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Abstract. The stability of weakly nonlinear waves on the surface of a fluid layer in

the presence of an applied electric field is investigated by using the derivative expansion

method. A nonlinear Schrodinger equation for the complex amplitude of quasi-mono-

chromatic traveling wave is derived. The wave train of constant amplitude is unstable

against modulation. The equation governing the amplitude modulation of the standing

wave is also obtained which yields the nonlinear cut-off wave number.

1. Introduction. The effect of the electric field on the motion of fluids has been

studied by a number of workers since the pioneering work of Rayleigh [1] and Stokes [2],

In his investigation on the stability of an incompressible, inviscid, perfectly conducting

fluid layer in the presence of the electrostatic forces, Michael [3] found that the electro-

static forces can have a destabilizing effect on the fluid motions. Shivamoggi [4] has also

examined the stability for such a problem in the neighborhood of the linear cut-off wave

number.

Nonlinear dispersive waves have been a subject of intense study (see Lighthill [5],

Whitham [6], Karpman [7]). In this paper, we examine the asymptotic behavior of

weakly nonlinear dispersive waves on the surface of a fluid layer when an externally

applied electric field is present. To that purpose we employ the derivative expansion

method [8]. In Sec. 2, we give the basic equations and outline the procedure for obtaining

the linear and the successive nonlinear partial differential equations of the various orders.

Using the linear theory, we have obtained the uniformly valid solution for the second-

order problem. It is also shown that, to the lowest order in the expansion parameter e,

the amplitude A remains constant in a frame of reference moving with the group velocity

of the waves. In Sec. 3, it is demonstrated that the complex amplitude of the quasi-

monochromatic waves can be described by the nonlinear Schrodinger equation. The

wave train solution of constant amplitude is modulationally unstable for k > 1.388. The

result also indicates that although the Schrodinger equation so obtained is valid for a

wide range of wave numbers, it does not hold near the cut-off wave number. A similar

but slightly modified analysis is presented in Sec. 4 for the standing waves. It is shown

that the amplitude modulation of the standing wave is governed by the nonlinear Schro-

dinger equation with the role of the time and the space variables interchanged. The
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nonlinear cut-off wave number which separates the stable from the unstable motions

depends sensitively on the initial conditions.

2. Formulation. We study the two-dimensional wave propagation of finite ampli-

tude on the surface of a perfectly conducting fluid layer with thickness a0 supported by a

conducting electrode at z = —a0. The fluid is assumed to be inviscid and incompressible

with the unperturbed free surface at z = 0. Another conducting plate is maintained above

the surface of the fluid at z = b0 with the fixed potential v0. The motion ensues from rest

and the flow field so generated due to wave motion is assumed to be irrotational. The

basic equations relevant to our problem are:

V2Q(x, z, t) = 0, -a0<z<rj, (1)

V2(/>(x, z, t) = 0, t] <z <b0, (2)

where t denotes the time and rj the elevation of the free surface measured from the

unperturbed level. Here, fi(x, z, t) and cj)(x, z, t) represent the velocity and electrostatic

potentials, respectively. The various physical quantities are normalized with respect to

the characteristic length / = (T/pg)112 and the time tc = (l/g)112, where g is the accelera-

tion due to gravity and T is the surface tension of the fluid. The nondimensional poten-

tial functions are taken to be g~ 1/2/3/2fi(x, z, f) and <t>c(t>(x, z, t), where (pc = (l3gp)~ ll2v0.

The boundary conditions are:

dt] dQdrj dQ
Jt + TxSi = Tz at 2 = "' ,31

(5/c5z)Q = 0 at z=—a, (4)

0 = 1 at z = b, <j> = 0 at z = rj, (5, 6)

» 'Iffl' + I®)' +^(l + /^)r1"-, = co»sta„t, (7)
8n\dn) 6t 2\\8xJ \dz) dx \ \8x)!

where a, b are the dimensionless quantities and n represents the outward normal.

3. Perturbation analysis. In investigating the modulation of a weakly nonlinear

quasi-monochromatic wave with narrow band spectrum, we employ the multiple-scale

method. We introduce the variables

x„ = e"x, f„ = e"f (n = 0, 1, 2, ..., N),

where the small parameter e represents the weakness of the nonlinearity. To describe the

nonlinear interactions of small but finite amplitude waves, we first expand rj, <fr, and Q in

the following asymptotic series:

tl(x,t)= YJE"ln(xo,xl,...,xn-,t0,t1,...,tn) + 0(£N+2), (8)
n = 1

0(x, t) = £ e"0„(xo, x1( x„; t0, tu ...,t„) + 0(eN+2), (9)
n = 0

N+ 1

Q(x, t)= £ e"fi„(x0, xu x„; t0, tu t„) + 0(eN+2), (10)
n = 1
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(id

