was also derived. In the problem (PF) A is

restricted to the interval (a- t,p) at the outset, in theorem 3.4. For this

latter problem we next obtain a bound for 1*1k  in terms of A.

Lemma 4.3. Suppose f and h satisfy condition A and further that

Ca& A < 0 and 1 < m < 5. Then the solution * of problem (PF) obtained

in theorem 3.4 satisfies

5-m
(_)4 (m- 1)

C (a -X ) (4.15)

where C depends on a and P.
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Proof. We will use the variational characterization of * in theorem

3.4 to obtain (4.15). From proposition 3.3, for any path y e r,
2*I + fJ"I 1 y,*) - XF(y,*)} = b - b (4.16)

On the other hand the weak form (3.13) of the basic equation, with v =

yields

1#12 + f{hl(Y,f)% _ Xfo%2 _ Xf 1 (y,#)#) = 0. (4.17) 0

Combining (4.16) and (4.17), and using assumption AIiI, one arrives at

2 _ Xff(y) )2( b. (4.18)

Now, by (3.22), S

(1_)1#1(1 -C) by, (4.19)

and this holds for any y e r.

We now construct a particular path Y 0 as follows. Let u be the 6

function in Hk defined by,

u(x,y) = exp(-lU-)/21xl)tly),

for (x,y) e [-k,k] x [0,1], where, again, t denotes the eigenfunction

associated with the lowest eigenvalue of (3.18), normalized as in (3.19).

From the proof of theorem 3.4 there is inferred the existence of a to > 0

such that, M(t0u) - 0 where M is the functional defined in (3.20). Let

Y0 be the path defined on 0 4 t 4 t0  by Y0 (t) tu. A simple calculation

shows that

M(tu) ' t(M-IX) f I f0t
2 + n2

(4.20)
+ (a1a)tm+n (1 - exp[-2(m+1)k(p-X) 1 / 2 1) S

+M+I rim+1  (m+1) 21I-X ) 1/2

where n is defined in (4.4). By definition, the maximum of M(tu), for

t in the range 0 4 t < t is b , and another calculation, using (4.20),

-34-



shows that

m+3
2(m-1)

C2 (4.21)

( 1.a-)ml

The combination of (4.21) and (4.19) with Y - Y0 produces the desired00

inequality (4.15).

As already noted, the smoothness of a solution # follows from standard
-S

regularity theory. We repeat some of it here to exhibit estimates with

constants independent of the period 2k. In particular lemma 4.9 below will

be used in showing the exponential decay of solutions in lemma 4.10.

Let n - 1(x) be an even C function supported on -3/4 4 x 4 3/4,

taking values in [0,1], and so chosen that n(x) + n(l-x) - I for

0 4 x 4 1. This last property is equivalent to having
S

n(x) - 1/2 odd with respect to x - 1/2 on the interval 0 < x 4 1. We omit

a detailed construction of such a function. Given n we let n (x) - n(x-s)

5

for any real s and note that the collection n1, J an integer, forms a

partition of unity on the line. Let C = C(x) stand for an arbitrary cutoff

function, which is to say, 4 is a C function with range in [0,1] having

compact support. We use the estimate,

1u 2 , () C(IAu ) + lul + ulL ), (4.22)

(Agmon, Douglis, Nirenberg 1959, thin. 15.2) valid for a domain D with smooth

boundary 3D. The constant C in (4.22) will, in general, depend on the

domain. However, as (4.22) will be used only for x-translates of certain

fixed domains, that dependence will not enter. Let

Sab = O(x,y) e 0 I Ix-al < b), (4.23)
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and suppose C has its support in Sa, b . Then from (4.22), if

loc k'
n Cul 2, c~uA(tu)n + I~uU ), (4.24) __)

W p(Sa,b )  LPISa,b )  LPlSa,b )

since Cu vanishes on aS a,b . The domain Sab has corners, but since the

support of Cu is at a positive distance from the corners the estimate can be

seen to hold. Now, since A(Cu) = ;Au + 2VC.Vu + uAC it follows easily from

(4.24) that

Iul 2 C'(#AuI + ulw ). (4.25)

W 2p(Sa,b LP(Sa,b 'P(Sa,b

Lemma 4.4. Suppose f and h satisfy condition A and let (X,O) be a

solution of problem (P)(3.1) having 0 < X < P. Then for each integer j,

c1n 1 wO 2 + ,nu 1,2 (4.2)
c(S, ? (Sj,3 w S j,3 0

where C depends on v and the parameters entering condition A.

Proof. The growth assumptions in AI and AII yield an estimate

IA*I ( C'(II + 1,,n), (4.27)

valid at each point (x,y), with C' depending on p and the parameters

from AI and AII. If we use = njI + nj + Ti+1 in (4.25), there obtains

a W2,P estimate of 0 on Sj I in terms of LP  estimates of A4 and *

on Sj,2. Estimates on Sj,2 and Sj, 3 are similarly related, and in each

estimate the constant will involve the fixed function n. Combining these

estimates with the Sobolev embedding, theorem for some p > 2, one has

(letting S j, = Sj
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I15 CI N (C 2 A& i + II )i

cll c1l) W2,pIS 1 1  LPIS2) WII2
11C( C 111W 2, SI C2 NO p 2 ) 0 ' S2

4 C3Il + I. S' + I 1 2,2 6
LP(S 2) Lw (S 2) W (S)2

C4 (N1 + 101 + I&0 2 + II 1,2 )
LP(S 2 ) LP(S 2 ) L (S 3) W (S 3

• n

C5 IIl + il s) + n0n 2 + 1S2 + Ii 11,2 s )
L S2 Lp S2, L (S3) L (S 3 W (S 3s

< C(N01 1,2 + 1N1 ,2
W (S 3 ) W'(S 3)

which proves (4.26).

A solution of equation (3.1) obtained in section 3 will be relevant to a

physical flow only if we can restrict its size by restricting some system

parameter. The previous lemma addresses this point. The following corollary

continues the development in this direction. Both of these results will be

used in taking limits of periodic solutions as the period grows indefinitely

large.

2
Corollary 4.5. Let N = R if i(0) R is specified as in theorem 3.2

and let

5-m

N = 6= (-) 4 (m-1)N a-o (4.28)

if A is specified as in theorem 3.4. Then

I •1 1 C(N + Nn) (4.29)Udi 1
C

and, for some w > 0
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tI ' C'(N + N n). (4.30)

C2,W

Here C and C' depend on p and on the parameters entering condition A; in

addition, C' and W depend on N through the H8lder exponents of f and

h.

Proof. From (3.9), (3.16) and lemmas 4.3 and 4.4, we have

IC ( C(N + Nn) (4.31)

1oC k()

where N = R or N = 6. according to whether problem (PC) or (PF),

respectively, is being considered. The range of * is thus limited in terms

of R or 6. It is assumed in condition A that both f and h are locally

H8lder continuous. Hence, for the range of value of (y,t) which are

relevant for the solution 0, Af-h is a member of some H81der class, say with

exponent W > 0. Regularity theory for the Laplacian (Gilbarg and Trudinger

1977) then yields (4.30).