5-!/£ + <*""> (12)

It turns out that for the problem under investigation it is sufficient to take N = 2 as far

as the lowest significant order is concerned. On using Taylor's series expansion around

z = 0, the conditions (3), (6) and (7) lead to the linear and the successive nonlinear

partial differential equations of various orders (see Appendix).

a. Linear theory. The progressive wave solution of the first-order problem governed

by the equations (A4) to (A 10) with respect to the lower scales x0 and t0 yields

rh = i(A exp(i'0) - A exp(-;0)), (13)

^ a> cosh k(z + a) , n. „

a>=I sinh ka A**m + c-c + B„ (14)

4>t - ' S'fc ~ {A exP(i") - A exPt-'°)l (15)

where

6 = kx0 — wt0. (16)

The constant is assumed to be real and independent of the lower scales x0,t0, and the

amplitude A is a function of the fast variables xu f,; x2, t2. For the above solutions to

be nontrivial, the frequency to and the wave number k must satisfy the following disper-

sion relation:

co2 = k(k2 + 1 — (xk coth kb)tanh ka, (17)

where

a = (j)2/4nb2. (18)

From Eq. (17), we conclude that the fluid layer is unstable for all deformations which

have wave numbers less than kc, where kc is given by the transcendental equation

I + k2 — ak coth kb = 0. (19)

On solving (19) when a. = 1 and b = 0.5, we get kc = 1.093. If /c£> g> 1 (i.e., long wave

approximation), the solution of (19) takes the form

*,-(*-if. (»)
On the other hand, for small kb, we obtain

kci 2 = 0.5a ± (0.25a2 - 1)1/2. (21)

Consequently, the progressive wave solutions are possible only for k > kc. Since our aim

is to study the amplitude modulation of the traveling waves, we now proceed to the

second- and third-order problems furnished by Eqs. (All) to (A25).
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b. Second-order solutions. The nonsecularity condition for the second-order perturba-

tion is

8 A 8 A
+ (22)

together with its complex conjugate relation. Here vg = du>/dk represents the group velo-

city. Eq. (22) implies that the complex amplitude A is constant in the frame of reference

moving with the group velocity of the wave train. With this solvability condition, the

particular solution of the second-order problem is

h = l2o(*i, *2; h, h) + V1 exp(/0) + A2p2 exp(2id) + c.c., (23)

. ... sinh k(z + a) 8 A
O, == — /co/c (z + a) ^—7 ^—exp(i0)

sinh ka <3.x,

, cosh 2k(z + a) ,
+ cok ipi — A2 e\p(2id) + c.c. + B2, (24)

sinh 2ka

,-1/ ,, cosh k(z — b)8A . n. , I8B, .

*> = b~ iz-b) sinh kb to, + ""

+ ;/> 'f>4 A1 ^ e*P(2'3) + C.C. + Bs, (25)

ho = + IPs^a), (26)
8t,

dA , _, /4, , , , v dA
pl=——+cok (1 + ak coth ka)-—, (27)

dx j

P2 = iP3 — k coth ka, (28)

-2i
P3 =

D(2/c, 2co)
(coth2 ka — 3) + (4fe2 + l)/c coth ka

+ ^ /c2(3 — coth2 kb — 4 coth 2/cfr(coth ka + coth /cfr)) (29)

P4 — P3 + ik(coth ka + coth /cfo), (30)

Ps — i0)2 cosech2 ka + ^ /c2(3 — coth2 kb) — k coth kb, (31)

p6 = ^co2 cosech2 ka + ^ /c2(3 — coth2 kb) — ab~ lk coth kb, (32)

q = (at-1 - l)"1, (33)

D(2u>, 2k) = 2k(4k2 + 1 — 2<xk coth 2kb) — 4oj2 coth 2ka. (34)

Here B2 and B3 are arbitrary constants to be determined by considering the equations of

higher orders. We shall assume that D(2a>, 2k) 0. The case when D(2a>, 2k) = 0 corre-

sponds to the second harmonic resonance.
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3. Nonlinear self-modulation. We now proceed to the third problem to get the equa-

tion for the amplitude modulation. The nonsecularity condition for r/3 is given by

acoth ka(AA) = 0. (35)
dxf dtl dxi ' v '

With Bl and r]20 assumed to depend upon the slower scales through A, Eqs. (22), (26),

and (35) yield

dBl/dx1 = 2 (a + qvg)~ i[qvgp6 - to coth ka]AA + c(x2, t2), (36)

where c(x2, t2) is a constant of integration to be evaluated from the initial or the

boundary conditions. We impose the condition that there is no flow at infinity. This

condition gives

c(x2, t2) = 2(a + qvg)~ '[to coth ka - qvgp6] | A012, (37)

where A — A0 when x -» oo. On substituting (36), (37) into (23), we get the mean eleva-

tion of the free surface due to nonlinearity.