Lemma 4.6. Let L = - A + q(y) with q continuous on 0 4 y 1 1. 1

Suppose that the smallest eigenvalue '1 of -d2/dy2 + q on 0 < y < 1

with y(0) = y(1) = 0 satisfies YV > 0. Then for u e W2' 2 ( k ) n Hk ,

ful 4 CILul 2 (4.32)
W 22 k )  L ( k

where C depends on Y
II

Proof. From (3.7) and (4.25) it follows easily that

In ul ( C (ILul + Ilul 1, , (4.33)J W22Sj) L2(S.) W '(S.)•l

where S3 = Sj, I as in (4.23), and j = -k, -k+1,...,k-1. It is well known
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that for each e > 0 there is a constant C such that

fuI W1, 2 (S 4 Elul W 22(S + CSRu 2 ' (4.34)

(cf. Agmon, Douglis and Nirenberg 1959, p. 698). Using the partition of unity

(nj} and the fact that u is 2 periodic, (4.33) and (4.34) may be

combined to obtain

2 k-1
RuN I I n ul 2

W2' 2 (ak) J--k W2 , 2

k-1 2 4

4 2 1 Ini ul 2,
J=-k Wz , (

k-1 2

k-i CllLuI 2 + lul 2  + C CSuE 2

J--k L2(S) W (S) L(S )

4 2ClliLui 2 2 + 2lul 2 2 + C lul ) 

L (ak W 2k L2(1k )

The factors of 2 appear since the rectangles Si (and correspondingly the

supports of the ni overlap in pairs, including S.k and Sk_1 if we

envision integration as taking place on the cylinder obtained from the product

of 0 4 y 4 1 with a circle. The choice

C (4C -1 yields

ul 2,2 C2 (ILuI 2 + lul 2 (4.35)

kkk

To absorb the term RuN we use the hypothesis on Y to write

L 2  1

Y 1 luP 
2

2  4 f{IVul2 + qu2 }

L (SIk)

= f(-&u + qu)u

4 lLul2 luH 2

L2(ak) L (f ) 
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obtaining lul 4 Y- ILul This last inequality together with (4.35)
L2 1 L2

provides (4.32).

Next we obtain a lower bound on Ii for a solution (X,O) of problem

L
P, assuming A < P. Recall that in problem (PF) we chose X < p while for

problem (PC) it was shown in lemma 4.1 that X < P was a consequence of our

method of obtaining a solution.

Lemma 4.7. Suppose f and h satisfy conditions AI and AII of section

1. Let (A,f) e R x Hk with A < U and f > 0, be a solution of problem

(P)(3.1). Then

I#I . )r > 0,

L (flk

where r depends on p - A, but not on k.

Proof. Let 9 > 0 be the eigenfunction from (3.18). Since

f~f0 (y)9 = fO(-A¢ + h0 )

= f(-A* + h 0)

= f[Xf 0  + Af1 (y,O) - h1lY,,l¢

it follows that
Afl,) hl1(y,O)

f OE[((-A)f 0 (y) - f - = 0.

However, the term Af - h is o(W) as 0 + 0 and f o > 0 on kf so

the integral cannot vanish if * is everywhere smaller than some r > 0,

depending on the gap Ii - A.
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4 0

Corollary 4.8. For fixed R > 0 in problem (PC) or for fixed X with

a-a < X < u in problem (PP), the solution * obtained in theorem 3.2 or

theorem 3.4, respectively, has nontrivial x dependence for all sufficiently

large k.

Proof. In either problem we have I11k C S and I01 L ) r for

positive constants S and r, independent of k. Suppose * were

independent of x. Then

0 < r2 13 C fl *2 4 C k'I1I1c ( C k-1s

which is impossible for large k.

S

In fact, the symmetrized solutions obtained in section 3 have decay in

x over 0 < x 4 k, uniformly in y, as exhibited in the next lemma.

Lemma 4.9. Let e,), H k be any solution of problem (P) obtained

from theorems 3.2 or 3.4. Then

I 1/3*(s/3 S( , if Ixi < k, (4.36)

Ixl

where S .

kS
Proof. Let

W(x) max O(x,y).
Oy'(1

The equivalence of norms given by (3.9) combined with lemma 4.4 provide the

bound

11 1 C(I*0 + I ,n) (4.37)

C (Q k k

with C independent of k. The bound (4.37) on the derivative of 0 with

respect to y implies that (x,y) ) 8/2 on a y interval Q of length at
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4A

least 8/CS+Sn. But * on Q k' so for y in Q and all x'

satisfying -x 4 x1 4 x, *(x',y) P B(x)/2. It follows that

12 B ,

L 2 (a) 2 C(S+S
n )

k

Of course, 101 2  4 C1S
2 and so a bound for 0 results; viz. (4.36).L2(W) 0

L ak

It is possible to obtain faster decay in x. Bootstrapping will furnish

a higher power of x in the denominator of (4.36). However, an explicit use

of the Green's function for -A + h0 - Xf0 will yield exponential decay for

0, as we prove in the next lemma. For that purpose, let (y ,n) n = 1,2...

be the eigenvalues and eigenfunctions of

A + h0 (Y)* - Af0 (Y)* = Y(4.38)dy 2 0 '4.8

f(o) = (1) = 0,

with Y 1 < Y 2 < Y3 < * It is known (Ince 1927, p. 270) that there are

constants CO  and C1 , independent of n, such that C0n
2 4 Yn • CIn 2  and,

assuming Y < ii, that Y is at least m0 0(i - Y) where m0  is the minimum

of f (Y) for 0 44 y 4 1. As a normalization assume f12= 1. Since
00 0 n

f0 IdId *n 1 2 C (Y  + C2 )f 1 2  for some constant C2, the Sobolev embedding

inequality provides the crude estimate, 1 n'Lb ( C3n for some constant C3
4 L

independent of n. The Green's function for -A + ho = Af0 in the strip 9

with zero boundary conditions on y = 0 and y = 1 is easily computed using

separation of variables (cf. Stakgold 1968, p. 163). The result is,

4
- 1 1 2 x '1

-Yn 1/ x-xj
n

G~x-x', y, y') 1/ e n(y)* n(yin), (4.39)
n 2Y

n

and one verifies, using the crude estimate on 4n , that for Ix-x'l > b > 0
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1/ 1x-x'l I
IG(x-x',y y')J C Ce (4.40)

with C depending on b.

Lemma 4.10. For k > 0 let (X,$), with f e Hk# be a solution of

problem (P)(3.1) obtained from theorem 3.2 or 3.4. Let '1 be the lowest

eigenvalue of (4.38) and suppose that for some q > I

Pxf 1 (y,t) - h1 (y,t)l 4 C0tq

for 0 4 y 4 1 and t 0 0. Then for B < y1 /q,

1
*(xy) ce-BIXI (4.41)

and

IVf(xy)l C'e " IxI (4.42

for IxI 4 k where C and C' depend on q, 0, and Ifi ,.

L

Remark. For the solution of problem (PC) or (PF) we have a bound on

i ,. Further, U - A is specified or estimable and Y 1 m0 (U-X) where
L

m0 = inf f0. Hence * decays faster than an exponential with a rate constant

proportional to (W-A)1/2. This dependence for the rate constant agrees with

that found in the small-amplitude theories of Ter-Krikorov (1963) and Benjamin

(1966).