We now introduce the following transformations:

£ = s~ 1(-x2 - Vgt2) = X, - Vgtl; T = £2t2 = fitj.

On substituting Eqs. (13)—(17) and (23)-(34) into the third-order perturbation equations

(A18) to (A25), we get the nonsecularity condition

i-^ + P-^T =QA2A + RA, (38)

where

P = Udvjdk), (39)

„ IdD I"1 ' (dD\~1

Q-(to) miU qm' (40)

R = -[1 - vgq{i + b-l)]i, (41)

Qi = p3[aA:2 coth /cb{2(coth 2ka + coth 2kb) + (coth ka + coth kb) + 2 coth 2kb}

— k(k2 + l)(coth ka + 2 coth 2ka) — 3a/e2 — 2co2 coth ka coth 2ka], (42)

q2 = i7c[a^2{(coth ka + coth kb)(4 coth kb coth 2kb + coth ka coth kb — 2)

—| coth kb - coth ka} + j(k3 - co2 coth ka) - k(k2 + l)(coth2 ka + |)], (43)

q3 = - 2ico d coth ka, (44)

q4 = 2ia.k2b~ lq coth kb(2p5 - dvg), (45)

q5 = iq(k2a cosech2 kb - a>2 cosech2 ka)(2p6 - dvg), (46)

d = 2(a + qvg)~ l[qvgp6 - a> coth ka], (47)

Eq. (38) describes the nonlinear self-modulation of the capillary-gravity waves on a liquid

layer in the presence of an externally applied electric field. From the known solutions of

the nonlinear Schrodinger equation (38), it is interesting to note that the plane wave

solution is unstable against modulation if PQ < 0 (see Lighthill [4], Hasimoto and
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Ono [9] and Kakatuni et al. [10]). Typically, for values of a = 1, a = b = 0.5, this condi-

tion is satisfied for the wave number k > 1.388.

The term P(d2A/dx\) in (38) is essential to describe the long-time asymptotic beha-

vior of the wave modulation. Physically, this plays the role of checking the steepening of the

wave form giving rise to the equilibrium solution. This solution can be expressed in terms

of the Jacobian elliptic functions, which include a depressive solitary wave, a phase jump,

and a wave train of constant amplitude as special cases. The nonstationary solution of

(38) has been obtained by Zakharov and Shabat [11] through the inverse scattering

technique. They found that the finite-amplitude solution is modulationally unstable in

such a way that an arbitrary initial motion ultimately breaks up into a series of solitons.

4. Amplitude modulation of standing waves. Since we are interested in the waves

near k = kc and co = 0, the carrier wave is not a progressive wave but instead a standing

wave. For this case the coefficients P and Q in (38) become unbounded as k approaches

kc. This necessitates modification of the previous analysis. The starting solutions of the

first-order problem we take here are:

h = i(Axix2~, fi, t2)exp(ikcx0) - A(xu x2; tu t2)e\p(-ikcx0)), (48)

~ ^i(xi> xi'i h> hX (49)

i i sinh klz — b) r . .
^ = b sinh kb ^ exp(,7c<x°) ~ A exP("».a (5°)

Proceeding as before, we find the nonsecularity condition for the second-order

perturbation

8A/8Xl = 0, (51)

which implies that the amplitude is independent of the faster variable x,. The uniformly

valid solution of the second-order problem now becomes

_ _. dA cosh k(z + a) , ,

CI'-,k Si, sinh fa, + + (52)

(jy2 = b'2{z - b)q^~ + s, AA J + ib~ 's2 exp(2ifc(x0) + C.C., (53)

d B
I2 — + (^5i _ 2/c coth kb)AA + (is2 + k coth kb)A2 exp(2ikcx0) + c.c., (54)

ot i

where

= a/c2(l — coth2 kb) — 2k coth kb, (55)

1 + 4k2 — 2&k coth kbs2 = i a (coth2 kb — 1) + k coth kb( 1 + 4k2) \ (56)

Considering only the constant terms in the third-order problem, we obtain the non-

secularity condition

dB1/dtl = [2/c(coth ka + coth kb)q — s^AA + E(x2, t2), (57)
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where E(x2, t2) is an integration constant to be determined by the initial or the boun-

dary conditions. Invoking the fact that there is no flow at infinity gives

E(x2, t2) = [si — 2/c(coth ka + coth kb)q]A0A0. (58)

The requirement that the third-order perturbation be nonsecular yields

r) A A
>^- + P^i = QA2A + RA (59)

(OX2 Uty

where

1 d2k
= (60)

o = 0

Q=-i
d2k

dio2
) [{*(1 + k2)(2 coth 2kb + coth kb) + a/c2(2 coth kb coth 2kb — 5)}s2
/w=0

+ i{k2(l + /c2)(coth2 kb + f) — §k4 + %uk3 coth kb}

+ /{(l -I- k2) + ak coth kb}2kb~ ̂coth ka + coth kb)