Proof. Since f is positive and decreasing on 0 C x 4 k it is enough

to show that the sequence

a, = max *(iy), i - 0,1,...k,
O<y<l

satisfies

a C Ce , i = 0,1,...k. (4.43)
-
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We write the equation (P)(3.1) as

(-A + ha - f 0) = 1(y,O) - (M) ,

and abbreviate it to S

LO = g(O), (4.44)

suppressing the dependence on X and y. By hypothesis,

Ig(*)I c0q
0

Consider the cutoff function n. introduced earlier in this section, but
I

now extend it to be 2k-periodic in x. Maintaining the notation n. for theJ

new function we write equation (4.44) as 0

14 = nig(O) + (1-n.)g(O). (4.45)

The operator L is invertible in Hk and hence we can express * as

*= @+ X where 0

LO= ng(O)

and

LX (1-n)g(O).J

From the growth estimate on g, lemma 4.6, and the Sobolev embedding theorem

one concludes that

*e16(jy)l 4 C 2a _, (4.46) 6

for j = 1,2,...k. For X one has the estimate

Ix(jy)I 4 C fn IG(j-x',y y')l (1-n (x'))Oq(xy). (4*47)

Since for each y, * is even in x, 2k-periodic, and decreasing on the 0

interval 0 4 x 4 k, it follows that for 0 4 j 4 k and 0 < x' < j,

O(j+x',y) 1 *(j-x',y). (4.48)

Since G is even in its first variable, it follows from (4.48) that the

contribution to the integral in (4.47) taken over 0 4 x' 4 j is at least as

large as the contribution from integration over j 4 x' 1 2j. Using this last

observation and the itiequality (4.40) we conclude that
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X(j.y)I ' f dx' + f jdx. + fl_ x,)fl(,-n)l~q dy'

4 C1 (2 fJ dx' + f Ix,_jJdx,)f 1  lIn)lG 1%

< 1 fi (ix' ( -I~ c - ' 0 
) ~ dy

i 0

(4.49)

+ C; fxj dx' fl IGCJ-x',y,y)

3 1/2 1 1/2-Ti

Here we have made essential use of the vanishing of (1-n(x'))G(j-x',y,y')

1/2 0
-Ti

when Ix'-Jl < 1/4 so as to estimate it by a suitable 
constant times e 1

for J-1 4 x' 4 J. Combining (4.46) and (4.49) to estimate * - 8 + X we

find that

J1/2

a Ct_, + c I e 1  a  i + -O %<q (4.50)
j 2 3- ViWo i y1/2 L 4.0

T 1

for j - 1,2,...,k. Or, if a0 is redefined to be

l#q /q

a sup y
04Y41

then

1/21ji

j 2 j- 1 e T 1/ ( -i )

a. C aI +3 e a 4.51)3 2 -1 3.=O

for j = 1,2,...,k.
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Given ,0 < < _I1/2 and B > 0 we can choose a positive integerq I

N depending on 0 and B so that for i - 0,1,2,...,N,

a 4 Be N i  
(4.52) S

i

To see that there is such an N we first observe that since * is bounded

ad, by lemma 4.9, decays like x- 1/3,

ai ( E
a E

1 i 1/3'

for i = 0.1,.,.k, where E is a positive constant depending on II .. The

1/3 
L

fuiction e /(1+i) is convex in i and thus its maximum on 0 4 i < N

occurs at i = 0 or i = N. Hence (4.52) will hold provided N is chosen so

that

max(l, eON/(I+N) 
1/3) 2 e ON

E!

we now proceed inductively, supposing that for some j > N (4.52) holds

for i = 0,1,...,j-I. From (4.51),

a. _ 1/2) +i3 e

a Be(N_)c2B_( )B(N )+qB + B C3Bqeq)I +j C1 (qB-/ )(j-i)
2 q3 (q11Nj

i=0j-1 (q-Y/ 1/2

BeOB(N-J) (C2-leB + C3 - 1 )- 1 -

e ( 1 - e )1 •

If B is chosen so that the contents of the square bracket in (4.53) add to

1, then the desired inequality (4.52) is valid for i = j and induction

shows it to be valid for i 01,...,k. Thus (4.43) and (4.41) hold with

ONC = Be

The decay (4.42) for Vo follows readily from (4.41) in view of (4.22),

(4.27), and the Sobolev embedding theorem.

fe
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5. THE EXISTENCE OF SOLITARY WAVES

In this section we show the existence of solitary-wave solutions of _

problems (PC)3.3) and (PF)(3.4). These solutions will be obtained from the

foregoing periodic wave trains in the limit as the period becomes unbounded.

Theorem 5.1. Suppose f and h satisfy condition A of section 3 and

let a, a, m be as defined therein; let p be the lowest eigenvalue of

(3.17). Suppose further that m < 5, 2a o < P and

JAf(y,t) - h(y,t)l 4 Ctq  for some q > 1.

I. Let R > 0 be given. For each k > 0, let (A k, k ) be a solution

of problem (PC) given by theorem 3.2 with I(0k) R 2, where I(0) is given

by (3.14). Then there is an increasing sequence of half-periods k(j) +

j = 1,2,ee °, and a solution (A,O) of (P) satisfying
A

1) f > 0 and * on 11,

2
2) I(0) = R

3) Ii 2 C(R + Rn) (cf. 4.30),C2,w

4) 11 Ce-lx ; IVI 4 Ce"B IX I  (cf 4.41, 4.42),

5) as j+ , kj) + X, 0 < X < p, and

6) as J + 0 k(j) converges to ,

uniformly in C2 on bounded subsets of Q.

II. Let X in 0(a-l, 1) be given. For each k > 0 let (X,o ) be a

solution of (PF) given by theorem 3.4. Then there is a sequence k(j) + -, a

j = 1,2, °*, as in part I and a solution (A,O) of (P) satisfying properties

1), 4) and 6) of part I as well as

2') IONw1,2la ) 4 C~lim IONk(j) k(j) <
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and

V) l l 2 , < C(6 + 6 n)w ,

where 6 is given by (4.30).

Proof. We prove part I. The proof of part II is almost identical.

Consider the sequence *k' k 1,2,..., restricted to Q 1 The estimate

(4.30) for some W > 0 and the Arzela-Ascoli lemma imply that a subsequence

2 (1)
+ill 12, 13 , , o , , converges in C2(9 to a function 

( )
. Similarly

ill 12'. restricted to 0 2 contains a subsequence *21' *22' ° ,°

converging in C 2( 2) to a function f ( 2 ) which, of course, coincides with
2

(1) on S1 Continuing the process and extracting the diagonal sequence

*kk we obtain a sequence which we denote *k(j)' j = 1,2, o oe . Letting

+ be the element of C2 () defined to be *(n ) on fln it is clear that 6)

holds. Without loss of generality we can assume that k(j) is a sequence of

positive integers for which k(j) ) j and Xk(j) converges to a value X.

Since

P(1 - C(R)) ( u(i - 1(R))
'14 k(j)

according to lemmas 4.1 and 4.2, X has the same bounds, so assertion 5)

holds. Moreover, ().,*) is a classical solution of the problem (P),

-A + h(y,*) = Xfy, k

*(x,O) = O(x,1) = 0

since each pair (X k(j), k(j) ) is a solution for j = 1,2,... and all terms

in the equation converge uniformly on bounded scts.

Since *k(j) and V k(j) converge uniformly on bounded sets, property

4) follows immediately from lemma 4.10. Further a = on Q since, for

each j, * k(j) is even in x, nonnegative, and nonincreasing on
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[0

0 ( x ( k(j). The estimate l*l w r > 0 also follows from the uniform

L
convergence on A1 in the light of lemma 4.7. So * > 0 follows exactly as

-S
in the proof of theorem 3.2. Assertion 2) derives from the convergence of

*k(j) in C1 , uniformly on bounded sets, together with inequality 4).

Finally, the H81der estimates from lemma 4.5 are preserved in the limit,

S

yielding 3) and completing the proof.

-
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6. EXAMPLES

The application of the foregoing theory is exemplified in the present

section for a specific class of stratified fluid flows. The coordinate system

and notation remain as set forth in section 2. It is assumed that, in the

undisturbed state of the system, the density p is given by,

p(y) = P0 (1 - ay)r , for 0 ( y < 1, (6.1)

where p and r are positive, and 0 < a < 1. This family of density
-0

profiles is supplemented with a uniform primary velocity,

U(y) = c p, for 0 4 y 4 1.

We search for waves of permanent form whose velocity of propagation downstream

(in the direction of increasing x) is c. The crests of the waves are

brought to rest by considering the system in a frame of reference moving to

the right at speed c. In the moving frame of reference, the primary fluid

velocity is

W(y) = U(y) - c c - c = c, (6.2)

p

say. From the specifications (6.1) and (6.2), the functions denoted by f

and h in earlier sections may be determined explicitly in a straightforward

manner (cf. Benjamin 1971, 16.11 which is now outlined. The outcome of this

calculation is the guarantee that, subject to some restriction on the

parameters a and r, the system that has the primary specifications (6.1)

and (6.2) can support both solitary waves and periodic waves of permanent

form, the latter being the analogue of the classical cnoidal waves.

To begin the computation of f and h, note that the pseudo-stream-

function associated to the primary flow is
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II

1/2.

(,) =f p/ 2(z)W(z)dz

Sa[l + (r/2 )) (1 - (1- ay) ].r2 --

1/2
It will be convenient to let s = 1 + (r/2) and y c P0 /as. With this

notation, we have

Y(y) - y[1 - (1 -ay) ]. (6.3) 0

Note, for later use, that

Tyy(y) = -s(s-1)a
2y(1 - ay) s-2.  (6.4)

yy

As all variables need eventually to be cast in terms of the pseudo-stream- "

function, it is convenient to express y as a function of T. The expression

is,

y - Y(Y) 1 a [ - (1 2 ¥) .](6.5)
aY

Then p may be expressed in terms of f as

p(M) - p (1 - .) .r/s (6.6)
0 Y

In particular, U

p'() - Pr (1 - 1 y)(O-2)/s (6.7)
'Te Y

Similarly, combining (6.4) and (6.5), tt follows that

Y -8 -(s-1)a 2
Y(1 _ 2 T)(a - 2)/s .  (6.8)

yy

Remember the dynamical condition satisfied by the flow, that the total head,

1 2
H - p+ g + _ "y (6.9)

is conserved along each pseudo-stream-line. Thus H is a function of T

alone, as pointed out already in section 2. Differentiating (6.9) with

respect to Y, and using the hydrostatic law,

py f -gp,

there appears

H'(Y) = gyp' (IF) + T (6.10)

-51-

- - • II . ..



which is (2.5) in the special case of a parallel flow. This completes the

calculations regarding the primary flow.

Let qidenote the pseudo-stream-function f or the perturbed flow, and

write

f(x,y) fl~y) + jo(x,y), (.1

where j is a constant, to be fixed presently. (It may be either positve or0

negative, corresponding to waves of depression or elevation, respectively.)

According to (2.5), *~ satisfies the equation

.AJ+ H'(1P) =gyp'(*j). (6.12)

Now, (6.10), (6.11) and (6.12) combine to yield the equation,

-jAt + fV ('V + i*) - 'V ('F) =-gp'(Y + jt)[YQF + jt) - YI
yy yy

4 satisfied by t (cf. Benjamin 1971, eqn. 6.10). Making use of (6.7) andS

(6.8), this may be worked out completely as

-At + h(y,t) = Xfly,f), (6.13)

where Ig p r/sU1

f(y,O) = s(1 ay) Ss j)F

y(I-ay) s (6.14) 0

TWz = (1 Z) (-)s[1 -(1-z) 1/ 1

and 0

2

h(y,t) s~-)a -ay)s-2

(1 Y(1-ay) s(6.15) 4

h~)= 1-(I -Z) (s- 2)/s 1J

-52-



" - -- Ig i I - - •

The selection lJI = Y simplifies the foregoing formulae and renders

dimensionless. If j = Y, the formulae provide waves of depression, in which

the streamlines are displaced from their undisturbed configuration toward the S

lower boundary, whilst j = -Y corresponds to waves of elevation, in which

the streamlines are displaced upward from their undisturbed postion. (If

j Y, then P /v -4' = -YO I where v is the vertical velocity of the 0
x x

flow. Considering the shape of *, as established by our theory, it is

concluded that the vertical velocity is negative to the left of the wave's

crest, corresponding to a wave of depression. The opposite conclusion 0

obviously holds if j - -Y.) For the sample primary flow described by (6.1)

and (6.2), these two distinct cases correspond to different ranges of the

parameter r, and are considered separately below. Note that if tJl Y,

then

Agra
2'

c

and so is proportional to the inverse-square of the velocity of the permanent-

wave in question, relative to the velocity of the primary flow.

It is worth remembering that equation (6.12) has, as an essential

ingredient in its derivation, the presumption that all the pseudo-stream-lines

begin at - and terminate at + I. It follows that * must take its

values in the range [0, Y(1)]. Since 0 vanishes at y = 0 and y = 1, 0

these requirements are implied by the condition

*y = 'y + jy > 0, for (x,y) e R x (0,1). (6.16)

In the cases of special interest here, this amounts to, 0

y (x,y) > -sa(1 - ay)s-i, (6.17)

in case j = Y, and

s-1y < sa(1 - ay) , (6.18) 0

for j - -y.
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Waves of Depression

Here we concentrate on the case j = Y. According to the preceding

discussion, the total head H and the density P are defined only for values

of * lying in the range [0, T(1)]. (In this case, (1) = y[1 - (1 - a)S

Hence the functions f and h are necessarily as displayed in (6.14) and

(6.15) for values of y in [0,1] and t ) 0 such that I(y) + Yt lies in

the interval [0, Y(1)]. This implies exactly that the pair (y,t) must

respect the inequality,

0 4 t 4 (1 ay) s - (1 - a)s = T(y), (6.19)

say. Note that 0 4 T(y) 4 T(0) = Y(1)/Y < 1, for all y in [0,13. The

definition of f and h for values of (y,t) outside the domain defined in

(6.19) is entirely at our disposal. It is technically convenient, as in

section 3, to require both f and h to be odd functions of the variable

t. So, only the extension of the domain of f and h to encompass all

t ) 0 need be considered. For the present, we content outselves with

extending f and h to the set

r = {(y,t) : 0 < y 4 1 and 0 e t r T(O)) (6.20)

simply by using the formulas in (6.14) and (6.15). Since T(0) < 1, this

raises no obvious difficulties. The definition of f and h for t > T(0)

will be considered subsequently. Of course, as discussed before, it is

required to assure, in due course, that the permanent-wave solutions obtained

satisfy (6.17) and so do not depend on the particular extension of f and

h that is chosen.

First, f and h are shown to satisfy conditions, AI, AII and AIII, at

least when restricted to the set r. For this, we suppose

a < Ii/[i + ((s-1)(2-s))1/
2
]. (6.21)
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The restriction on a is a technical one and not a real hindrance. As r

varies between 0 and 2, s varies over the interval (1,2]. Consequently,

the constraint on a asks no more than a < .85. Practical values of a are

typically very much smaller. The Brunt-VaisalI frequencies N - (ag)1/ 2

measured in the field are of the order .01 to .02 corresponding to an a

of order 10-7/cm. (Imberger, Thompson and Fandry 1976). In the laboratory,

Mahony and Pritchard (1981) measured N N I or a - .003/cm for a salt

stratification near the limit of salt solubility.

It will be convenient to represent T and h as power series in z and

for that purpose to use

2 3
(1-z) = 1 + Vz + v(v+1) + V(V+1)(V+2) - +

Then, with 5

P ( ) ( -1)( +1) ... ( +k-2), (6.22)

the series can be written

(z)- 1) -( 1)
f~)= (-)- (l-z)S

k (6.23)

P ) C -]-
k=1 kg ks ki

and

k
- 2 - - (6.24)

k=1

convergent for Izi < 1.