+ q{(l + fc2)coth kb - ixk2}{2k coth kb( 1 - q) + 2k coth ka}], (61)

R = — (^2 ) [b~ 1q~ l(<xk coth kb + 1 + k2) + q~~ 1{(1 -(- /c2)coth kb — <xk2}]E. (62)
dco J V) - 0

The above equation is the nonlinear Schrodinger equation with the role of time and the

space variables interchanged. The interaction term RA can be absorbed by the following

transformation:

A(x2, tj) = A exp| —1 ) R(x'2) dx'2j. (63)

We now consider the wave-train solution of the form

A(x2, ti) = a0 e\p(i(Kx2 - fifO), (64)

where A0 is a constant. On substituting (64) into (59), we get the dispersion relation

~^(K + Q\a0\2). (65)

Here kc = 1.093, Q = -8.256, and P = -0.186 with a = 1, and a = b = 0.5. For Q to be
imaginary, we require K < Q \ a012. The nonlinear cut-off wave number therefore is

= kc + Q\a0\2e2 -— I R(x'2)dx2. (66)
x2 ■

This shows that kn depends sensitively upon the initial condition with respect to tv

Moreover, the nonlinearity changes slightly the range of unstable wave numbers. The

band width of spectrum is of 0(e2) in the wave number space for the standing waves. The

equilibrium solution of (59) can also be expressed in terms of the Jacobian elliptic

functions. A solitary wave, the phase jump and the wave train of constant amplitude are

then just the special cases.

We would like to take this opportunity to acknowledge the financial support from the

Indian Space Research Organization and Simon Fraser University.



30 RAMA KANT, R. K. JINDIA AND S. K. MALIK

Appendix. With the introduction of the following linear operators:

&[Qn] = jzn„, L[r,n, (A1.A2)

M[>7„, ,</>„]= |ccb@<t>„- r\n + ^|)» (A3)

the first-order problem for 0(e) is given by

V2Qj = 0, V24>1 = 0 (A4, A5)

with the boundary conditions

Qj] = 0 at 2 = 0, (A6)

</>i = 0 at z = b, (A7)

<Pi = —t]ib~1 at z = 0, (A8)

£**[Qj] = 0 at z=—a, (A9)

M\t]u Q1( (pi] = 0 at z = 0. (A10)

The second-order problem for 0(e2) is

V2Q2 = -2{d2£ljdx0 ax,), (All)

V2</>2 = -2{d2(f>Jdx0dx,), (A 12)

with

@[Q2] — 0 at z — —a, (A13)

<ai4»

(f)2 = 0 at z = b, (A15)

<p2 — ~ 1 at z = 0, (A 16)

«-e)(S!i*s*sh"(S)i

The third-order problem for 0(e3) now becomes

M[>12 , ^2 > $2] — — 4^

72o _ -> ^2Q2 ^ -> 52Q1V2Q3=-2-—^ -2-—(A18)
tfX0 uXj uXj tfX0 ^^2

, d2d> 2 d2(b 1 d2<b.
V203= -2—-^ -2—^-, (A19)

(jXq ox j c/Xj ^Xq ^x2
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with

®[Q3] = 0 at z—-a, ^[fi3] = 0 at z=—a, (A20, A21)

L[l3,&3]= ~Jf2 + h&2Q2 + +hi^>3^i

dthlda2 dCl, d2Qt | _

^XqI^Xj dx0J dx0\dx0 dxt dz dx0) 2 '

$ 3 = 0 at z = b, (A23)

03 = -h&<l>2~l2y<Pi at z = 0, (A24)

r ~ . -| ^Q,
Mfo3,fi3,03]= — + —+tlljt

dCl2 d

df0 + dtx
+ **'(£)

+ + (3^1 P^2 +

/dfiijldfia 5Qi

\dx0/[cbc0 dxl ^1

a2n,

dz dx0

d2h _ 2 d2l2 _ 2 d2h + 3/^j \2d2thi nil

0/ <3*0

(^02)(^0l) + 1l{b~i&24>2 + (^</>l)(^2^l)}

cbc2 dxt ebc0 "cbc0cbc2 2\cbc,

471

+ f/2b l~~ + Wib ly3<t> 1
ox0 dx0

_ .tohWi l^h\2(r/tk \l
|5x!5x0 dx0 dx0 5x0^x! \dx0/ I

-»-(&)(&+£)l«--* <A25»
In writing Eqs. (A8) to (A25), we have used the following zeroth-order solutions of Eqs.

(1) to (7):

Q0 = 0, (A26)

= z/i>- (A27)
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