It is easily seen that, in reference to hypothesis AI of section 3,

f0 (y) t fCy,0) is given by

fo(y) = (1-ay (6.25)

It is strictly positive and infinitely differentiable for y in (0,1] and

so is certainly locally H6lder continuous in that range. In consequence of
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(6.14) and (6.23),

f (y,t) = f(y,t) f f(Y)t

00

= (1a) s- 1 (p ( 2 ) -p (1) 1 t ]k

ks k s k!
k-2 (1-ay)s

(6.26)

(1a)s-1 3-s 1_ t ]2 +7-s 21 t 3+-)
s 2! (1-ay)s s 2 1(1-ay) s

a k a3 (y)t

k- 2

Since 0 4 t 4 'r(O) < 1 it is easily seen that f is locally H81der

continuous in r and that

f (y,t) D(1 + t2  (6.27)

in r, for a suitably large D. Since P (-2) > 0 and P C-4 0 for
k sk

1 IC s 4 2 and k - 1,2,3,..., it follows that ak(y) > 0 for all k. Thus

condition Al is seen to hold with 0

m=n=2a=3-,and d =D. (6.28)

Regarding condition All relative to h, it is easily seen from (6.15)

and (6.24) that

h (Y (s-1)(s-2)a2  (6.29)
0 2

(1-ay)
and that

h (y,t) =h(y,t) h 0 (y)t

2 2

s(s-1)a 2 pks( t k
2-s kIs

(1-ay) k=2 (1-ay)s

(6.30)
2 23

s(s-1)a (2-s) 2 t +(2-s) 2( 2+s) t3  +
(+s+2 2 21 3s

(1-ay) + s s 3!(1-ay)s

b k b(Y)t.
k=2
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where bk ) 0 for all k. Clearly h0  and h, are locally Hlder

continuous in r. Since bk ; 0, (6.30) implies that

01t 2 4 h1(Yt) 4 at
2  (6.31) 0

in r, where a = 0 and 0' is a suitably chosen constant. By choosing a

possibly larger value of D in (6.27), the analogous estimate for

lh1(y,t)l can be assured. Lastly, 0

h (s-1)(s-2)a 2  t -2/s

at (1-ay)2 
--(1-ay)

so the condition h > 2 amounts to the restriction that the quantity on

the right-hand side of (6.32) exceed -v provided (y,t) e r. In view of

(6.19), the latter is implied if, for 0 4 y 4 1,

(s-1)(2-s )a 2 {2- l - (1-)5.}-2/< 2

(1ay) 2 I 1 a

A short computation shows this restriction to be equivalent to the supposition

(6.21) that

if+ 1(- ) (2-s)] /

Thus the condition AII is seen to hold on r.

Finally, the hypothesis AIII is addressed. Recall the definitions of

F1  and H1, that

F (y,t) - 2 ft f1 (y,p)dp and H,(y,t) = 2 ft h1 (y,p)dp.
-1

Since a - 0 in AIX, o1 = 0. Hence it is to be verified that for any

X > 0, there is a e in (0,1) such that

AF1(Yt) - H1 (Yt) e OE[f 1(y,t) - h1(y,t)]t. (6.33)

Rather than establish (6.33) in r we will show that f, and h, satisfy a

slightly stronger condition, which, in view of the following lemma, will

guarantee that for suitable extensions of f 1  and h I outside r, (6.33)
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will hold for all t > 0. The extensions will be such that Al and AII are

satisfied as well.

0

Lemma 6.1. Let g be a nonnegative C1 function defined on

0 4 t e t0  for some to > 0. Suppose there is a constant 6 with

2/3 e < i such that 0

2g(t) 4 8(g'(t)t + g(t)) (6.34)

on [0, t0] . Then it is possible to extend g to a C' function g defined

for all t > 0 and satisfying

G(t) e 6g(t)t (6.35)

where

G(t) = 2 gf (p)dp. (6.36) S

Proof. If (6.34) is integrated from 0 to t, it yields

G(t) < 6g(t)t, (6.37) 0

for 0 C t 4 to, with G defined in analogy with G. In fact all one need

assume in the proof is that the inequality (6.37) holds for 0 4 t 4 to and

that (6.34) is valid at the endpoint t = to. Let S

g(t) = g(t0 ) + g'(t 0 )(t-t 0 ) + q(t-t0)
2
, (6.38)

with q to be chosen. We need check (6.35) only for t > to, given that

(6.37) holds. Since S

223
G(t) = G(t0 ) + 2g(t 0 )(t-t0 ) + g,(t 0 )(t-t0 ) + i q(t-t0)

and

eg(t)t = 6[g(t0 ) + g'(t 0 )(t-t 0 ) + q(t-t0) ](t-t 0)

2+ B[g(t 0) + g'(t 0 )(t-t 0) + q(t-t0) It0,

the desired inequality takes the form,
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G(t0) - g(t 0)t 04 (t-t 0 ) ((8-2)g(t0  + 9g'(t0lt 0

+ (t-t0)
2((e-1)g'(t 0) + Oqt0 1

+ (t-to) 3 [(e - 2)q]
0)q3

In view of our assumptions, the inequalities will hold if

q = (1-8 )g'(t 0)/t 0 , thus completing the proof.

For each y the function g(t) - Xf (y,t) - h1(y,t), defined for

0 4 t 4 to = T(O), is a candidate to which we may attempt to apply lemma

6.1. If we show g satisfies (6.34), then it can be extended to t > to

using (6.38) so that (6.33) is satisfied. In order to maintain the condition
ah ,2
h> -W which is satisfied on 0 4 t 4 T(O), extend h1  linearly and add

the quadratic term to f1.

That is, for t > to , define

f (t) = f (t0) + f (t0)(t-t 0) + 2X-q(t-t)2

1 1 0 1(t0 0 q0- 0
(6.39)

h (t) = h (t + ht )(t-t
1 1 0 1(t 0

where the y dependence has been suppressed throughout. One can choose q

larger, if need be, to guarantee that AI continues to hold for the extended

The inequality (6.34), with 8 = 2/3, holds for any power tk provided

k P 2. Since (6.34) is linear in g, it holds for

40

XfI - h = ak + bk)tk,
k=2

a series with nonnegative coefficients.

It has been verified that the functions f and h arising from the

density profile P0 (1-ay)r  for 0 < r 4 2 satisfy condition A. According to

theorems 3.2 and 3.4 there are x-periodic solutions (X, ) of equation(3.1)
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obtainable by specifying R in problem (PC)(3.3) or X in problem

(PF)(3.4). According to corollary 4.5, condition (6.17) will be satisfied

provided we restrict R to a range 0 < R < R0  or X to a range

)0 < X < V. With these restrictions in force,

c p 1/21+r2

*(x,y) = a[1-r/2)J [1 - (1-ay) + f(x,y)],

with (6.40)

1/2

has range in (0, I(M)]; is a solution of Yih's equation (2.5); and provides,

for each k > 0, a train of depression waves, 2k-periodic in x. Since

m < 5 and 0 - 2M- a < u, lemma 4.1 implies that X < U when R is l

specified. Corollary 4.8 then guarantees that the x-dependence is nontrivial

for all sufficient large k.

For the same ranges of R or X there are solitary-wave solutions of

Yih's equation. These are still described by (6.40), the pair (X,O) now

2
being given by theorem 5.1. Since I'f 1 - h1 C0t , the deviation of the

velocity fields of these solitary waves from the velocity field of the trivial

flow decay exponentially as IxI + 
-.

For r in the range 0 < r 4 2 (or 1 < s 4 2), the nonlinear

functions f and h arising from P = P0 (1-ay)
r  satisfy condition A on a

domain r which arose naturally in our analysis, and the applicability of the

results of sections 3-5 was limited only by having to insure that

0 ( 4 (1). For r > 2 we no longer deal exclusively with power series of

positive terms in expanding f and -h and must therefore impose further

restrictions on the range of O(x,y) to apply the general theory. For 2 < r

< 4 we continue to use j = Y so f and h are described by (6.26) and
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(6.30) respectively. Naturally, f0  and ho will not change. To simplify

matters, and to exhibit certain features of the regime in which 2 < a < 3,

attention is given to the situation in which e = 3/4 and 0 < a * .2, so

that (1-a)8 > 1/2. Since

1(k- 1) 1 1 PO(E) 4 of (6.41)
1 0

for 0 C & 4 1, and since - ) 1, it follows that
1-ay

3-s 2 (2t) k

f (Y't) t 2 - s (4k " (6.42)

From (6.42) it is easy to see that the choice

a M,- (6.43)
16

more than suffices to guarantee fl at 2 on the set

3-s}
r - {(y,t) I 0 4 y 4 1, 0 c t e 3-s (6.44)

32s

(the choices here are influenced by condition AIII). The remainder of AI is

verified as before. Again using (6.41), we see that h,, which is in this

range given by a power series with non-negative coefficients, satisfies

0 h s(s-)a 2ss-2 2 2t ( 2 t)k - 31, s +-- _2 t2s+ k
(1-a) s+ 2 s k=3 k

and hence for (y,t) e r,

Olt2 4 h 1(Y't) 4 at ,

with 0' =0 and 0
2

4(s-1) (s-2)a (6.45)
s

Since ah/3t 0 the remainder of AII is plainly satisfied.

If condition (6.34) is valid in r, for g = Xfl - hi then appeal to

lemma 6.1 assures that f, and h, may be extended to all of

[0,1] x R whilst still satisfying condition AIII. As before, the extensions

described in (6.39) will serve to maintain conditions AI and AII. Inequality
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(6.34) takes the form,

[(k+1)O-2](Xak(y) - bk(y)]tk ) 0, (6.46)k=2"

using the notation of (6.26) and (6.30). The condition (6.46) will follow

from the more explicit inequality,

X{(3-2) 3-s t 2 _ a c(k+1)-2] t k

2s (k-2)s
k=3 4k(1-a)

(6.47)

+ a(s-1)(s-2) t2 + 2-s [(k+1)-2] t k ) 0,
( k=3 k(l-a)(k-2)s+i

obtained using (6.41) and the restriction 2 < s < 3. With 6 3/4,

(k+1)e-2 < 3k/4 and the expression multiplying X in (6.47) is at least 9

t2 [I 3-s (3) 2 k-2

k=3

and so more than t 2(3-s)/16s for (y,t) in F. Hence (6.47) will follow if 0

2 O

3-s a (s-1)(s-2) (I + 1 . (2t) ) ) 0. (6.48)
16s s(1-a) k=3 4

In AIII we assume that •

I 64(s-1)(s-2)a 2( .9
a 3-s (6.49)

and because of this, a simple estimate shows (6.47) to be true in F when

(6.48) holds. To apply lemma 4.1 we require a/a < 4/2; i.e. 0

2
64(s-1) (s-2)a 23-s-< (6.50)

3-s 2

This last condition also guarantees that the interval (0/a, p) is nonempty

(cf. theorem 5.1). With the extra condition (6.49) fulfilled one can, as in

the case 0 < r 4 2 assert that for 2 < r < 4 (2 < s < 3) in (6.1) there
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are periodic and solitary waves of depression for a suitable range of

"energies" R or supercritical velocities c, derivable from (6.40).

In verifying the condition A in the range 2 < r < 4 (2 < s < 3) we

forfeited any advantage of having s near 2 to illustrate that the range of

allowable amplitudes vanishes as s approaches 3. This is a manifestation

of a transition which takes place, from waves of depression to waves of

elevation. In the limit of vanishing stratification (a + 0) the transition

occurs at r = 4. For positive a the transition occurs at an r > 4. This

can be established by relaxing condition A and using the techniques of section

3. For exammple, in problem (PF) one need put conditions only on the

combination Xf - h. As noted earlier, condition A is a compromise aimed at

limiting the length of the exposition.

Waves of Elevation

Here we are concerned with the profile (6.1) with an exponent r > 4,

corresponding to s > 3. The terms f0 and h0 are unaffected by the choice

of j in (6.14) and (6.15), but an inspection of (6.26) shows that the term

quadratic in t in -f1 (y,-t) has a positive coefficient for s > 3,

dictating the choice j = -Y. To simplify writing, and so that we can make

use of the foregoing formulas, we use a superscript + to designate functions

associated with the range s > 3. For example, f+(y,t) = -fl(Y,-t).

The range restriction on t now derives from

0 T -yt 4 T(I),

and is easily reduced to

0 4 t < 1 - (1-ay)
s
. (6.51)

For the series (6.26) to be usable, t/(1-ay)s  cannot exceed 1. Requiring

-f(-z) (cf. 6.14) to have a positive second derivative would impose a
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limitation of the same order of magnitude. In combination with (6.51) the

bound on t requires that

1/2 < (1-a)s .  (6.52) S

For s = 3 we know that a < .2 will suffice. However, for large s (6.52)

implies that a < 3/s. Even with this restriction, we will see in the next

subsection that the exponential profile fits within the theory, treatable 0

either as a limit as s grows and a decreases, or through a direct

computation.

In this section the variable t is most severely restricted by (6.51) S

when y is near 0 (compare 6.19). While the functions f (y,t) =

-f1 (y,-t) and h+(y,t) = -h1 (y,-t) are well defined in the domain described

by (6.20), it will be necessary to restrict the range of t in order to

satisfy condition A. The estimates here are simplified somewhat by an

alternation in the sign of the terms in the series expansion of f and g.
+

To begin, we show that the terms in the series for fl alternate in sign and

decrease in size for k ) 3. It will suffice, noting (6.14) and (6.26), to

show that for k ) 3 and 0 < = 1/s < 1/3,

I[Pk - P (2&)] (6.53)

is non-negative and non-increasing with increasing k. Using (6.22), one

reduces the question to showing that

0 _L [P (&)(C+k-1) - P (2C)(2C+k-1)] 4 Pk(C) - P (2 ),

or that

(t-1)A(E+1) .- ( +K-2) 2-2X(_ -1)_(2_+1) "__ _ (2_+k-2) 2-C 1 (6.54)

A short computation shows (6.54) to hold for k = 3. For larger k the left

side of (6.54) becomes smaller, so that the desired result holds for all

k ) 3. It folLows that
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f+ s-3 t 27-s 2 t3

1 2S (-ay) s 31 l-ay) 2 s+1

(1-a) Since (1-a) > .5, f> at
2  

h

s-3 (6.55)
4s

in the domain,

r' = [(y,t) I o < y < 1, o0 t 2 (-)} (6.56)
8(s2-7)

Verification of AI in r is completed as before. Again we see that the range

of t vanishes as s approaches 3.

Since P (W)k1 decreases with increasing k for =2/s < 2/3, one
k

sees from (6.30) that the series for +(yt) = -h (y,-t) has alternating

signs and decreasing size. Thus

lt (yt)

holds in r, for - a 0 and

a 2 (s-1)(s-2)

4s 2

The t derivative of h 1is merely (6.32) with t replaced by -t and is

always positive for s > 3, so All can be seen to hold.

To satisfy condition AIII we again arbitrarily take = 3/4 and note

that t < 2/3 in rs from (6.56). Then for k > 4, [(k+1)-2Jt k is

decreasing With k and we can exploit the alternation in the series for

Af 1- h in satisfying (6.34) (compare (6.45), (6.46)). Here A > a/ a 0

and the analogue of (6.46) will be satisfied if

1-3 22

s3t2 _ s _ t 3 postiv-- terms)

4't 2h1Y3) s

4d2s 2ns 3, f(1-a)d

a (s-(s-2) 3 t2 2(2+s) t 3-- + positive terms) > 0.
s(1-a) I S 31(1-)
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Since Cl-a) s > .5, one easily checks that the last inequality holds in r.

The discussion surrounding formula (6.40) is now relevant, though with

replaced by -0 in that formula, corresponding to waves of elevation.

The Exponential Profile

if the density in the undisturbed state is taken to be

P(y) = P0e-OY (6.57)

then the pseudo-stream-function corresponding to (6.3) is

_ 1/2 _ 1 Oy

Y ) 0  c(1 - e 2 (6.58)

A computation similar to that carried out for the density (6.1) shows that in

this case the basic equation (6.13) (or (2.1)) has

IY I I
1+y* e-8B I y lg 1 8y

f+ (yM) e 2  ( + e 2 log(1 + e2  *), (6.59)

h(+y,( ) ( (6.60)

and

go/c 2 , (6.61)

wi j 0 -Y -2 P1/2c/8. One can now proceed to verify condition A as

before. However, we have already done this, for (6.57) is obtainable as a

limit

P e - 0
y = lim P (1 

) ry
0 0 r

with a = O/r in (6.1). In terms of s, with a = 0/(2s-2), (1-ay) s

- 1y

approaches e and f approaches 1 as s + + 1. The expression

SEPk(21s) - Pk(I/s)] in (6.26) approaches the derivative of Pk at 0,
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4 -.

i.e. (k-2)1, and the whole series in (6.26) approaches a series for

f(y,t) from which one obtains a series for f1(Yt) = -f (y,-t). Of course,

this series can also be calculated directly using (6.59).

From (6.29) it is apparent that

+ ( 2

h0 (y) = 4-,

while from (6.30), h = 0, since each coefficient is 0(1/s), as s + + .

Previously we had the restriction a < 3/s for large s so that now it is

required that 8 = 2as < .6. The restriction on t from (6.56) allows us to

take 0 4 t < 3/8 and from (6.55), a = 1/4 will suffice on that interval.

The remaining points of condition A carry over in the limit and we therefore

obtain periodic and solitary waves of elevation with
IU

21/2 - 1ay

*(x,y) = 8 [I - e - (x,y)], (6.63)

where

c = (g8/1) 1/2

cS
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7. CONCLUSION

The hypotheses AI, AII and AIII introduced in section 3 and the

additional restrictions in lemmas 4.1 and 4.10 effectively delineate a class 0

of quiescent states of a heterogeneous fluid confined between two rigid

horizontal plane boundaries. Wave motion superimposed upon these quiescent

states has been contemplated. Provided that the effects of dissipation, 0

diffusion of the heterogeneity, and compressibility may be ignored, on time

scales sufficient for the passage of the waves in question, this class of

heterogeneous systems has been demonstrated to support two-dimensional steady-

wave motion corresponding generally to surface cnoidal and solitary waves. It

deserves emphasis that these waves, which are solutions of the full Euler

equations, need not have small amplitude. 0

In this section we discuss some implications and drawbacks of the present

theory, and point to directions for future investigation.

Perhaps the most obvious drawback of our analysis is the absence of a

practical set of sufficient conditions that a given system fall within the

confines of the class covered by the theory. Such conditions would ideally be

expressed directly in terms of the undisturbed density stratification p and

the undisturbed fluid velocity U. As the examples studied in section 6 amply

demonstrate, our theory does have utility in a considerable range of

situations. Nevertheless, checking the hypotheses of the theory can be

somewhat tedious.

It should also be admitted that variation of density that features a

relatively rapid change in the middle of the vertical extent of the flow

domain, say joining two homogeneous layers of fluid of constant density

PT and pB (with PT < P B) situated at the top and bottom boundary,

4S
respectively, have not been treated by our theory. Such density variations
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are addressed in the complementary paper of Turner (1981). The latter

reference even includes results pertaining to the much-studied two-layer

problem (a layer of light fluid resting upon a layer of heavier fluid) which

has a discontinuous undisturbed density profile. Similarly, Ter-Krikorov

(1963) was able to treat systems having an arbitrary smooth undisturbed

density profile. Ter-Krikorov's techniques limit his results to small

amplitude solitary and cnoidal waves. While the variational techniques used

by Turner allow for finite-amplitude waves, the required estimates for the
S

quasilinear elliptic equation arising in his analysis effectively limit the

applicability to small amplitudes. We faced a similar situation here in

having to limit the ranges of energies or speeds. However, the linear

elliptic estimates intervening in section 4 are not such as to vitiate our

claim to have found "finite-amplitude waves". In none of the studies under

discussion is the entire collection of allowable solutions exhausted. In the

case of surface waves on fluid of constant density one has a more satisfactory

global picture. Amick and Toland (1980) have shown that there is a connected

set of solutions joining a "wave of greatest height" to a trivial flow.

Another possible objection to the present theory is the fixed upper

boundary that intrudes in our formulation. This simplification has a long

history (cf. Keulegan 1953, Long 1956, Benjamin 1966, 1971). Despite these

precedents, a fixed upper boundary certainly seems somewhat artificial when

one thinks of waves in the ocean or atmosphere. Peters and Stoker (1960)

obtained a formalism for internal solitary waves which allowed a free upper

surface. Benjamin (1966, §4) also gives theoretical results, some of which

relate to the situation where the upper surface is left free. He notes that

the resultant change in boundary conditions that is implied in passing from a

fixed to a free upper surface can fundamentally alter the character of the
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flow. Especially considering this latter point, a rigorous theory that takes

account of a free upper surface, or which is set in a semi-infinite domain

where the upper boundary has receded to infinity, would seem a worthwhile -

undertaking.

Another aspect of internal-wave theory that deserves attention is the

relationship of solutions of the Euler equations to solutions of the various 0

model equations that formally apply to small-amplitude, long-wavelength

disturbances. Because of the extra length scale, the vertical width of the

stratified layer, a number of essentially different models arise, a situation

at variance with the usual theory of small-amplitude long suface waves.

Depending on the relationship between the varius parameters that intervene in

the regime at hand, we may obtain the Korteweg-de Vries equation (Benney,

1966), Benjamin's (1967) equation, or the equation derived by Joseph (1977).

(The latter equation reduces to the former two in certain limiting cases.) It

is not intended to initiate a detailed discussion of these equations.

However, it is interesting to recall that the solitary-wave solutions of these

models play a distinguished role in the evolution of general classes of

initial data, in that the initial data resolves itself into a sequence of 5

solitary waves followed by a decaying dispersive tail (cf. Miura 1976). There

are not results available now providing rigorous comparisons of solutions of

these model equations with solutions of the Euler equations. Notwithstanding,

such model equations have been observed to give quite acceptable predictions

(cf. Bona, Pritchard and Scott 1981, and the references contained therein), so

it is not unreasonable to conjecture that solitary internal waves do play a

somewhat special role in the long-term evolution of certain classes of

disturbances. (Some additional evidence in favour of this conjecture will be

introduced presently.) If valid, this proposition certainly heightens

interest in solitary-wave solutions of the Euler equations.
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The waves whose existence is demonstrated in section 5 deserve, at least

provisionally, the appellation "solitary wave". They accord with Scott
-u

Russell's (1845) original conception, a single-crested wave which is sensibly

localized in space and which propagates at a constant velocity and without

change of form. The surface water waves regarded in the field and in the

laboratory by Scott Russell are remarkably stable. To fully justify the

designation "solitary wave" for the waves dealt with herein, a satisfactory

theory of stability pertaining to these waves must be forthcoming. Alas, at

this juncture even a uniqueness result may only be surmised. Therefore, this

issue is left aside in the present work, though its resolution would certainly

be of considerable interest. The solitary-wave solutions of the Korteweg-de

Vriqs equation and of Benjamin's equation are known to be stable (cf. Benjamin

1972, Bona 1975 and Bennett et. al. 1981). Insofar as these model evolution

equations reflect the Euler equations, the last-mentioned results may be

construed as evidence in favour of the stability of the waveforms dealt with

in section 5.

Experimental and field observations point even more convincinqly to the

stability of the internal waves addressed earlier. We point to the laboratory

studies of Davis and Acrivos (1967), Walker (1972) and Maxworthy (1979,

1980). On a grander scale, the recent observations of internal waves off the

coasts of the continental U.S.A. (cf. Apel et. al. 1975), in the Andaman sea

(Apel 1979, Osborn and Burch 1980), and elsewhere, present themselves.

Internal waves with peak to trough amplitudes as large as 100m are represented

in these rather spectacular reports from the field. Some of these waves have

been interpreted as internal solitary waves, and indeed the evidence for this

presupposition is substantial, if not compelling. From the view of the

present discussion, these observations tend especially to reinforce two
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points. The first is the exceptionally stable nature of internal solitary

waves. The second is the distinguished role played by the solitary wave in

the long-term evolution of certain types of disturbances, as would be 0

predicted by the various model equations. As the waves in question probably

obey the Euler equations more closely than the simplified model equations,

-there is an inference that the Euler equations may exhibit the forementioned

phenomenon of resolving perturbations into a sequence of solitary waves*.

Finally, it deserves emphasising that the periodic, or cnoidal waves
I U i

whose existence has been assured in theorems 3.2 and 3.4 do not satisfy the

boundary conditions under which Yih's equation (2.5) was derived. In

consequence, while they may be used to define solutions of the Euler
* S

equations, no direct physical significance can be imputed to these

solutions. Nonetheless, it has been argued by Benjamin (1966, 13) that such

periodic wavetrains may be generated in the lee of an obstacle introduced into

a primary flow, or on the back of an internal undular bore. In both these

cases, a change in energy is needed in the generation region, near the

obstacle or near the front of the bore, respectively, in order that such waves

* 0
may arise. In consequence, this sort of situation is beyond the scope of the

present study, both in regard to predicting which wavetrain would be

manifested in a given configuration, and in regard to the possibility of an

exact analyis. in any case, the periodic wavetrains present some interest, if

for no other reason than their approach to the solitary wave, as their period

grows indefinitely large.

We are not suggesting that the Euler equations are completely integrable.
The recent work of Benjamin and Olver (1981) makes this an unlikely

* possibility. However, it appears that wave equations may have the property of S
resolving initial data into solitary waves without being completely integrable

(cf. Bona 1981).
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Appendix

In this section we set forth some results, used in section 3, regarding

symmetrization (or rearrangement) of functions.

Let T be a triangulation of the rectangle 0k " {(x,y) I -k 4 x < k,

0 4 y 4 1}, i.e., a collection of closed triangles contained in lk'

having union equal to 0k and having the property that any pair intersect in

a common edge or vertex, if at all. Let u be a function defined on k" We

say u is piecewise linear (PL) if it is continuous in Sk and if there is a

k

triangulation T of 2k' as described above, such that u is linear in x

and y on each triangle of T. Starting from the fact that C l(9 ) is dense
k

in w'2(Ak), and approximating a C 1 
function by a PL function in the

w1,2 norm, one shows that PL functions are dense in W1'2(9k ). We denote by

PL+ the collection of u e PL for which ux 0 0 a.e. Suppose s e PL has

ax + 0 a.e. By considering u(x,y) + £s(x,y), for suitable small e, one

sees that PL is dense in W 1,( ). All we require for our variational
k

principles is a dense class. At the same time, the symmetrization which we

next define is very easily analyzed in the class PL+ . One can extend the

results on symmetrization to all of W I1 2 as was done by Fraenkel and Berger

(1974). However, the weak limits involved can equally well be postponed until

working with a variational principle as we do in this paper.

Suppose u is in PL on lk . For each fixed y with 0 < y ( 1, let

A(a,y) = mfx I u(x,y) > a}, V

where m is 1-dimensional Lebesgue measure and a lies between the minimum

and maximum of u. The measure in question is merely the sum of the lengths

of a finite set of intervals and since ux # 0 a.e., P will be continous

in a and y. For each y the value of P strictly decreases as a
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increases. For a = max u, p = 0, while if a = min u, V = 2k. we seek a

function u which is even in x, decreases in x for 0 4 x 4 k, and

satisfies

m(x i u(x,y) > a) = P(a,y).

1
If, for a given y, a(p,y) denotes the function inverse to - i(a,y), then

2

the even function u(x,y) defined by

u(x,y) = a(x,y),

for 0 ( x 4 k, clearly meets our criteria. Note that if v = v(x,y) is

another PL function, then u 4 v implies u ( v.

Lemma 1. Let u and w be in PL. Then

lu-wi ( lu-wi
L(ak) L (0 )

Proof. Let u-wi 6. Then w 4 u + 6  so w u+6 . If u(x) a

L
then 2x mu > a= m{u + 6 > a + 6}, so (Z+ 6)(x) =a+6 =(x) + 6. Thus

w 4 u+6. Similarly, u 4 w + 6, so lu-w1 . 4 6.

L

For u e PL+ the absolute value lul is in PL+. Define (compare

definition 2. 1)

v- lul

and

U -V.

We call u the symmetrization of u, after Steiner (cf. Polya and Szego

1951, note A). It follows immediately from lemma I that

lu-zN 4 lu-zi (Ap. 1)
L (0) L (S) 

for PL+ functions u and z defined on "
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Our use of symmetrization hinges on the behavior of certain integrals of

symmetrized functions. First, suppose G(y,u) is continuous in y and u,

for 0 ( y ( 1 and any real u. For u e PL+ an elementary argument shows

that
U

fak G(y,u(x,y))dxdy - - umin  •
k 0Umax a y

and hence that

fak G(y,u)dxdy = fak G(y,u)dxdy

(cf. Polya and Szego 1951, p. 185). Since the function u has the same

measure distribution u as lul, it follows that

kG(yu)dxdy = f G(y,u)dxdy.

If G(y,IuI) = G(y,u), i.e. if G is even in u, then

G ~yu)dxdy = fa G(y,u)dxdy. (Ap. 2)

Another relation we need for a function u in PL+, which is 2k

periodice in x, is the inequality

f IVul2dxdy . fa IVul 2dxdy, (Ap. 3)

2 2
which follows from (Polya and Szego 1951, p. 186) since IVul = IVull

a.e. It should be noted that (Ap. 3) will not hold for an arbitrary PL+

function on k" For the cited proof to apply it must be that each line y =

constant, u = constant which intersects the graph of u, intersects it in at

least two points. A function which is 2k periodic in x has this property

on 9k' and since we consider only such functions, (Ap. 3) is certainly at

our disposal throughout.
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